Advances in metformin‑based metabolic therapy for non‑small cell lung cancer (Review)
- Authors:
- Na Chen
- Yi-Shu Zhou
- Li-Cui Wang
- Jin-Bai Huang
-
Affiliations: Department of Medical Imaging, Faculty of Medicine, Yangtze University, Yangtze University Research and Experimentation Centre, Jingzhou, Hubei 434000, P.R. China - Published online on: January 18, 2022 https://doi.org/10.3892/or.2022.8266
- Article Number: 55
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Wang W, Hao Y, Liu Y, Li R, Huang DB and Pan YY: Nanomedicine in lung cancer: Current states of overcoming drug resistance and improving cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 13:e16542021. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021. View Article : Google Scholar : PubMed/NCBI | |
Duma N, Santana-Davila R and Molina JR: Non-small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc. 94:1623–1640. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hai J, Zhu CQ, Bandarchi B, Wang YH, Navab R, Shepherd FA, Jurisica I and Tsao MS: L1 cell adhesion molecule promotes tumorigenicity and metastatic potential in non-small cell lung cancer. Clin Cancer Res. 18:1914–1924. 2012. View Article : Google Scholar : PubMed/NCBI | |
Meijer TWH, Peeters WJM, Dubois LJ, van Gisbergen MW, Biemans R, Venhuizen JH, Span PN and Bussink J: Targeting glucose and glutamine metabolism combined with radiation therapy in non-small cell lung cancer. Lung Cancer. 126:32–40. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yao L, Liu M, Huang Y, Wu K, Huang X, Zhao Y, He W and Zhang R: Metformin use and lung cancer risk in diabetic patients: A systematic review and meta-analysis. Dis Markers. 2019:62301622019. View Article : Google Scholar : PubMed/NCBI | |
Troncone M, Cargnelli SM, Villani LA, Isfahanian N, Broadfield LA, Zychla L, Wright J, Pond G, Steinberg GR and Tsakiridis T: Targeting metabolism and AMP-activated kinase with metformin to sensitize non-small cell lung cancer (NSCLC) to cytotoxic therapy: Translational biology and rationale for current clinical trials. Oncotarget. 8:57733–57754. 2017. View Article : Google Scholar : PubMed/NCBI | |
DeBerardinis RJ and Chandel NS: Fundamentals of cancer metabolism. Sci Adv. 2:e16002002016. View Article : Google Scholar : PubMed/NCBI | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bose S and Le A: Glucose metabolism in cancer. Adv Exp Med Biol. 1063:3–12. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Yu X, Zhou L, Li J, Li M, Li W and Gao F: Sinomenine inhibits non-small cell lung cancer via downregulation of hexokinases II-mediated aerobic glycolysis. Onco Targets Ther. 13:3209–3221. 2020. View Article : Google Scholar : PubMed/NCBI | |
Toba H, Kawakita N, Takashima M, Matsumoto D, Takizawa H, Otsuka H and Tangoku A: Diagnosis of recurrence and follow-up using FDG-PET/CT for postoperative non-small-cell lung cancer patients. Gen Thorac Cardiovasc Surg. 69:311–317. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li XB, Gu JD and Zhou QH: Review of aerobic glycolysis and its key enzymes-new targets for lung cancer therapy. Thorac Cancer. 6:17–24. 2015. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F and Lisanti MP: Cancer metabolism: A therapeutic perspective. Nat Rev Clin Oncol. 14:11–31. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Ran Y, Zhu Y and Zhen Q: Effect of addition of WZB117 as an inhibitor of glucose transporter 1 for venous blood glucose determination. Lab Med. 52:197–201. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tiemin P, Peng X, Qingfu L, Yan W, Junlin X, Zhefeng H, Ming Z, Desen L and Qinghui M: Dysregulation of the miR-148a-GLUT1 axis promotes the progression and chemoresistance of human intrahepatic cholangiocarcinoma. Oncogenesis. 9:192020. View Article : Google Scholar : PubMed/NCBI | |
