Tumor microenvironment manipulates chemoresistance in ovarian cancer (Review)
- Authors:
- Qiaoling Zhang
- Jiashan Ding
- Yingmei Wang
- Linsheng He
- Fengxia Xue
-
Affiliations: Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China, Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China - Published online on: March 31, 2022 https://doi.org/10.3892/or.2022.8313
- Article Number: 102
This article is mentioned in:
Abstract
Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL and Siegel RL: Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 69:363–385. 2019. View Article : Google Scholar : PubMed/NCBI | |
Elshami M, Yaseen A, Alser M, Al-Slaibi I, Jabr H, Ubaiat S, Tuffaha A, Khader S, Khraishi R, Jaber I, et al: Knowledge of ovarian cancer symptoms among women in Palestine: A national cross-sectional study. BMC Public Health. 21:19922021. View Article : Google Scholar : PubMed/NCBI | |
Baldwin LA, Huang B, Miller RW, Tucker T, Goodrich ST, Podzielinski I, DeSimone CP, Ueland FR, van Nagell JR and Seamon LG: Ten-year relative survival for epithelial ovarian cancer. Obstet Gynecol. 120:612–618. 2012. View Article : Google Scholar : PubMed/NCBI | |
De Andrade WP, Da Conceicao Braga L, Goncales NG, Silva LM and Da Silva Filho AL: HSPA1A, HSPA1L and TRAP1 heat shock genes may be associated with prognosis in ovarian epithelial cancer. Oncol Lett. 19:359–367. 2020.PubMed/NCBI | |
Zhu H, Zou X, Lin S, Hu X and Gao J: Effects of naringin on reversing cisplatin resistance and the Wnt/β-catenin pathway in human ovarian cancer SKOV3/CDDP cells. J Int Med Res. 48:3000605198878692020. View Article : Google Scholar : PubMed/NCBI | |
Fu J, Shang Y, Qian Z, Hou J, Yan F, Liu G, Dehua L and Tian X: Chimeric Antigen receptor-T (CAR-T) cells targeting Epithelial cell adhesion molecule (EpCAM) can inhibit tumor growth in ovarian cancer mouse model. J Vet Med Sci. 83:241–247. 2021. View Article : Google Scholar : PubMed/NCBI | |
Colombo PE, Fabbro M, Theillet C, Bibeau F, Rouanet P and Ray-Coquard I: Sensitivity and resistance to treatment in the primary management of epithelial ovarian cancer. Crit Rev Oncol Hematol. 89:207–216. 2014. View Article : Google Scholar : PubMed/NCBI | |
Elzek MA and Rodland KD: Proteomics of ovarian cancer: Functional insights and clinical applications. Cancer Metastasis Rev. 34:83–96. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kuroki L and Guntupalli SR: Treatment of epithelial ovarian cancer. BMJ. 371:m37732020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Da C, Su Y, Song R and Bai Z: MKNK2 enhances chemoresistance of ovarian cancer by suppressing autophagy via miR-125b. Biochem Biophys Res Commun. 556:31–38. 2021. View Article : Google Scholar : PubMed/NCBI | |
Muhanmode Y, Wen MK, Maitinuri A and Shen G: Curcumin and resveratrol inhibit chemoresistance in cisplatin-resistant epithelial ovarian cancer cells via targeting P13K pathway. Hum Exp Toxicol. 40 (12_suppl):S861–S868. 2021. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Bai X, Ni J, Wasinger VC, Beretov J, Zhu Y, Graham P and Li Y: CHTOP in chemoresistant epithelial ovarian cancer: A novel and potential therapeutic target. Front Oncol. 9:5572019. View Article : Google Scholar : PubMed/NCBI | |
Hu K, Yao L, Xu Z, Yan Y and Li J: Prognostic value and therapeutic potential of CBX family members in ovarian cancer. Front Cell Dev Biol. 10:8323542022. View Article : Google Scholar : PubMed/NCBI | |
Hansen JM, Coleman RL and Sood AK: Targeting the tumour microenvironment in ovarian cancer. Eur J Cancer. 56:131–143. 2016. View Article : Google Scholar : PubMed/NCBI | |
