1
|
Vale W, Rivier J, Vaughan J, McClintock R,
Corrigan A, Woo W, Karr D and Spiess J: Purification and
characterization of an FSH releasing protein from porcine ovarian
follicular fluid. Nature. 321:776–779. 1986. View Article : Google Scholar : PubMed/NCBI
|
2
|
Mathews LS: Activin receptors and cellular
signaling by the receptor serine kinase family. Endocr Rev.
15:310–325. 1994. View Article : Google Scholar : PubMed/NCBI
|
3
|
Namwanje M and Brown CW: Activins and
inhibins: Roles in development, physiology, and disease. Cold
Spring Harb Perspect Biol. 8:a0218812016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mather JP, Moore A and Li RH: Activins,
inhibins, and follistatins: Further thoughts on a growing family of
regulators. Proc Soc Exp Biol Med. 215:209–222. 1997. View Article : Google Scholar : PubMed/NCBI
|
5
|
Matzuk MM, Finegold MJ, Su JG, Hsueh AJ
and Bradley A: Alpha-inhibin is a tumour-suppressor gene with
gonadal specificity in mice. Nature. 360:313–319. 1992. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kumar TR, Donehower LA, Bradley A and
Matzuk MM: Transgenic mouse models for tumour-suppressor genes. J
Intern Med. 238:233–238. 1995. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mellor SL, Richards MG, Pedersen JS,
Robertson DM and Risbridger GP: Loss of the expression and
localization of inhibin alpha-subunit in high grade prostate
cancer. J Clin Endocrinol Metab. 83:969–975. 1998. View Article : Google Scholar : PubMed/NCBI
|
8
|
Curradi M, Izzo A, Badaracco G and
Landsberger N: Molecular mechanisms of gene silencing mediated by
DNA methylation. Mol Cell Biol. 22:3157–3173. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Esteller M: CpG island hypermethylation
and tumor suppressor genes: A booming present, a brighter future.
Oncogene. 21:5427–5440. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jones PA and Baylin SB: The fundamental
role of epigenetic events in cancer. Nat Rev Genet. 3:415–428.
2002. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Bird AP: CpG-rich islands and the function
of DNA methylation. Nature. 321:209–213. 1986. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bird A: The essentials of DNA methylation.
Cell. 70:5–8. 1992. View Article : Google Scholar : PubMed/NCBI
|
13
|
Teodoridis JM, Strathdee G and Brown R:
Epigenetic silencing mediated by CpG island methylation: Potential
as a therapeutic target and as a biomarker. Drug Resist Updat.
7:267–278. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhao Z and Shilatifard A: Epigenetic
modifications of histones in cancer. Genome Biol. 20:2452019.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Filipski K, Scherer M, Zeiner KN, Bucher
A, Kleemann J, Jurmeister P, Hartung TI, Meissner M, Plate KH,
Fenton TR, et al: DNA methylation-based prediction of response to
immune checkpoint inhibition in metastatic melanoma. J Immunother
Cancer. 9:e0022262021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lutsik P, Slawski M, Gasparoni G, Vedeneev
N, Hein M and Walter J: MeDeCom: Discovery and quantification of
latent components of heterogeneous methylomes. Genome Biol.
18:552017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Perrier A, Didelot A, Laurent-Puig P,
Blons H and Garinet S: Epigenetic mechanisms of resistance to
immune checkpoint inhibitors. Biomolecules. 10:10612020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Emran AA, Chatterjee A, Rodger EJ, Tiffen
JC, Gallagher SJ, Eccles MR and Hersey P: Targeting DNA Methylation
and EZH2 activity to overcome melanoma resistance to immunotherapy.
Trends Immunol. 40:328–344. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Leonardi GC, Falzone L, Salemi R, Zanghì
A, Spandidos DA, McCubrey JA, Candido S and Libra M: Cutaneous
melanoma: From pathogenesis to therapy (Review). Int J Oncol.
52:1071–1080. 2018.PubMed/NCBI
|
20
|
Leonardi GC, Candido S, Falzone L,
Spandidos DA and Libra M: Cutaneous melanoma and the immunotherapy
revolution (Review). Int J Oncol. 57:609–618. 2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Balanathan P, Ball EM, Wang H, Harris SE,
Shelling AN and Risbridger GP: Epigenetic regulation of inhibin
alpha-subunit gene in prostate cancer cell lines. J Mol Endocrinol.
32:55–67. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kim YI, Shim J, Kim BH, Lee SJ, Lee HK,
Cho C and Cho BN: Transcriptional silencing of the inhibin-α gene
in human gastric carcinoma cells. Int J Oncol. 41:690–700. 2012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Kim YI, Park SW, Kwon HS, Yang HS, Cho SY,
Kim YJ and Lee HJ: Inhibin-α gene mutations and mRNA levels in
human lymphoid and myeloid leukemia cells. Int J Oncol.