Zhao F, Ming J, Zhou Y and Fan L: Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation. Cancer Chemother Pharmacol. 77:963–972. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yakisich JS, Azad N, Kaushik V and Iyer AKV: The biguanides metformin and buformin in combination with 2-Deoxy-glucose or WZB-117 inhibit the viability of highly resistant human lung cancer cells. Stem Cells Int. 2019:62542692019. View Article : Google Scholar : PubMed/NCBI | |
Ojelabi OA, Lloyd KP, Simon AH, De Zutter JK and Carruthers A: WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated sugar transport by binding reversibly at the exofacial sugar binding site. J Biol Chem. 291:26762–26772. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, Colvin R, Ding J, Tong L, Wu S, et al: A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther. 11:1672–1682. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jia KG, Feng G, Tong YS, Tao GZ and Xu L: MiR-206 regulates non-small-cell lung cancer cell aerobic glycolysis by targeting hexokinase 2. J Biochem. 167:365–370. 2020. View Article : Google Scholar : PubMed/NCBI | |
An S, Huang L, Miao P, Shi L, Shen M, Zhao X, Liu J and Huang G: Small ubiquitin-like modifier 1 modification of pyruvate kinase M2 promotes aerobic glycolysis and cell proliferation in A549 human lung cancer cells. Onco Targets Ther. 11:2097–2109. 2018. View Article : Google Scholar : PubMed/NCBI | |
Porporato PE, Filigheddu N, Pedro JMB, Kroemer G and Galluzzi L: Mitochondrial metabolism and cancer. Cell Res. 28:265–280. 2018. View Article : Google Scholar : PubMed/NCBI | |
Israelsen WJ, Dayton TL, Davidson SM, Fiske BP, Hosios AM, Bellinger G, Li J, Yu Y, Sasaki M, Horner JW, et al: PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell. 155:397–409. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cortés-Cros M, Hemmerlin C, Ferretti S, Zhang J, Gounarides JS, Yin H, Muller A, Haberkorn A, Chene P, Sellers WR and Hofmann F: M2 isoform of pyruvate kinase is dispensable for tumor maintenance and growth. Proc Natl Acad Sci USA. 110:489–494. 2013. View Article : Google Scholar : PubMed/NCBI | |
Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI | |
Weinhouse S: The Warburg hypothesis fifty years later. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 87:115–126. 1976. View Article : Google Scholar : PubMed/NCBI | |
Fantin VR, St-Pierre J and Leder P: Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 9:425–434. 2006. View Article : Google Scholar : PubMed/NCBI | |
Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A and Saavedra E: Energy metabolism in tumor cells. FEBS J. 274:1393–1418. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zacksenhaus E, Shrestha M, Liu JC, Vorobieva I, Chung PED, Ju Y, Nir U and Jiang Z: Mitochondrial OXPHOS Induced by RB1 deficiency in breast cancer: Implications for anabolic metabolism, stemness, and metastasis. Trends Cancer. 3:768–779. 2017. View Article : Google Scholar : PubMed/NCBI | |
Joshi S, Tolkunov D, Aviv H, Hakimi AA, Yao M, Hsieh JJ, Ganesan S, Chan CS and White E: The genomic landscape of renal oncocytoma identifies a metabolic barrier to tumorigenesis. Cell Rep. 13:1895–1908. 2015. View Article : Google Scholar : PubMed/NCBI | |
Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR and Chandel NS: Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA. 107:8788–8793. 2010. View Article : Google Scholar : PubMed/NCBI | |
Martínez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, Mehta MM, Wang T, Santos JH, Woychik R, et al: TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol Cell. 61:199–209. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cheng G, Zhang Q, Pan J, Lee Y, Ouari O, Hardy M, Zielonka M, Myers CR, Zielonka J, Weh K, et al: Targeting lonidamine to mitochondria mitigates lung tumorigenesis and brain metastasis. Nat Commun. 10:22052019. View Article : Google Scholar : PubMed/NCBI | |
Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M and Andreelli F: Cellular and molecular mechanisms of metformin: An overview. Clin Sci (Lond). 122:253–270. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Alvarez R, Martinez-Outschoorn UE, Lamb R, Hulit J, Howell A, Gandara R, Sartini M, Rubin E, Lisanti MP and Sotgia F: Mitochondrial dysfunction in breast cancer cells prevents tumor growth: Understanding chemoprevention with metformin. Cell Cycle. 12:172–182. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brown SL, Kolozsvary A, Isrow DM, Al Feghali K, Lapanowski K, Jenrow KA and Kim JH: A novel mechanism of high dose radiation sensitization by metformin. Front Oncol. 9:2472019. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Zhou X, Curbo S and Karlsson A: Metformin downregulates the mitochondrial carrier SLC25A10 in a glucose dependent manner. Biochem Pharmacol. 156:444–450. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZJ, Bi Y, Li S, Zhang Q, Zhao G, Guo Y and Song Q: Reduced risk of lung cancer with metformin therapy in diabetic patients: A systematic review and meta-analysis. Am J Epidemiol. 180:11–14. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tsai MJ, Yang CJ, Kung YT, Sheu CC, Shen YT, Chang PY, Huang MS and Chiu HC: Metformin decreases lung cancer risk in diabetic patients in a dose-dependent manner. Lung Cancer. 86:137–143. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kang J, Jeong SM, Shin DW, Cho M, Cho JH and Kim J: The associations of aspirin, statins, and metformin with lung cancer risk and related mortality: A time-dependent analysis of population-based nationally representative data. J Thorac Oncol. 16:76–88. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li C, Xue Y, Xi YR and Xie K: Progress in the application and mechanism of metformin in treating non-small cell lung cancer. Oncol Lett. 13:2873–2880. 2017. View Article : Google Scholar : PubMed/NCBI | |
Frasca F, Pandini G, Sciacca L, Pezzino V, Squatrito S, Belfiore A and Vigneri R: The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch Physiol Biochem. 114:23–37. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mihaylova MM and Shaw RJ: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 13:1016–1023. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim KH, Song MJ, Yoo EJ, Choe SS, Park SD and Kim JB: Regulatory role of glycogen synthase kinase 3 for transcriptional activity of ADD1/SREBP1c. J Biol Chem. 279:51999–52006. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA and Cantley LC: The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA. 101:3329–3335. 2004. View Article : Google Scholar : PubMed/NCBI | |
Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M and Carling D: LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol. 13:2004–2008. 2003. View Article : Google Scholar : PubMed/NCBI | |
Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, et al: The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature. 437:1109–1111. 2005. View Article : Google Scholar : PubMed/NCBI | |
Inoki K, Zhu T and Guan KL: TSC2 mediates cellular energy response to control cell growth and survival. Cell. 115:577–590. 2003. View Article : Google Scholar : PubMed/NCBI | |
Forcet C and Billaud M: Dialogue between LKB1 and AMPK: A hot topic at the cellular pole. Sci STKE. 2007:pe512007. View Article : Google Scholar : PubMed/NCBI | |
Korsse SE, Peppelenbosch MP and van Veelen W: Targeting LKB1 signaling in cancer. Biochim Biophys Acta. 1835:194–210. 2013.PubMed/NCBI | |
Shackelford DB and Shaw RJ: The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression. Nat Rev Cancer. 9:563–575. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Fan Z, Edgerton SM, Deng XS, Alimova IN, Lind SE and Thor AD: Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle. 8:2031–2040. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE and Shaw RJ: AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 30:214–226. 2008. View Article : Google Scholar : PubMed/NCBI | |
Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, Viollet B and Thompson CB: Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67:6745–6752. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bolster DR, Crozier SJ, Kimball SR and Jefferson LS: AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem. 277:23977–23980. 2002. View Article : Google Scholar : PubMed/NCBI | |
