Research progress of anti-glioma chemotherapeutic drugs (Review)
- Authors:
- Yi-Shu Zhou
- Wei Wang
- Na Chen
- Li-Cui Wang
- Jin-Bai Huang
-
Affiliations: Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei 434000, P.R. China, Department of Radiology and Research Institute for Translation Medicine on Molecular Function and Artificial Intelligence Imaging, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China - Published online on: March 30, 2022 https://doi.org/10.3892/or.2022.8312
- Article Number: 101
-
Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI | |
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, et al: The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 23:1231–1251. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS and Khasraw M: Management of glioblastoma: State of the art and future directions. CA Cancer J Clin. 70:299–312. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nayak L and Reardon DA: High-grade gliomas. Continuum (Minneap Minn). 23:1548–1563. 2017.PubMed/NCBI | |
Miller KD, Ostrom QT, Kruchko C, Patil N, Tihan T, Cioffi G, Fuchs HE, Waite KA, Jemal A, Siegel RL and Barnholtz-Sloan JS: Brain and other central nervous system tumor statistics, 2021. CA Cancer J Clin. 71:381–406. 2021. View Article : Google Scholar : PubMed/NCBI | |
Han T, Zuo Z, Qu M, Zhou Y, Li Q and Wang H: Comprehensive analysis of inflammatory response-related genes, and prognosis and immune infiltration in patients with low-grade glioma. Front Pharmacol. 12:7489932021. View Article : Google Scholar : PubMed/NCBI | |
Ogino H, Taylor JW, Nejo T, Gibson D, Watchmaker PB, Okada K, Saijo A, Tedesco MR, Shai A, Wong CM, et al: Randomized trial of neoadjuvant vaccination with tumor-cell lysate induces T cell response in low-grade gliomas. J Clin Invest. 132:e1512392022. View Article : Google Scholar : PubMed/NCBI | |
Choi S, Yu Y, Grimmer MR, Wahl M, Chang SM and Costello JF: Temozolomide-associated hypermutation in gliomas. Neuro Oncol. 20:1300–1309. 2018. View Article : Google Scholar : PubMed/NCBI | |
Faulkner H, Arnaout O, Hoshide R, Young IM, Yeung JT, Sughrue ME and Teo C: The surgical resection of brainstem glioma: Outcomes and prognostic factors. World Neurosurg. 146:e639–e650. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dong CY, Hong S, Zheng DW, Huang QX, Liu FS, Zhong ZL and Zhang XZ: Multifunctionalized gold sub-nanometer particles for sensitizing radiotherapy against glioblastoma. Small. 17:e20065822021. View Article : Google Scholar : PubMed/NCBI | |
Poon MTC, Sudlow CLM, Figueroa JD and Brennan PM: Longer-term (≥2 years) survival in patients with glioblastoma in population-based studies pre- and post-2005: A systematic review and meta-analysis. Sci Rep. 10:116222020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Jiang Y, Wei D, Singh P, Yu Y, Lee T, Zhang L, Mandl HK, Piotrowski-Daspit AS, Chen X, et al: Nanoparticle-mediated convection-enhanced delivery of a DNA intercalator to gliomas circumvents temozolomide resistance. Nat Biomed Eng. 5:1048–1058. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang L, Peng Y, et al: Glioma targeted therapy: Insight into future of molecular approaches. Mol Cancer. 21:392022. View Article : Google Scholar : PubMed/NCBI | |
Goodenberger ML and Jenkins RB: Genetics of adult glioma. Cancer Genet. 205:613–621. 2012. View Article : Google Scholar : PubMed/NCBI | |
Carrillo JA and Munoz CA: Alternative chemotherapeutic agents: Nitrosoureas, cisplatin, irinotecan. Neurosurg Clin N Am. 23297–306. (ix)2012. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Sun S, Xu H, Zhao Z, Han Z, Jia J, Wu D, Lu J, Liu H and Yu R: Combined delivery of temozolomide and siPLK1 using targeted nanoparticles to enhance temozolomide sensitivity in glioma. Int J Nanomedicine. 15:3347–3362. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mehta S and Lo Cascio C: Developmentally regulated signaling pathways in glioma invasion. Cell Mol Life Sci. 75:385–402. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, van Straten D, Broekman MLD, Préat V and Schiffelers RM: Nanocarrier-based drug combination therapy for glioblastoma. Theranostics. 10:1355–1372. 2020. View Article : Google Scholar : PubMed/NCBI | |