Worzfeld T, Pogge von Strandmann E, Huber M, Adhikary T, Wagner U, Reinartz S and Muller R: The unique molecular and cellular microenvironment of ovarian cancer. Front Oncol. 7:242017. View Article : Google Scholar : PubMed/NCBI | |
Jena BC, Das CK, Bharadwaj D and Mandal M: Cancer associated fibroblast mediated chemoresistance: A paradigm shift in understanding the mechanism of tumor progression. Biochim Biophys Acta Rev Cancer. 1874:1884162020. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R: The biology and function of fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yasuda K, Torigoe T, Mariya T, Asano T, Kuroda T, Matsuzaki J, Ikeda K, Yamauchi M, Emori M, Asanuma H, et al: Fibroblasts induce expression of FGF4 in ovarian cancer stem-like cells/cancer-initiating cells and upregulate their tumor initiation capacity. Lab Invest. 94:1355–1369. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ayen A, Jimenez Martinez Y, Marchal JA and Boulaiz H: Recent progress in gene therapy for ovarian cancer. Int J Mol Sci. 19:19302018. View Article : Google Scholar : PubMed/NCBI | |
Deng J, Wang L, Chen H, Hao J, Ni J, Chang L, Duan W, Graham P and Li Y: Targeting epithelial-mesenchymal transition and cancer stem cells for chemoresistant ovarian cancer. Oncotarget. 7:55771–55788. 2016. View Article : Google Scholar : PubMed/NCBI | |
McGinity CL, Palmieri EM, Somasundaram V, Bhattacharyya DD, Ridnour LA, Cheng RYS, Ryan AE, Glynn SA, Thomas DD, Miranda KM, et al: Nitric oxide modulates metabolic processes in the tumor immune microenvironment. Int J Mol Sci. 22:70682021. View Article : Google Scholar : PubMed/NCBI | |
Ishii G, Ochiai A and Neri S: Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev. 99((Pt B)): 186–196. 2016. View Article : Google Scholar : PubMed/NCBI | |
Leask A: A centralized communication network: Recent insights into the role of the cancer associated fibroblast in the development of drug resistance in tumors. Semin Cell Dev Biol. 101:111–114. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen RR, Yung MMH, Xuan Y, Zhan S, Leung LL, Liang RR, Leung THY, Yang H, Xu D, Sharma R, et al: Targeting of lipid metabolism with a metabolic inhibitor cocktail eradicates peritoneal metastases in ovarian cancer cells. Commun Biol. 2:2812019. View Article : Google Scholar : PubMed/NCBI | |
Naffar-Abu Amara S, Kuiken HJ, Selfors LM, Butler T, Leung ML, Leung CT, Kuhn EP, Kolarova T, Hage C, Ganesh K, et al: Transient commensal clonal interactions can drive tumor metastasis. Nat Commun. 11:57992020. View Article : Google Scholar : PubMed/NCBI | |
He C, Wang L, Li L and Zhu G: Extracellular vesicle-orchestrated crosstalk between cancer-associated fibroblasts and tumors. Transl Oncol. 14:1012312021. View Article : Google Scholar : PubMed/NCBI | |
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Kryczek I, Dostal L, Lin H, Tan L, Zhao L, Lu F, Wei S, Maj T, Peng D, et al: Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell. 165:1092–1105. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dasari S, Fang Y and Mitra AK: Cancer associated fibroblasts: Naughty neighbors that drive ovarian cancer progression. Cancers (Basel). 10:4062018. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Zhou L, Li D, Andl T and Zhang Y: Cancer-associated fibroblasts build and secure the tumor microenvironment. Front Cell Dev Biol. 7:602019. View Article : Google Scholar : PubMed/NCBI | |