Guo Q, Liu Z, Jiang L, Liu M, Ma J, Yang C, Han L, Nan K and Liang X: Metformin inhibits growth of human non-small cell lung cancer cells via liver kinase B-1-independent activation of adenosine monophosphate-activated protein kinase. Mol Med Rep. 13:2590–2596. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xiao X, He Q, Lu C, Werle KD, Zhao RX, Chen J, Davis BC, Cui R, Liang J and Xu ZX: Metformin impairs the growth of liver kinase B1-intact cervical cancer cells. Gynecol Oncol. 127:249–255. 2012. View Article : Google Scholar : PubMed/NCBI | |
Storozhuk Y, Hopmans SN, Sanli T, Barron C, Tsiani E, Cutz JC, Pond G, Wright J, Singh G and Tsakiridis T: Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br J Cancer. 108:2021–2032. 2013. View Article : Google Scholar : PubMed/NCBI | |
Condon KJ and Sabatini DM: Nutrient regulation of mTORC1 at a glance. J Cell Sci. 132:jcs2225702019. View Article : Google Scholar : PubMed/NCBI | |
Saxton RA and Sabatini DM: mTOR signaling in growth, metabolism, and disease. Cell. 168:960–976. 2017. View Article : Google Scholar : PubMed/NCBI | |
Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, et al: Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 39:171–183. 2010. View Article : Google Scholar : PubMed/NCBI | |
Howell JJ, Ricoult SJ, Ben-Sahra I and Manning BD: A growing role for mTOR in promoting anabolic metabolism. Biochem Soc Trans. 41:906–912. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schneider MB, Matsuzaki H, Haorah J, Ulrich A, Standop J, Ding XZ, Adrian TE and Pour PM: Prevention of pancreatic cancer induction in hamsters by metformin. Gastroenterology. 120:1263–1270. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bussink J, van der Kogel AJ and Kaanders JH: Activation of the PI3-K/AKT pathway and implications for radioresistance mechanisms in head and neck cancer. Lancet Oncol. 9:288–296. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dearden S, Stevens J, Wu YL and Blowers D: Mutation incidence and coincidence in non small-cell lung cancer: Meta-analyses by ethnicity and histology (mutMap). Ann Oncol. 24:2371–2376. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Guo FC, Wang W, Shi HS, Li D and Wang YS: K-ras gene mutation as a predictor of cancer cell responsiveness to metformin. Mol Med Rep. 8:763–768. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, et al: Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11:390–401. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dong J, Peng H, Yang X, Wu W, Zhao Y, Chen D, Chen L and Liu J: Metformin mediated microRNA-7 upregulation inhibits growth, migration, and invasion of non-small cell lung cancer A549 cells. Anticancer Drugs. 31:345–352. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jin D, Guo J, Wu Y, Chen W, Du J, Yang L, Wang X, Gong K, Dai J, Miao S, et al: Metformin-repressed miR-381-YAP-snail axis activity disrupts NSCLC growth and metastasis. J Exp Clin Cancer Res. 39:62020. View Article : Google Scholar : PubMed/NCBI | |
Fatehi Hassanabad A and MacQueen K: Molecular mechanisms underlining the role of metformin as a therapeutic agent in lung cancer. Cell Oncol (Dordr). 44:1–18. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Liu S, Lin X, Xu L, Mao X, Liu J, Zhang Z, Jiang W and Zhou H: Metformin inhibit lung cancer cell growth and invasion in vitro as well as tumor formation in vivo partially by activating PP2A. Med Sci Monit. 25:836–846. 2019. View Article : Google Scholar : PubMed/NCBI | |
Moro M, Caiola E, Ganzinelli M, Zulato E, Rulli E, Marabese M, Centonze G, Busico A, Pastorino U, de Braud FG, et al: Metformin enhances cisplatin-induced apoptosis and prevents resistance to cisplatin in Co-mutated KRAS/LKB1 NSCLC. J Thorac Oncol. 13:1692–1704. 2018. View Article : Google Scholar : PubMed/NCBI | |