Haumann R, Videira JC, Kaspers GJL, van Vuurden DG and Hulleman E: Overview of current drug delivery methods across the blood-brain barrier for the treatment of primary brain tumors. CNS Drugs. 34:1121–1131. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Yang X, Mei S, Sun Y and Li J: Acquisition of temozolomide resistance by the rat C6 glioma cell line increases cell migration and side population phenotype. Oncol Rep. 42:2355–2362. 2019.PubMed/NCBI | |
Liu S, Shi W, Zhao Q, Zheng Z, Liu Z, Meng L, Dong L and Jiang X: Progress and prospect in tumor treating fields treatment of glioblastoma. Biomed Pharmacother. 141:1118102021. View Article : Google Scholar : PubMed/NCBI | |
Velásquez C, Mansouri S, Mora C, Nassiri F, Suppiah S, Martino J, Zadeh G and Fernández-Luna JL: Molecular and clinical insights into the invasive capacity of glioblastoma cells. J Oncol. 2019:17407632019. View Article : Google Scholar : PubMed/NCBI | |
Muir M, Gopakumar S, Traylor J, Lee S and Rao G: Glioblastoma multiforme: Novel therapeutic targets. Expert Opin Ther Targets. 24:605–614. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cheng F and Guo D: MET in glioma: Signaling pathways and targeted therapies. J Exp Clin Cancer Res. 38:2702019. View Article : Google Scholar : PubMed/NCBI | |
Desjardins A, Rich JN, Quinn JA, Vredenburgh J, Gururangan S, Sathornsumetee S, Reardon DA, Friedman AH, Bigner DD and Friedman HS: Chemotherapy and novel therapeutic approaches in malignant glioma. Front Biosci. 10:2645–2668. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lapointe S, Perry A and Butowski NA: Primary brain tumours in adults. Lancet. 392:432–446. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhai M, Chen Z, Han X, Yu F, Li Z, Xie X, Han C, Yu L, Yang Y and Mei X: Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma. Drug Deliv. 24:1045–1055. 2017. View Article : Google Scholar : PubMed/NCBI | |
d'Angelo M, Castelli V, Benedetti E, Antonosante A, Catanesi M, Dominguez-Benot R, Pitari G, Ippoliti R and Cimini A: Theranostic nanomedicine for malignant gliomas. Front Bioeng Biotechnol. 7:3252019. View Article : Google Scholar : PubMed/NCBI | |
Brandes AA, Bartolotti M, Tosoni A and Franceschi E: Nitrosoureas in the management of malignant gliomas. Curr Neurol Neurosci Rep. 16:132016. View Article : Google Scholar : PubMed/NCBI | |
Stupp R: Drug development for glioma: Are we repeating the same mistakes? Lancet Oncol. 20:10–12. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Wang L, Han J, Wang A, Chu L, Xi X, Kan R, Sha C and Sun K: Synthesis and characterization of a series of temozolomide esters and its anti-glioma study. J Pharm Sci. 110:3431–3438. 2021. View Article : Google Scholar : PubMed/NCBI | |
Karachi A, Dastmalchi F, Mitchell DA and Rahman M: Temozolomide for immunomodulation in the treatment of glioblastoma. Neuro Oncol. 20:1566–1572. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cao H, Li X, Wang F, Zhang Y, Xiong Y and Yang Q: Phytochemical-mediated glioma targeted treatment: Drug resistance and novel delivery systems. Curr Med Chem. 27:599–629. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mirabdaly S, Elieh Ali Komi D, Shakiba Y, Moini A and Kiani A: Effects of temozolomide on U87MG glioblastoma cell expression of CXCR4, MMP2, MMP9, VEGF, anti-proliferatory cytotoxic and apoptotic properties. Mol Biol Rep. 47:1187–1197. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Gao S, Wang W and Liang J: Temozolomide inhibits cellular growth and motility via targeting ERK signaling in glioma C6 cells. Mol Med Rep. 14:5732–5738. 2016. View Article : Google Scholar : PubMed/NCBI | |