Rynne-Vidal A, Au-Yeung CL, Jimenez-Heffernan JA, Perez-Lozano ML, Cremades-Jimeno L, Barcena C, Cristobal-Garcia I, Fernandez-Chacon C, Yeung TL, Mok SC, et al: Mesothelial-to-mesenchymal transition as a possible therapeutic target in peritoneal metastasis of ovarian cancer. J Pathol. 242:140–151. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bu L, Baba H, Yasuda T, Uchihara T and Ishimoto T: Functional diversity of cancer-associated fibroblasts in modulating drug resistance. Cancer Sci. 111:3468–3477. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun Q, Zhang B, Hu Q, Qin Y, Xu W, Liu W, Yu X and Xu J: The impact of cancer-associated fibroblasts on major hallmarks of pancreatic cancer. Theranostics. 8:5072–5087. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Xu AM, Liu S, Liu W and Li TJ: Cancer-associated fibroblasts in digestive tumors. World J Gastroenterol. 20:17804–17818. 2014. View Article : Google Scholar : PubMed/NCBI | |
Su S, Chen J, Yao H, Liu J, Yu S, Lao L, Wang M, Luo M, Xing Y, Chen F, et al: CD10(+)GPR77(+) cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell. 172:841–856.e16. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cummings M, Freer C and Orsi NM: Targeting the tumour microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol. 77:3–28. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen X and Song E: Turning foes to friends: Targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 18:99–115. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, Laklai H, Sugimoto H, Kahlert C, Novitskiy SV, et al: Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 25:719–734. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dominguez CX, Muller S, Keerthivasan S, Koeppen H, Hung J, Gierke S, Breart B, Foreman O, Bainbridge TW, Castiglioni A, et al: Single-Cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 10:232–253. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kieffer Y, Hocine HR, Gentric G, Pelon F, Bernard C, Bourachot B, Lameiras S, Albergante L, Bonneau C, Guyard A, et al: Single-Cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 10:1330–1351. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, Tiriac H, Collisson EA, Connor F, Van Dyke T, Kozlov S, et al: Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 159:80–93. 2014. View Article : Google Scholar : PubMed/NCBI | |
Duluc C, Moatassim-Billah S, Chalabi-Dchar M, Perraud A, Samain R, Breibach F, Gayral M, Cordelier P, Delisle MB, Bousquet-Dubouch MP, et al: Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance. EMBO Mol Med. 7:735–753. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bustos-Cruz RH, Martinez LR, Garcia JC, Barreto GE and Suarez F: New ABCC2 rs3740066 and rs2273697 polymorphisms identified in a healthy colombian cohort. Pharmaceutics. 10:932018. View Article : Google Scholar : PubMed/NCBI | |
Gottesman MM and Pastan IH: The role of multidrug resistance efflux pumps in cancer: Revisiting a JNCI publication exploring expression of the MDR1 (P-glycoprotein) gene. J Natl Cancer Inst. 107:djv2222015. View Article : Google Scholar : PubMed/NCBI | |
Baglo Y, Sorrin AJ, Pu X, Liu C, Reader J, Roque DM and Huang HC: Evolutionary dynamics of cancer multidrug resistance in response to olaparib and photodynamic therapy. Transl Oncol. 14:1011982021. View Article : Google Scholar : PubMed/NCBI | |
Vaidyanathan A, Sawers L, Gannon AL, Chakravarty P, Scott AL, Bray SE, Ferguson MJ and Smith G: ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br J Cancer. 115:431–441. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mo L, Pospichalova V, Huang Z, Murphy SK, Payne S, Wang F, Kennedy M, Cianciolo GJ, Bryja V, Pizzo SV and Bachelder RE: Ascites increases expression/function of multidrug resistance proteins in ovarian cancer cells. PLoS One. 10:e01315792015. View Article : Google Scholar : PubMed/NCBI | |