Luo Z, Zhu T, Luo W, Lv Y, Zhang L, Wang C, Li M, Wu W and Shi S: Metformin induces apoptotic cytotoxicity depending on AMPK/PKA/GSK-3β-mediated c-FLIPL degradation in non-small cell lung cancer. Cancer Manag Res. 11:681–689. 2019. View Article : Google Scholar : PubMed/NCBI | |
Riaz MA, Sak A, Erol YB, Groneberg M, Thomale J and Stuschke M: Metformin enhances the radiosensitizing effect of cisplatin in non-small cell lung cancer cell lines with different cisplatin sensitivities. Sci Rep. 9:12822019. View Article : Google Scholar : PubMed/NCBI | |
Lee BB, Kim Y, Kim D, Cho EY, Han J, Kim HK, Shim YM and Kim DH: Metformin and tenovin-6 synergistically induces apoptosis through LKB1-independent SIRT1 down-regulation in non-small cell lung cancer cells. J Cell Mol Med. 23:2872–2889. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ko E, Baek S, Kim J, Park D and Lee Y: Antitumor activity of combination therapy with metformin and trametinib in non-small cell lung cancer cells. Dev Reprod. 24:113–123. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang JL, Lan YW, Tsai YT, Chen YC, Staniczek T, Tsou YA, Yen CC and Chen CM: Additive antiproliferative and antiangiogenic effects of metformin and pemetrexed in a non-small-cell lung cancer xenograft model. Front Cell Dev Biol. 9:6880622021. View Article : Google Scholar : PubMed/NCBI | |
Akopyan G and Bonavida B: Understanding tobacco smoke carcinogen NNK and lung tumorigenesis. Int J Oncol. 29:745–752. 2006.PubMed/NCBI | |
Memmott RM, Mercado JR, Maier CR, Kawabata S, Fox SD and Dennis PA: Metformin prevents tobacco carcinogen-induced lung tumorigenesis. Cancer Prev Res (Phila). 3:1066–1076. 2010. View Article : Google Scholar : PubMed/NCBI | |
De Bruycker S, Vangestel C, Van den Wyngaert T, Pauwels P, Wyffels L, Staelens S and Stroobants S: 18F-Flortanidazole Hypoxia PET holds promise as a prognostic and predictive imaging biomarker in a lung cancer xenograft model treated with metformin and radiotherapy. J Nucl Med. 60:34–40. 2019. View Article : Google Scholar : PubMed/NCBI | |
Borzi C, Ganzinelli M, Caiola E, Colombo M, Centonze G, Boeri M, Signorelli D, Caleca L, Rulli E, Busico A, et al: LKB1 down-modulation by miR-17 identifies patients with NSCLC having worse prognosis eligible for energy-stress-based treatments. J Thorac Oncol. 16:1298–1311. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tseng CH: Metformin and lung cancer risk in patients with type 2 diabetes mellitus. Oncotarget. 8:41132–41142. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiao K, Liu F, Liu J, Xu J, Wu Q and Li X: The effect of metformin on lung cancer risk and survival in patients with type 2 diabetes mellitus: A meta-analysis. J Clin Pharm Ther. 45:783–792. 2020. View Article : Google Scholar : PubMed/NCBI | |
Arrieta O, Varela-Santoyo E, Soto-Perez-de-Celis E, Sánchez-Reyes R, De la Torre-Vallejo M, Muñiz-Hernández S and Cardona AF: Metformin use and its effect on survival in diabetic patients with advanced non-small cell lung cancer. BMC Cancer. 16:6332016. View Article : Google Scholar : PubMed/NCBI | |
Xu T, Li D, He Y, Zhang F, Qiao M and Chen Y: Prognostic value of metformin for non-small cell lung cancer patients with diabetes. World J Surg Oncol. 16:602018. View Article : Google Scholar : PubMed/NCBI | |
Lin JJ, Gallagher EJ, Sigel K, Mhango G, Galsky MD, Smith CB, LeRoith D and Wisnivesky JP: Survival of patients with stage IV lung cancer with diabetes treated with metformin. Am J Respir Crit Care Med. 191:448–454. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cao X, Wen ZS, Wang XD, Li Y, Liu KY and Wang X: The clinical effect of metformin on the survival of lung cancer patients with diabetes: A comprehensive systematic review and meta-analysis of retrospective studies. J Cancer. 8:2532–2541. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Hyun HJ, Choi EA, Yoo JW, Lee S, Jeong N, Shen JJ, You HS, Kim YS and Kang HT: Diabetes, metformin, and lung cancer: Retrospective study of the Korean NHIS-HEALS Database. Clin Lung Cancer. 21:e551–e559. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cruz-Bermúdez A, Laza-Briviesca R, Vicente-Blanco RJ, García-Grande A, Coronado MJ, Laine-Menéndez S, Palacios-Zambrano S, Moreno-Villa MR, Ruiz-Valdepeñas AM, Lendinez C, et al: Cisplatin resistance involves a metabolic reprogramming through ROS and PGC-1α in NSCLC which can be overcome by OXPHOS inhibition. Free Radic Biol Med. 135:167–181. 2019. View Article : Google Scholar : PubMed/NCBI | |