Da Ros M, Iorio AL, De Gregorio V, Fantappiè O, Laffi G, de Martino M, Pisano C, Genitori L and Sardi I: Aldoxorubicin and temozolomide combination in a xenograft mice model of human glioblastoma. Oncotarget. 9:34935–34944. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hu YH, Jiao BH, Wang CY and Wu JL: Regulation of temozolomide resistance in glioma cells via the RIP2/NF-κB/MGMT pathway. CNS Neurosci Ther. 27:552–563. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Li X, Gao F, de Groot JF, Koul D and Yung WKA: PARP-mediated PARylation of MGMT is critical to promote repair of temozolomide-induced O6-methylguanine DNA damage in glioblastoma. Neuro Oncol. 23:920–931. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rahman MA, Gras Navarro A, Brekke J, Engelsen A, Bindesbøll C, Sarowar S, Bahador M, Bifulco E, Goplen D, Waha A, et al: Bortezomib administered prior to temozolomide depletes MGMT, chemosensitizes glioblastoma with unmethylated MGMT promoter and prolongs animal survival. Br J Cancer. 121:545–555. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rezaei T, Hejazi M, Mansoori B, Mohammadi A, Amini M, Mosafer J, Rezaei S, Mokhtarzadeh A and Baradaran B: microRNA-181a mediates the chemo-sensitivity of glioblastoma to carmustine and regulates cell proliferation, migration, and apoptosis. Eur J Pharmacol. 888:1734832020. View Article : Google Scholar : PubMed/NCBI | |
Lu Z, Ma J, Liu B, Dai C, Xie T, Ma X, Li M, Dong J, Lan Q and Huang Q: Hyperbaric oxygen therapy sensitizes nimustine treatment for glioma in mice. Cancer Med. 5:3147–3155. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yi S, Yang F, Jie C and Zhang G: A novel strategy to the formulation of carmustine and bioactive nanoparticles co-loaded PLGA biocomposite spheres for targeting drug delivery to glioma treatment and nursing care. Artif Cells Nanomed Biotechnol. 47:3438–3447. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ashrafzadeh MS, Akbarzadeh A, Heydarinasab A and Ardjmand M: In vivo glioblastoma therapy using targeted liposomal cisplatin. Int J Nanomedicine. 15:7035–7049. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Nance EA, Mastorakos P, Chisholm J, Berry S, Eberhart C, Tyler B, Brem H, Suk JS and Hanes J: Convection enhanced delivery of cisplatin-loaded brain penetrating nanoparticles cures malignant glioma in rats. J Control Release. 263:112–119. 2017. View Article : Google Scholar : PubMed/NCBI | |
Thakur A, Sidu RK, Zou H, Alam MK, Yang M and Lee Y: Inhibition of glioma cells' proliferation by doxorubicin-loaded exosomes via microfluidics. Int J Nanomedicine. 15:8331–8343. 2020. View Article : Google Scholar : PubMed/NCBI | |
Meng L, Chu X, Xing H, Liu X, Xin X, Chen L, Jin M, Guan Y, Huang W and Gao Z: Improving glioblastoma therapeutic outcomes via doxorubicin-loaded nanomicelles modified with borneol. Int J Pharm. 567:1184852019. View Article : Google Scholar : PubMed/NCBI | |
Park KJ, Yu MO, Park DH, Park JY, Chung YG and Kang SH: Role of vincristine in the inhibition of angiogenesis in glioblastoma. Neurol Res. 38:871–879. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fu S, Liang M, Wang Y, Cui L, Gao C, Chu X, Liu Q, Feng Y, Gong W, Yang M, et al: Dual-modified novel biomimetic nanocarriers improve targeting and therapeutic efficacy in glioma. ACS Appl Mater Interfaces. 11:1841–1854. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Fan Y, Lv S, Xiao B, Ye M and Zhu X: Vincristine and temozolomide combined chemotherapy for the treatment of glioma: A comparison of solid lipid nanoparticles and nanostructured lipid carriers for dual drugs delivery. Drug Deliv. 23:2720–2725. 2016. View Article : Google Scholar : PubMed/NCBI | |
