1
|
Assié G, Letouzé E, Fassnacht M, Jouinot
A, Luscap W, Barreau O, Omeiri H, Rodriguez S, Perlemoine K,
René-Corail F, et al: Integrated genomic characterization of
adrenocortical carcinoma. Nat Genet. 46:607–612. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Crona J and Beuschlein F: Adrenocortical
carcinoma-towards genomics guided clinical care. Nat Rev
Endocrinol. 15:548–560. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Le Tourneau C, Hoimes C, Zarwan C, Wong
DJ, Bauer S, Claus R, Wermke M, Hariharan S, von Heydebreck A,
Kasturi V, et al: Avelumab in patients with previously treated
metastatic adrenocortical carcinoma: phase 1b results from the
JAVELIN solid tumor trial. J Immunother Cancer. 6:1112018.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Sperone P, Ferrero A, Daffara F, Priola A,
Zaggia B, Volante M, Santini D, Vincenzi B, Badalamenti G,
Intrivici C, et al: Gemcitabine plus metronomic 5-fluorouracil or
capecitabine as a second-/third-line chemotherapy in advanced
adrenocortical carcinoma: A multicenter phase II study. Endocr
Relat Cancer. 17:445–453. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Henning JEK, Deutschbein T, Altieri B,
Steinhauer S, Kircher S, Sbiera S, Wild V, Schlötelburg W, Kroiss
M, Perotti P, et al: Gemcitabine-based chemotherapy in
adrenocortical carcinoma: A multicenter study of efficacy and
predictive factors. J Clin Endocrinol Metab. 102:4323–4332. 2017.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Cosentini D, Grisanti S, Dalla Volta A,
Laganà M, Fiorentini C, Perotti P, Sigala S and Berruti A:
Immunotherapy failure in adrenocortical cancer: Where next? Endocr
Connect. 7:E5–E8. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Jorgovanovic D, Song M, Wang L and Zhang
Y: Roles of IFN-γ in tumor progression and regression: A review.
Biomark Res. 8:492020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ni L and Lu J: Interferon gamma in cancer
immunotherapy. Cancer Med. 7:4509–4516. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ligocki AJ, Brown JR and Niederkorn JY:
Role of interferon-γ and cytotoxic T lymphocytes in intraocular
tumor rejection. J Leukoc Biol. 99:735–747. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhou J, Ma P, Li J, Cui X and Song W:
Improvement of the cytotoxic T lymphocyte response against
hepatocellular carcinoma by transduction of cancer cells with an
adeno-associated virus carrying the interferon-γ gene. Mol Med Rep.
13:3197–3205. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang W, Green M, Choi JE, Gijon M, Kennedy
PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al: CD8(+) T
cells regulate tumour ferroptosis during cancer immunotherapy.
Nature. 569:270–274. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kong R, Wang N, Han W, Bao W and Lu J:
IFNγ-mediated repression of system xc− drives
vulnerability to induced ferroptosis in hepatocellular carcinoma
cells. J Leukoc Biol. 110:301–314. 2021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C
and Li B: Ferroptosis, a new form of cell death: Opportunities and
challenges in cancer. J Hematol Oncol. 12:342019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang X and Li X: Abnormal iron and lipid
metabolism mediated ferroptosis in kidney diseases and its
therapeutic potential. Metabolites. 12:582022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li D and Li Y: The interaction between
ferroptosis and lipid metabolism in cancer. Signal Transduct Target
Ther. 5:1082020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tang X, Chen W, Liu H, Liu N, Chen D, Tian
D and Wang J: Research progress on SLC7A11 in the regulation of
cystine/cysteine metabolism in tumors. Oncol Lett. 23:472022.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang Y, Wei Z, Pan K, Li J and Chen Q: The
function and mechanism of ferroptosis in cancer. Apoptosis.
25:786–798. 2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Cobler L, Zhang H, Suri P, Park C and
Timmerman L: xCT inhibition sensitizes tumors to γ-radiation via
glutathione reduction. Oncotarget. 9:32280–32297. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen L, Li X, Liu L, Yu B, Xue Y and Liu
Y: Erastin sensitizes glioblastoma cells to temozolomide by
restraining xCT and cystathionine-γ-lyase function. Oncol Rep.