Menendez JA, Oliveras-Ferraros C, Cufí S, Corominas-Faja B, Joven J, Martin-Castillo B and Vazquez-Martin A: Metformin is synthetically lethal with glucose withdrawal in cancer cells. Cell Cycle. 11:2782–2792. 2012. View Article : Google Scholar : PubMed/NCBI | |
Elgendy M, Cirò M, Hosseini A, Weiszmann J, Mazzarella L, Ferrari E, Cazzoli R, Curigliano G, DeCensi A, Bonanni B, et al: Combination of hypoglycemia and metformin impairs tumor metabolic plasticity and growth by modulating the PP2A-GSK3β-MCL-1 Axis. Cancer Cell. 35:798–815.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hao W, Chang CP, Tsao CC and Xu J: Oligomycin-induced bioenergetic adaptation in cancer cells with heterogeneous bioenergetic organization. J Biol Chem. 285:12647–12654. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jose C, Bellance N and Rossignol R: Choosing between glycolysis and oxidative phosphorylation: A tumor's dilemma? Biochim Biophys Acta. 1807:552–561. 2011. View Article : Google Scholar : PubMed/NCBI | |
Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, Yucel B, Wang T, Chen WW, Clish CB and Sabatini DM: Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature. 508:108–112. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dykens JA, Jamieson J, Marroquin L, Nadanaciva S, Billis PA and Will Y: Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol Appl Pharmacol. 233:203–210. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hou XB, Li TH, Ren ZP and Liu Y: Combination of 2-deoxy d-glucose and metformin for synergistic inhibition of non-small cell lung cancer: A reactive oxygen species and P-p38 mediated mechanism. Biomed Pharmacother. 84:1575–1584. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee C, Raffaghello L, Brandhorst S, Safdie FM, Bianchi G, Martin-Montalvo A, Pistoia V, Wei M, Hwang S, Merlino A, et al: Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med. 4:124ra272012. View Article : Google Scholar : PubMed/NCBI | |
Javeshghani S, Zakikhani M, Austin S, Bazile M, Blouin MJ, Topisirovic I, St-Pierre J and Pollak MN: Carbon source and myc expression influence the antiproliferative actions of metformin. Cancer Res. 72:6257–6267. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vernieri C, Signorelli D, Galli G, Ganzinelli M, Moro M, Fabbri A, Tamborini E, Marabese M, Caiola E, Broggini M, et al: Exploiting FAsting-mimicking Diet and MEtformin to improve the efficacy of platinum-pemetrexed chemotherapy in advanced LKB1-inactivated lung adenocarcinoma: The FAME Trial. Clin Lung Cancer. 20:e413–e417. 2019. View Article : Google Scholar : PubMed/NCBI | |
Arrieta O, Barrón F, Padilla M, Avilés-Salas A, Ramírez-Tirado L, Arguelles Jiménez M, Vergara E, Zatarain-Barrón Z, Hernández-Pedro N, Cardona A, et al: Effect of metformin plus tyrosine kinase inhibitors compared with tyrosine kinase inhibitors alone in patients with epidermal growth factor receptor-mutated lung adenocarcinoma: A phase 2 randomized clinical trial. JAMA Oncol. 5:e1925532019. View Article : Google Scholar : PubMed/NCBI | |
Afzal MZ, Dragnev K, Sarwar T and Shirai K: Clinical outcomes in non-small-cell lung cancer patients receiving concurrent metformin and immune checkpoint inhibitors. Lung Cancer Manag. 8:LMT112019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Jiao K, Liu J and Xia Y: Metformin reverses the resistance mechanism of lung adenocarcinoma cells that knocks down the Nrf2 gene. Oncol Lett. 16:6071–6080. 2018.PubMed/NCBI | |