Koosha F, Neshasteh-Riz A, Takavar A, Eyvazzadeh N, Mazaheri Z, Eynali S and Mousavi M: The combination of A-966492 and Topotecan for effective radiosensitization on glioblastoma spheroids. Biochem Biophys Res Commun. 491:1092–1097. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sharon GR and Rubinstein A: Controlling the release rate of topotecan from PLGA spheres and increasing its cytotoxicity towards glioblastoma cells by co-loading with calcium chloride. Int J Pharm. 602:1206162021. View Article : Google Scholar : PubMed/NCBI | |
Kim MM, Umemura Y and Leung D: Bevacizumab and glioblastoma: Past, present, and future directions. Cancer J. 24:180–186. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sonoda Y, Kanamori M, Deen DF, Cheng SY, Berger MS and Pieper RO: Overexpression of vascular endothelial growth factor isoforms drives oxygenation and growth but not progression to glioblastoma multiforme in a human model of gliomagenesis. Cancer Res. 63:1962–1968. 2003.PubMed/NCBI | |
Grossman R, Brastianos H, Blakeley JO, Mangraviti A, Lal B, Zadnik P, Hwang L, Wicks RT, Goodwin RC, Brem H and Tyler B: Combination of anti-VEGF therapy and temozolomide in two experimental human glioma models. J Neurooncol. 116:59–65. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Saito R, Shibahara I, Sugiyama S, Kanamori M, Sonoda Y and Tominaga T: Temozolomide reverses doxorubicin resistance by inhibiting P-glycoprotein in malignant glioma cells. J Neurooncol. 126:235–242. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Ni Q, Wang Y, Fan H and Li Y: Synergistic anticancer effects of formononetin and temozolomide on glioma C6 cells. Biol Pharm Bull. 41:1194–1202. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ni Q, Fan Y, Zhang X, Fan H and Li Y: In vitro and in vivo study on glioma treatment enhancement by combining temozolomide with calycosin and formononetin. J Ethnopharmacol. 242:1116992019. View Article : Google Scholar : PubMed/NCBI | |
Vengoji R, Macha MA, Nimmakayala RK, Rachagani S, Siddiqui JA, Mallya K, Gorantla S, Jain M, Ponnusamy MP, Batra SK and Shonka N: Afatinib and temozolomide combination inhibits tumorigenesis by targeting EGFRvIII-cMet signaling in glioblastoma cells. J Exp Clin Cancer Res. 38:2662019. View Article : Google Scholar : PubMed/NCBI | |
Tang JH, Yang L, Chen JX, Li QR, Zhu LR, Xu QF, Huang GH, Zhang ZX, Xiang Y, Du L, et al: Bortezomib inhibits growth and sensitizes glioma to temozolomide (TMZ) via down-regulating the FOXM1-survivin axis. Cancer Commun (Lond). 39:812019. View Article : Google Scholar : PubMed/NCBI | |
Xu P, Wang H, Pan H, Chen J and Deng C: Anlotinib combined with temozolomide suppresses glioblastoma growth via mediation of JAK2/STAT3 signaling pathway. Cancer Chemother Pharmacol. 89:183–196. 2022. View Article : Google Scholar : PubMed/NCBI | |
Thomas AA and Rauschkolb PK: Tumor treating fields for glioblastoma: Should it or will it ever be adopted? Curr Opin Neurol. 32:857–863. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ortiz R, Perazzoli G, Cabeza L, Jimenez-Luna C, Luque R, Prados J and Melguizo C: Temozolomide: An updated overview of resistance mechanisms, nanotechnology advances and clinical applications. Curr Neuropharmacol. 19:513–537. 2021. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Huang J, Xiao H, Wu T and Shuai X: Codelivery of temozolomide and siRNA with polymeric nanocarrier for effective glioma treatment. Int J Nanomedicine. 13:3467–3480. 2018. View Article : Google Scholar : PubMed/NCBI | |
Song S, Mao G, Du J and Zhu X: Novel RGD containing, temozolomide-loading nanostructured lipid carriers for glioblastoma multiforme chemotherapy. Drug Deliv. 23:1404–1408. 2016. View Article : Google Scholar : PubMed/NCBI | |