Bagnoli M, Beretta GL, Gatti L, Pilotti S, Alberti P, Tarantino E, Barbareschi M, Canevari S, Mezzanzanica D and Perego P: Clinicopathological impact of ABCC1/MRP1 and ABCC4/MRP4 in epithelial ovarian carcinoma. Biomed Res Int. 2013:1432022013. View Article : Google Scholar : PubMed/NCBI | |
Jia Y, Sung S, Gao X and Cui XM: Expression levels of TUBB3, ERCC1 and P-gp in ovarian cancer tissues and adjacent normal tissues and their clinical significance. J BUON. 23:1390–1395. 2018.PubMed/NCBI | |
Ween MP, Armstrong MA, Oehler MK and Ricciardelli C: The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol. 96:220–256. 2015. View Article : Google Scholar : PubMed/NCBI | |
Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE and Gottesman MM: Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 18:452–464. 2018. View Article : Google Scholar : PubMed/NCBI | |
Teng YN, Wang CCN, Liao WC, Lan YH and Hung CC: Caffeic acid attenuates multi-drug resistance in cancer cells by inhibiting efflux function of human P-glycoprotein. Molecules. 25:2472020. View Article : Google Scholar : PubMed/NCBI | |
Guo X, To KKW, Chen Z, Wang X, Zhang J, Luo M, Wang F, Yan S and Fu L: Dacomitinib potentiates the efficacy of conventional chemotherapeutic agents via inhibiting the drug efflux function of ABCG2 in vitro and in vivo. J Exp Clin Cancer Res. 37:312018. View Article : Google Scholar : PubMed/NCBI | |
Shaffer BC, Gillet JP, Patel C, Baer MR, Bates SE and Gottesman MM: Drug resistance: Still a daunting challenge to the successful treatment of AML. Drug Resist Updat. 15:62–69. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tachibana M, Papadopoulos KP, Strickler JH, Puzanov I, Gajee R, Wang Y and Zahir H: Evaluation of the pharmacokinetic drug interaction potential of tivantinib (ARQ 197) using cocktail probes in patients with advanced solid tumours. Br J Clin Pharmacol. 84:112–121. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu T, Howieson C, Wojtkowski T, Garg JP, Han D, Fisniku O and Keirns J: The effect of verapamil, a P-glycoprotein inhibitor, on the pharmacokinetics of peficitinib, an orally administered, once-daily JAK inhibitor. Clin Pharmacol Drug Dev. 6:548–555. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fox E, Widemann BC, Pastakia D, Chen CC, Yang SX, Cole D and Balis FM: Pharmacokinetic and pharmacodynamic study of tariquidar (XR9576), a P-glycoprotein inhibitor, in combination with doxorubicin, vinorelbine, or docetaxel in children and adolescents with refractory solid tumors. Cancer Chemother Pharmacol. 76:1273–1283. 2015. View Article : Google Scholar : PubMed/NCBI | |
Patel A, Li TW, Anreddy N, Wang DS, Sodani K, Gadhia S, Kathawala R, Yang DH, Cheng C and Chen ZS: Suppression of ABCG2 mediated MDR in vitro and in vivo by a novel inhibitor of ABCG2 drug transport. Pharmacol Res. 121:184–193. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gupta P, Zhang YK, Zhang XY, Wang YJ, Lu KW, Hall T, Peng R, Yang DH, Xie N and Chen ZS: Voruciclib, a Potent CDK4/6 inhibitor, antagonizes ABCB1 and ABCG2-mediated multi-drug resistance in cancer cells. Cell Physiol Biochem. 45:1515–1528. 2018. View Article : Google Scholar : PubMed/NCBI | |
Grande E, Giovannini M, Marriere E, Pultar P, Quinlan M, Chen X, Rahmanzadeh G, Curigliano G and Cui X: Effect of capmatinib on the pharmacokinetics of digoxin and rosuvastatin administered as a 2-drug cocktail in patients with MET-dysregulated advanced solid tumours: A phase I, multicentre, open-label, single-sequence drug-drug interaction study. Br J Clin Pharmacol. 87:2867–2878. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Herrera AF, Hou J, Chen L, Wu J, Guo Y, Synold TW, Ngo VN, Puverel S, Mei M, et al: Inhibition of MDR1 overcomes resistance to brentuximab vedotin in hodgkin lymphoma. Clin Cancer Res. 26:1034–1044. 2020. View Article : Google Scholar : PubMed/NCBI | |