33:1465–1474. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Roh JL, Kim EH, Jang HJ, Park JY and Shin
D: Induction of ferroptotic cell death for overcoming cisplatin
resistance of head and neck cancer. Cancer Lett. 381:96–103. 2016.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Liang JY, Wang DS, Lin HC, Chen XX, Yang
H, Zheng Y and Li YH: A novel ferroptosis-related gene signature
for overall survival prediction in patients with hepatocellular
carcinoma. Int J Biol Sci. 16:2430–2441. 2020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Team C: Team RDC.R: A Language And
Environment For Statistical Computing. R Foundation for Statistical
Computing; Vienna: 2012
|
23
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: Limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tang Z, Li C, Kang B, Gao G, Li C and
Zhang Z: GEPIA: A web server for cancer and normal gene expression
profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102.
2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Linher-Melville K, Haftchenary S, Gunning
P and Singh G: Signal transducer and activator of transcription 3
and 5 regulate system Xc- and redox balance in human breast cancer
cells. Mol Cell Biochem. 405:205–221. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sun L, Linghu D and Hung M: Ferroptosis: A
promising target for cancer immunotherapy. Am J Cancer Res.
11:5856–5863. 2021.PubMed/NCBI
|
28
|
Xia X, Fan X, Zhao M and Zhu P: The
Relationship between ferroptosis and tumors: A novel landscape for
therapeutic approach. Curr Gene Ther. 19:117–124. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lang X, Green MD, Wang W, Yu J, Choi JE,
Jiang L, Liao P, Zhou J, Zhang Q, Dow A, et al: Radiotherapy and
immunotherapy promote tumoral lipid oxidation and ferroptosis via
synergistic repression of SLC7A11. Cancer Discov. 9:1673–1685.
2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Koppula P, Zhuang L and Gan B: Cystine
transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient
dependency, and cancer therapy. Protein Cell. 12:599–620. 2021.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Jiang L, Kon N, Li T, Wang SJ, Su T,
Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated
activity during tumour suppression. Nature. 520:57–62. 2015.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Shiozaki A, Iitaka D, Ichikawa D,
Nakashima S, Fujiwara H, Okamoto K, Kubota T, Komatsu S, Kosuga T,
Takeshita H, et al: xCT, component of cysteine/glutamate
transporter, as an independent prognostic factor in human
esophageal squamous cell carcinoma. J Gastroenterol. 49:853–863.
2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Takeuchi S, Wada K, Toyooka T, Shinomiya
N, Shimazaki H, Nakanishi K, Nagatani K, Otani N, Osada H, Uozumi
Y, et al: Increased xCT expression correlates with tumor invasion
and outcome in patients with glioblastomas. Neurosurgery. 72:33–41;
discussion 41. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Weigand I, Schreiner J, Rohrig F, Sun N,
Landwehr LS, Urlaub H, Kendl S, Kiseljak-Vassiliades K, Wierman ME,
Angeli JPF, et al: Active steroid hormone synthesis renders
adrenocortical cells highly susceptible to type II ferroptosis
induction. Cell Death Dis. 11:1922020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chen X, Yan L, Jiang F, Lu Y, Zeng N, Yang
S and Ma X: Identification of a ferroptosis-related signature
associated with prognosis and immune infiltration in adrenocortical
carcinoma. Int J Endocrinol. 2021:46543022021. View Article : Google Scholar : PubMed/NCBI
|
36
|
Shi Z, Tao H, Fan Z, Song S and Bai J:
Prognostic and immunological role of key genes of ferroptosis in
pan-cancer. Front Cell Dev Biol. 9:7489252021. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tang R, Xu J, Zhang B, Liu J, Liang C, Hua
J, Meng Q, Yu X and Shi S: Ferroptosis, necroptosis, and pyroptosis
in anticancer immunity. J Hematol Oncol. 13:1102020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yamaguchi H, Hsu JL, Chen CT, Wang YN, Hsu
MC, Chang SS, Du Y, Ko HW, Herbst R and Hung MC:
Caspase-independent cell death is involved in the negative effect
of EGF receptor inhibitors on cisplatin in non-small cell lung
cancer cells. Clin Cancer Res. 19:845–854. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Belavgeni A, Bornstein SR, von
Mässenhausen A, Tonnus W, Stumpf J, Meyer C, Othmar E, Latk M,
Kanczkowski W, Kroiss M, et al: Exquisite sensitivity of
adrenocortical carcinomas to induction of ferroptosis. Proc Natl
Acad Sci USA. 116:22269–22274. 2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wu S, Li T, Liu W and Huang Y: Ferroptosis
and cancer: Complex relationship and potential application of
exosomes. Front Cell Dev Biol. 9:7337512021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Linher-Melville K and Singh G: The complex
roles of STAT3 and STAT5 in maintaining redox balance: Lessons from
STAT-mediated xCT expression in cancer cells. Mol Cell Endocrinol.
451:40–52. 2017. View Article : Google Scholar : PubMed/NCBI
|