50:1403–1412. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Barton DE, Yang-Feng TL, Mason AJ, Seeburg
PH and Francke U: Mapping of genes for inhibin subunits alpha, beta
A, and-beta B on human and mouse chromosomes and studies of jsd
mice. Genomics. 5:91–99. 1989. View Article : Google Scholar : PubMed/NCBI
|
25
|
Watson RH, Roy WJ Jr, Aavis M, Hitchcock A
and Campbell IG: Loss of heterozygosity at the alpha-inhibin locus
on chromosome 2q is not a feature of human granulosa cell tumors.
Gynecol Oncol. 65:387–390. 1997. View Article : Google Scholar : PubMed/NCBI
|
26
|
Schmitt JF, Millar DS, Pedersen JS, Clark
SL, Venter DJ, Frydenberg M, Molloy PL and Risbridger GP:
Hypermethylation of the inhibin alpha-subunit gene in prostate
carcinoma. Mol Endocrinol. 16:213–220. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sundblad V, Chiauzzi VA, Andreone L, Campo
S, Charreau EH and Dain L: Controversial role of inhibin
alpha-subunit gene in the aetiology of premature ovarian failure.
Hum Reprod. 21:1154–1160. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Gu H, Smith ZD, Bock C, Boyle P, Gnirke A
and Meissner A: Preparation of reduced representation bisulfite
sequencing libraries for genome-scale DNA methylation profiling.
Nat Protoc. 6:468–481. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kulis M and Esteller M: DNA methylation
and cancer. Adv Genet. 70:27–56. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Moarii M, Boeva V, Vert JP and Reyal F:
Changes in correlation between promoter methylation and gene
expression in cancer. BMC Genomics. 16:8732015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Falzone L, Salemi R, Travali S, Scalisi A,
McCubrey JA, Candido S and Libra M: MMP-9 overexpression is
associated with intragenic hypermethylation of MMP9 gene in
melanoma. Aging (Albany NY). 8:933–944. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wouters J, Vizoso M, Martinez-Cardus A,
Carmona FJ, Govaere O, Laguna T, Joseph J, Dynoodt P, Aura C, Foth
M, et al: Comprehensive DNA methylation study identifies novel
progression-related and prognostic markers for cutaneous melanoma.
BMC Med. 15:1012017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Micevic G, Theodosakis N and Bosenberg M:
Aberrant DNA methylation in melanoma: Biomarker and therapeutic
opportunities. Clin Epigenetics. 9:342017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kazanets A, Shorstova T, Hilmi K, Marques
M and Witcher M: Epigenetic silencing of tumor suppressor genes:
Paradigms, puzzles, and potential. Biochim Biophys Acta.
1865:275–288. 2016.PubMed/NCBI
|
36
|
Alers JC, Rochat J, Krijtenburg PJ, Hop
WC, Kranse R, Rosenberg C, Tanke HJ, Schröder FH and van Dekken H:
Identification of genetic markers for prostatic cancer progression.
Lab Invest. 80:931–942. 2000. View Article : Google Scholar : PubMed/NCBI
|
37
|
Suarez BK, Lin J, Burmester JK, Broman KW,
Weber JL, Banerjee TK, Goddard KA, Witte JS, Elston RC and Catalona
WJ: A genome screen of multiplex sibships with prostate cancer. Am
J Hum Genet. 66:933–944. 2000. View
Article : Google Scholar : PubMed/NCBI
|
38
|
Longui CA, Lemos-Marini SH, Figueiredo B,
Mendonca BB, Castro M, Liberatore R Jr, Watanabe C, Lancellotti CL,
Rocha MN, Melo MB, et al: Inhibin alpha-subunit (INHA) gene and
locus changes in paediatric adrenocortical tumours from TP53 R337H
mutation heterozygote carriers. J Med Genet. 41:354–359. 2004.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Ransom DT, Barnett TC, Bot J, de Boer B,
Metcalf C, Davidson JA and Turbett GR: Loss of heterozygosity on
chromosome 2q: Possibly a poor prognostic factor in head and neck
cancer. Head Neck. 20:404–410. 1998. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhao J, Richter J, Wagner U, Roth B,
Schraml P, Zellweger T, Ackermann D, Schmid U, Moch H, Mihatsch MJ,
et al: Chromosomal imbalances in noninvasive papillary bladder
neoplasms (pTa). Cancer Res. 59:4658–4661. 1999.PubMed/NCBI
|
41
|
Valdez BC, Li Y, Murray D, Corn P,
Champlin RE and Andersson BS: 5-Aza-2′-deoxycytidine sensitizes
busulfan-resistant myeloid leukemia cells by regulating expression
of genes involved in cell cycle checkpoint and apoptosis. Leuk Res.