Comsa E, Nguyen KA, Loghin F, Boumendjel A, Peuchmaur M, Andrieu T and Falson P: Ovarian cancer cells cisplatin sensitization agents selected by mass cytometry target ABCC2 inhibition. Future Med Chem. 10:1349–1360. 2018. View Article : Google Scholar : PubMed/NCBI | |
Goebel J, Chmielewski J and Hrycyna CA: The roles of the human ATP-binding cassette transporters P-glycoprotein and ABCG2 in multidrug resistance in cancer and at endogenous sites: Future opportunities for structure-based drug design of inhibitors. Cancer Drug Resist. 4:784–804. 2021.PubMed/NCBI | |
Butera G, Pacchiana R and Donadelli M: Autocrine mechanisms of cancer chemoresistance. Semin Cell Dev Biol. 78:3–12. 2018. View Article : Google Scholar : PubMed/NCBI | |
Luo R, Liu M, Yang Q, Cheng H, Yang H, Li M, Bai X, Wang Y, Zhang H, Wang S, et al: Emerging diagnostic potential of tumor-derived exosomes. J Cancer. 12:5035–5045. 2021. View Article : Google Scholar : PubMed/NCBI | |
Law ZJ, Khoo XH, Lim PT, Goh BH, Ming LC, Lee WL and Goh HP: Extracellular vesicle-mediated chemoresistance in oral squamous cell carcinoma. Front Mol Biosci. 8:6298882021. View Article : Google Scholar : PubMed/NCBI | |
Tang Z, Li D, Hou S and Zhu X: The cancer exosomes: Clinical implications, applications and challenges. Int J Cancer. 146:2946–2959. 2020. View Article : Google Scholar : PubMed/NCBI | |
Au Yeung CL, Co NN, Tsuruga T, Yeung TL, Kwan SY, Leung CS, Li Y, Lu ES, Kwan K, Wong KK, et al: Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 7:111502016. View Article : Google Scholar : PubMed/NCBI | |
Milman N, Ginini L and Gil Z: Exosomes and their role in tumorigenesis and anticancer drug resistance. Drug Resist Updat. 45:1–12. 2019. View Article : Google Scholar : PubMed/NCBI | |
Santos P and Almeida F: Role of exosomal miRNAs and the tumor microenvironment in drug resistance. Cells. 9:14502020. View Article : Google Scholar : PubMed/NCBI | |
Eguchi T, Taha EA, Calderwood SK and Ono K: A novel model of cancer drug resistance: Oncosomal release of cytotoxic and antibody-based drugs. Biology (Basel). 9:472020.PubMed/NCBI | |
Han X, Zhen S, Ye Z, Lu J, Wang L, Li P, Li J, Zheng X, Li H, Chen W, et al: A Feedback loop between miR-30a/c-5p and DNMT1 mediates cisplatin resistance in ovarian cancer cells. Cell Physiol Biochem. 41:973–986. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Cao H, Shen B and Feng J: Tumor-derived exosomes in cancer progression and treatment failure. Oncotarget. 6:37151–37168. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Shen T, Zhang C, Zhang QH and Zhang ZQ: MiR-125a-5p inhibits EMT of ovarian cancer cells by regulating TAZ/EGFR signaling pathway. Eur Rev Med Pharmacol Sci. 23:8249–8256. 2019.PubMed/NCBI | |
Zhang FF, Zhu YF, Zhao QN, Yang DT, Dong YP, Jiang L, Xing WX, Li XY, Xing H, Shi M, et al: Microvesicles mediate transfer of P-glycoprotein to paclitaxel-sensitive A2780 human ovarian cancer cells, conferring paclitaxel-resistance. Eur J Pharmacol. 738:83–90. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wan Z, Gao X, Dong Y, Zhao Y, Chen X, Yang G and Liu L: Exosome-mediated cell-cell communication in tumor progression. Am J Cancer Res. 8:1661–1673. 2018.PubMed/NCBI | |
Lv MM, Zhu XY, Chen WX, Zhong SL, Hu Q, Ma TF, Zhang J, Chen L, Tang JH and Zhao JH: Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein. Tumour Biol. 35:10773–10779. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F and Alahari SK: Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 18:752019. View Article : Google Scholar : PubMed/NCBI | |