Afzalipour R, Khoei S, Khoee S, Shirvalilou S, Jamali Raoufi N, Motevalian M and Karimi MR: Dual-targeting temozolomide loaded in folate-conjugated magnetic triblock copolymer nanoparticles to improve the therapeutic efficiency of rat brain gliomas. ACS Biomater Sci Eng. 5:6000–6011. 2019. View Article : Google Scholar : PubMed/NCBI | |
Costagliola di Polidoro A, Zambito G, Haeck J, Mezzanotte L, Lamfers M, Netti PA and Torino E: Theranostic design of angiopep-2 conjugated hyaluronic acid nanoparticles (Thera-ANG-cHANPs) for dual targeting and boosted imaging of glioma cells. Cancers (Basel). 13:5032021. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Wei D, Dai X, Stevens MFG, Bradshaw TD, Luo Y and Zhang J: C8-substituted imidazotetrazine analogs overcome temozolomide resistance by inducing DNA adducts and DNA damage. Front Oncol. 9:4852019. View Article : Google Scholar : PubMed/NCBI | |
Hotchkiss KM and Sampson JH: Temozolomide treatment outcomes and immunotherapy efficacy in brain tumor. J Neurooncol. 151:55–62. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sorribes IC, Handelman SK and Jain HV: Mitigating temozolomide resistance in glioblastoma via DNA damage-repair inhibition. J R Soc Interface. 17:201907222020. View Article : Google Scholar : PubMed/NCBI | |
Butler M, Pongor L, Su YT, Xi L, Raffeld M, Quezado M, Trepel J, Aldape K, Pommier Y and Wu J: MGMT status as a clinical biomarker in glioblastoma. Trends Cancer. 6:380–391. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Zhang L, Wei Q and Shao A: O6-methylguanine-DNA methyltransferase (MGMT): Challenges and new opportunities in glioma chemotherapy. Front Oncol. 9:15472020. View Article : Google Scholar : PubMed/NCBI | |
Lang F, Liu Y, Chou FJ and Yang C: Genotoxic therapy and resistance mechanism in gliomas. Pharmacol Ther. 228:1079222021. View Article : Google Scholar : PubMed/NCBI | |
Daniel P, Sabri S, Chaddad A, Meehan B, Jean-Claude B, Rak J and Abdulkarim BS: Temozolomide induced hypermutation in glioma: Evolutionary mechanisms and therapeutic opportunities. Front Oncol. 9:412019. View Article : Google Scholar : PubMed/NCBI | |
Tomar MS, Kumar A, Srivastava C and Shrivastava A: Elucidating the mechanisms of temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim Biophys Acta Rev Cancer. 1876:1886162021. View Article : Google Scholar : PubMed/NCBI | |
Ohba S, Yamashiro K and Hirose Y: Inhibition of DNA repair in combination with temozolomide or dianhydrogalactiol overcomes temozolomide-resistant glioma cells. Cancers (Basel). 13:25702021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Du Z, Xu Z, Jin T, Xu K, Huang M, Wang S, Zheng Y, Liu M and Xu H: Overexpressed GNA13 induces temozolomide sensitization via down-regulating MGMT and p-RELA in glioma. Am J Transl Res. 13:11413–11426. 2021.PubMed/NCBI | |
Yamada T, Tsuji S, Nakamura S, Egashira Y, Shimazawa M, Nakayama N, Yano H, Iwama T and Hara H: Riluzole enhances the antitumor effects of temozolomide via suppression of MGMT expression in glioblastoma. J Neurosurg. 134:701–710. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kaina B and Christmann M: DNA repair in personalized brain cancer therapy with temozolomide and nitrosoureas. DNA Repair (Amst). 78:128–141. 2019. View Article : Google Scholar : PubMed/NCBI | |
Berte N, Piée-Staffa A, Piecha N, Wang M, Borgmann K, Kaina B and Nikolova T: Targeting homologous recombination by pharmacological inhibitors enhances the killing response of glioblastoma cells treated with alkylating drugs. Mol Cancer Ther. 15:2665–2678. 2016. View Article : Google Scholar : PubMed/NCBI | |
Weller M and Le Rhun E: How did lomustine become standard of care in recurrent glioblastoma? Cancer Treat Rev. 87:1020292020. View Article : Google Scholar : PubMed/NCBI | |