34:364–372. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Sanaei M, Kavoosi F and Ghasemi A:
Investigation of the effect of 5-Aza-2′-deoxycytidine on p15INK4,
p16INK4, p18INK4, and p19INK4 genes expression, cell growth
inhibition, and apoptosis induction in hepatocellular carcinoma
PLC/PRF/5 Cell Line. Adv Biomed Res. 9:332020. View Article : Google Scholar : PubMed/NCBI
|
43
|
Rosenfeldt H, Vazquez-Prado J and Gutkind
JS: P-REX2, a novel PI-3-kinase sensitive Rac exchange factor. FEBS
Lett. 572:167–171. 2004. View Article : Google Scholar : PubMed/NCBI
|
44
|
Pandiella A and Montero JC: Molecular
pathways: P-Rex in cancer. Clin Cancer Res. 19:4564–4569. 2013.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Yang J, Gong X, Ouyang L, He W, Xiao R and
Tan L: PREX2 promotes the proliferation, invasion and migration of
pancreatic cancer cells by modulating the PI3K signaling pathway.
Oncol Lett. 12:1139–1143. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yang ZF, Yi JL, Li XR, Xie DX, Liao XF and
Ma X: PTEN induces apoptosis and up-regulates p53 expression in
HepG2 cells. Zhonghua Gan Zang Bing Za Zhi. 12:745–748. 2004.(In
Chinese). PubMed/NCBI
|
47
|
Wu J, Gao H, Ge W and He J: Over
expression of PTEN induces apoptosis and prevents cell
proliferation in breast cancer cells. Acta Biochim Pol. 67:515–519.
2020.PubMed/NCBI
|
48
|
Liu Y, Cao Y, Sun S, Zhu J, Gao S, Pang J,
Zhu D and Sun Z: Transforming growth factor-beta1 upregulation
triggers pulmonary artery smooth muscle cell proliferation and
apoptosis imbalance in rats with hypoxic pulmonary hypertension via
the PTEN/AKT pathways. Int J Biochem Cell Biol. 77:141–154. 2016.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Liu Y, Yan J, Sun C, Li G, Li S, Zhang L,
Di C, Gan L, Wang Y, Zhou R, et al: Ameliorating mitochondrial
dysfunction restores carbon ion-induced cognitive deficits via
co-activation of NRF2 and PINK1 signaling pathway. Redox Biol.
17:143–157. 2018. View Article : Google Scholar : PubMed/NCBI
|
50
|
He S, Lin J, Yu S and Sun S: Upregulation
of PREX2 promotes the proliferation and migration of hepatocellular
carcinoma cells via PTEN-AKT signaling. Oncol Lett. 11:2223–2228.
2016. View Article : Google Scholar : PubMed/NCBI
|
51
|
Mense SM, Barrows D, Hodakoski C,
Steinbach N, Schoenfeld D, Su W, Hopkins BD, Su T, Fine B,
Hibshoosh H and Parsons R: PTEN inhibits PREX2-catalyzed activation
of RAC1 to restrain tumor cell invasion. Sci Signal. 8:ra322015.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Feng J, Dang Y, Zhang W, Zhao X, Zhang C,
Hou Z, Jin Y, McNutt MA, Marks AR and Yin Y: PTEN arginine
methylation by PRMT6 suppresses PI3K-AKT signaling and modulates
pre-mRNA splicing. Proc Natl Acad Sci USA. 116:6868–6877. 2019.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Sasaki Y, Niu C, Makino R, Kudo C, Sun C,
Watanabe H, Matsunaga J, Takahashi K, Tagami H, Aiba S and Horii A:
BRAF point mutations in primary melanoma show different prevalences
by subtype. J Invest Dermatol. 123:177–183. 2004. View Article : Google Scholar : PubMed/NCBI
|
54
|
Aronchik I, Kundu A, Quirit JG and
Firestone GL: The antiproliferative response of indole-3-carbinol
in human melanoma cells is triggered by an interaction with NEDD4-1
and disruption of wild-type PTEN degradation. Mol Cancer Res.
12:1621–1634. 2014. View Article : Google Scholar : PubMed/NCBI
|
55
|
Pap M, Bátor J and Szeberényi J:
Sensitivity of human malignant melanoma cell lines to newcastle
disease virus. Anticancer Res. 35:5401–5406. 2015.PubMed/NCBI
|
56
|
Yamashita T, Tokino T, Tonoki H, Moriuchi
T, Jin HY, Omori F and Jimbow K: Induction of apoptosis in melanoma
cell lines by p53 and its related proteins. J Invest Dermatol.
117:914–919. 2001. View Article : Google Scholar : PubMed/NCBI
|