Wang J, Wang Y, Han J, Mei H, Yu D, Ding Q, Zhang T, Wu G, Peng G and Lin Z: Metformin attenuates radiation-induced pulmonary fibrosis in a murine model. Radiat Res. 188:105–113. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang S, He T, Yang S, Sheng H, Tang X, Bao F, Wang Y, Lin X, Yu W, Cheng F, et al: Metformin reverses chemoresistance in non-small cell lung cancer via accelerating ubiquitination-mediated degradation of Nrf2. Transl Lung Cancer Res. 9:2337–2355. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Chen K, Yu Y, Xiang Y, Kim JH, Gong W, Huang J, Shi G, Li Q, Zhou M, et al: Metformin sensitizes lung cancer cells to treatment by the tyrosine kinase inhibitor erlotinib. Oncotarget. 8:109068–109078. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jacobi O, Landman Y, Reinhorn D, Icht O, Sternschuss M, Rotem O, Finkel I, Allen AM, Dudnik E, Goldstein DA and Zer A: The relationship of diabetes mellitus to efficacy of immune checkpoint inhibitors in patients with advanced non-small cell lung cancer. Oncology. 99:555–561. 2021. View Article : Google Scholar : PubMed/NCBI | |
Luo X, Chen X, Wang L, Yang B and Cai S: Metformin adjunct with antineoplastic agents for the treatment of lung cancer: A meta-analysis of randomized controlled trials and observational cohort studies. Front Pharmacol. 12:6390162021. View Article : Google Scholar : PubMed/NCBI | |
Skinner H, Hu C, Tsakiridis T, Santana-Davila R, Lu B, Erasmus JJ, Doemer AJ, Videtic GMM, Coster J, Yang AX, et al: Addition of metformin to concurrent chemoradiation in patients with locally advanced non-small cell lung cancer: The NRG-LU001 phase 2 randomized clinical trial. JAMA Oncol. 7:1324–1332. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tsakiridis T, Pond GR, Wright J, Ellis PM, Ahmed N, Abdulkarim B, Roa W, Robinson A, Swaminath A, Okawara G, et al: Metformin in combination with chemoradiotherapy in locally advanced non-small cell lung cancer: The OCOG-ALMERA randomized clinical trial. JAMA Oncol. 7:1333–1341. 2021. View Article : Google Scholar : PubMed/NCBI | |
Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E and Udono H: Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci USA. 112:1809–1814. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Li M, Trousil S, Zhang Y, Pasca di Magliano M, Swanson KD and Zheng B: Phenformin inhibits myeloid-derived suppressor cells and enhances the anti-tumor activity of PD-1 blockade in melanoma. J Invest Dermatol. 137:1740–1748. 2017. View Article : Google Scholar : PubMed/NCBI | |
Scharping NE, Menk AV, Whetstone RD, Zeng X and Delgoffe GM: Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol Res. 5:9–16. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang JC, Sun X, Ma Q, Fu GF, Cong LL, Zhang H, Fan DF, Feng J, Lu SY, Liu JL, et al: Metformin's antitumour and anti-angiogenic activities are mediated by skewing macrophage polarization. J Cell Mol Med. 22:3825–3836. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kubo T, Ninomiya T, Hotta K, Kozuki T, Toyooka S, Okada H, Fujiwara T, Udono H and Kiura K: Study protocol: Phase-Ib trial of nivolumab combined with metformin for refractory/recurrent solid tumors. Clin Lung Cancer. 19:e861–e864. 2018. View Article : Google Scholar : PubMed/NCBI | |
Granja S, Marchiq I, Le Floch R, Moura CS, Baltazar F and Pouysségur J: Disruption of BASIGIN decreases lactic acid export and sensitizes non-small cell lung cancer to biguanides independently of the LKB1 status. Oncotarget. 6:6708–6721. 2015. View Article : Google Scholar : PubMed/NCBI | |
Morgillo F, Sasso FC, Della Corte CM, Festino L, Manzo A, Martinelli E, Troiani T, Capuano A and Ciardiello F: Metformin in lung cancer: Rationale for a combination therapy. Expert Opin Investig Drugs. 22:1401–1409. 2013. View Article : Google Scholar : PubMed/NCBI | |
Reinfeld BI, Madden MZ, Wolf MM, Chytil A, Bader JE, Patterson AR, Sugiura A, Cohen AS, Ali A, Do BT, et al: Cell-programmed nutrient partitioning in the tumour microenvironment. Nature. 593:282–288. 2021. View Article : Google Scholar : PubMed/NCBI |