Lombardi G, Farina P, Della Puppa A, Cecchin D, Pambuku A, Bellu L and Zagonel V: An overview of fotemustine in high-grade gliomas: From single agent to association with bevacizumab. Biomed Res Int. 2014:6985422014. View Article : Google Scholar : PubMed/NCBI | |
Rudà R, Touat M and Soffietti R: Is chemotherapy alone an option as initial treatment for low-grade oligodendrogliomas? Curr Opin Neurol. 33:707–715. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ge Y, Lai X, Li J, Yu R, Zhuang Z, Sun G, Cui X, Zhang N, Zhao L, Upadhyaya P and Zhong R: NBGNU: A hypoxia-activated tripartite combi-nitrosourea prodrug overcoming AGT-mediated chemoresistance. Future Med Chem. 11:269–284. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Sun G, Huang Y, Zhang S, Tang X, Zhang N, Zhao L, Zhong R and Peng Y: Glycolytic inhibition by 3-bromopyruvate increases the cytotoxic effects of chloroethylnitrosoureas to human glioma cells and the DNA interstrand cross-links formation. Toxicology. 435:1524132020. View Article : Google Scholar : PubMed/NCBI | |
Yamamuro S, Takahashi M, Satomi K, Sasaki N, Kobayashi T, Uchida E, Kawauchi D, Nakano T, Fujii T, Narita Y, et al: Lomustine and nimustine exert efficient antitumor effects against glioblastoma models with acquired temozolomide resistance. Cancer Sci. 112:4736–4747. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rottenberg S, Disler C and Perego P: The rediscovery of platinum-based cancer therapy. Nat Rev Cancer. 21:37–50. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Barth RF, Huo T, Nakkula RJ, Weldon M, Gupta N, Agius L and Grecula JC: Radiation therapy combined with intracerebral administration of carboplatin for the treatment of brain tumors. Radiat Oncol. 9:252014. View Article : Google Scholar : PubMed/NCBI | |
Shi M, Fortin D, Sanche L and Paquette B: Convection-enhance-ment delivery of platinum-based drugs and Lipoplatin(TM) to optimize the concomitant effect with radiotherapy in F98 glioma rat model. Invest New Drugs. 33:555–563. 2015. View Article : Google Scholar : PubMed/NCBI | |
Charest G, Sanche L, Fortin D, Mathieu D and Paquette B: Optimization of the route of platinum drugs administration to optimize the concomitant treatment with radiotherapy for glioblastoma implanted in the Fischer rat brain. J Neurooncol. 115:365–373. 2013. View Article : Google Scholar : PubMed/NCBI | |
da Ros M, Iorio AL, Lucchesi M, Stival A, de Martino M and Sardi I: The use of anthracyclines for therapy of CNS tumors. Anticancer Agents Med Chem. 15:721–727. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nwagwu CD, Immidisetti AV, Jiang MY, Adeagbo O, Adamson DC and Carbonell AM: Convection enhanced delivery in the setting of high-grade gliomas. Pharmaceutics. 13:5612021. View Article : Google Scholar : PubMed/NCBI | |
Han Y and Park JH: Convection-enhanced delivery of liposomal drugs for effective treatment of glioblastoma multiforme. Drug Deliv Transl Res. 10:1876–1887. 2020. View Article : Google Scholar : PubMed/NCBI | |
El Demerdash N, Kedda J, Ram N, Brem H and Tyler B: Novel therapeutics for brain tumors: Current practice and future prospects. Expert Opin Drug Deliv. 17:9–21. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mizuta Y, Tokuda K, Guo J, Zhang S, Narahara S, Kawano T, Murata M, Yamaura K, Hoka S, Hashizume M and Akahoshi T: Sodium thiosulfate prevents doxorubicin-induced DNA damage and apoptosis in cardiomyocytes in mice. Life Sci. 257:1180742020. View Article : Google Scholar : PubMed/NCBI | |
Du K, Xia Q, Heng H and Feng F: Temozolomide-doxorubicin conjugate as a double intercalating agent and delivery by apoferritin for glioblastoma chemotherapy. ACS Appl Mater Interfaces. 12:34599–34609. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhang Y, Chen T, Chen H, He H, Jin T, Wang J and Ke Y: Environmentally self-adaptative nanocarriers suppress glioma proliferation and stemness via codelivery of shCD163 and doxorubicin. ACS Appl Mater Interfaces. 12:52354–52369. 2020. View Article : Google Scholar : PubMed/NCBI | |
Horescu C, Elena Cioc C, Tuta C, Sevastre AS, Tache DE, Alexandru O, Artene SA, Danoiu S, Dricu A and Stefana Oana P: The effect of temozolomide in combination with doxorubicin in glioblastoma cells in vitro. J Immunoassay Immunochem. 41:1033–1043. 2020. View Article : Google Scholar : PubMed/NCBI | |
Maksimenko O, Malinovskaya J, Shipulo E, Osipova N, Razzhivina V, Arantseva D, Yarovaya O, Mostovaya U, Khalansky A, Fedoseeva V, et al: Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: Towards the pharmaceutical development. Int J Pharm. 572:1187332019. View Article : Google Scholar : PubMed/NCBI | |
Muniswamy VJ, Raval N, Gondaliya P, Tambe V, Kalia K and Tekade RK: ‘Dendrimer-Cationized-Albumin’ encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin. Int J Pharm. 555:77–99. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li GZ, Hu YH, Li DY, Zhang Y, Guo HL, Li YM, Chen F and Xu J: Vincristine-induced peripheral neuropathy: A mini-review. Neurotoxicology. 81:161–171. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Xu X and Zheng J: Microtubule-associated protein 2 knockdown sensitizes glioma cells to vincristine treatment. Neuroreport. 31:197–204. 2020. View Article : Google Scholar : PubMed/NCBI | |
De Witt M, Gamble A, Hanson D, Markowitz D, Powell C, Al Dimassi S, Atlas M, Boockvar J, Ruggieri R and Symons M: Repurposing mebendazole as a replacement for vincristine for the treatment of brain tumors. Mol Med. 23:50–56. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bernstock JD, Ye D, Gessler FA, Lee YJ, Peruzzotti-Jametti L, Baumgarten P, Johnson KR, Maric D, Yang W, Kögel D, et al: Topotecan is a potent inhibitor of SUMOylation in glioblastoma multiforme and alters both cellular replication and metabolic programming. Sci Rep. 7:74252017. View Article : Google Scholar : PubMed/NCBI | |
Serwer LP, Noble CO, Michaud K, Drummond DC, Kirpotin DB, Ozawa T, Prados MD, Park JW and James CD: Investigation of intravenous delivery of nanoliposomal topotecan for activity against orthotopic glioblastoma xenografts. Neuro Oncol. 13:1288–1295. 2011. View Article : Google Scholar : PubMed/NCBI | |
Upadhyayula PS, Spinazzi EF, Argenziano MG, Canoll P and Bruce JN: Convection enhanced delivery of topotecan for gliomas: A single-center experience. Pharmaceutics. 13:392020. View Article : Google Scholar : PubMed/NCBI | |
Kaiser MG, Parsa AT, Fine RL, Hall JS, Chakrabarti I and Bruce JN: Tissue distribution and antitumor activity of topotecan delivered by intracerebral clysis in a rat glioma model. Neurosurgery. 47:1391–1399. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Kong X, Guo Y, Wang R and Ma W: Continuous dose-intense temozolomide and cisplatin in recurrent glioblastoma patients. Medicine (Baltimore). 96:e62612017. View Article : Google Scholar : PubMed/NCBI | |
Badruddoja MA, Pazzi M, Sanan A, Schroeder K, Kuzma K, Norton T, Scully T, Mahadevan D and Ahmadi MM: Phase II study of bi-weekly temozolomide plus bevacizumab for adult patients with recurrent glioblastoma. Cancer Chemother Pharmacol. 80:715–721. 2017. View Article : Google Scholar : PubMed/NCBI | |
Herrlinger U, Tzaridis T, Mack F, Steinbach JP, Schlegel U, Sabel M, Hau P, Kortmann RD, Krex D, Grauer O, et al: Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): A randomised, open-label, phase 3 trial. Lancet. 393:678–688. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Yoo H, Chang JH, Kim CY, Chung DS, Kim SH, Park SH, Lee YS and Yang SH: Procarbazine and CCNU chemotherapy for recurrent glioblastoma with MGMT promoter methylation. J Korean Med Sci. 33:e1672018. View Article : Google Scholar : PubMed/NCBI |