Kim MS, Haney MJ, Zhao Y, Yuan D, Deygen I, Klyachko NL, Kabanov AV and Batrakova EV: Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: In vitro and in vivo evaluations. Nanomedicine. 14:195–204. 2018. View Article : Google Scholar : PubMed/NCBI | |
Saari H, Lazaro-Ibanez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P and Yliperttula M: Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release. 220((Pt B)): 727–737. 2015. View Article : Google Scholar : PubMed/NCBI | |
Binenbaum Y, Fridman E, Yaari Z, Milman N, Schroeder A, Ben David G, Shlomi T and Gil Z: Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma. Cancer Res. 78:5287–5299. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rashid MH, Borin TF, Ara R, Alptekin A, Liu Y and Arbab AS: Generation of novel diagnostic and therapeutic exosomes to detect and deplete protumorigenic M2 macrophages. Adv Ther (Weinh). 3:19002092020. View Article : Google Scholar : PubMed/NCBI | |
Sinha D, Roy S, Saha P, Chatterjee N and Bishayee A: Trends in research on exosomes in cancer progression and anticancer therapy. Cancers (Basel). 13:3262021. View Article : Google Scholar : PubMed/NCBI | |
Majidpoor J and Mortezaee K: The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives. Clin Immunol. 226:1087072021. View Article : Google Scholar : PubMed/NCBI | |
Nowak M and Klink M: The role of tumor-associated macrophages in the progression and chemoresistance of ovarian cancer. Cells. 9:12992020. View Article : Google Scholar : PubMed/NCBI | |
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer. 20:1312021. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Shen H, Yin X, Yang M, Wei H, Chen Q, Feng F, Liu Y, Xu W and Li Y: Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype. J Exp Clin Cancer Res. 38:812019. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Han C, Wang S, Fang P, Ma Z, Xu L and Yin R: Cancer-associated fibroblasts: An emerging target of anti-cancer immunotherapy. J Hematol Oncol. 12:862019. View Article : Google Scholar : PubMed/NCBI | |
An Y, Liu F, Chen Y and Yang Q: Crosstalk between cancer-associated fibroblasts and immune cells in cancer. J Cell Mol Med. 24:13–24. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gok Yavuz B, Gunaydin G, Gedik ME, Kosemehmetoglu K, Karakoc D, Ozgur F and Guc D: Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1+ TAMs. Sci Rep. 9:31722019. View Article : Google Scholar : PubMed/NCBI | |
Whiteside TL: Tumor-derived exosomes and their role in tumor-induced immune suppression. Vaccines (Basel). 4:352016. View Article : Google Scholar : PubMed/NCBI | |
Cai X, Caballero-Benitez A, Gewe MM, Jenkins IC, Drescher CW, Strong RK, Spies T and Groh V: Control of tumor initiation by NKG2D naturally expressed on ovarian cancer cells. Neoplasia. 19:471–482. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shenoy GN, Loyall J, Berenson CS, Kelleher RJ Jr, Iyer V, Balu-Iyer SV, Odunsi K and Bankert RB: Sialic acid-dependent inhibition of T cells by exosomal ganglioside GD3 in ovarian tumor microenvironments. J Immunol. 201:3750–3758. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tian W, Lei N, Zhou J, Chen M, Guo R, Qin B, Li Y and Chang L: Extracellular vesicles in ovarian cancer chemoresistance, metastasis, and immune evasion. Cell Death Dis. 13:642022. View Article : Google Scholar : PubMed/NCBI | |
Ireland LV and Mielgo A: Macrophages and fibroblasts, key players in cancer chemoresistance. Front Cell Dev Biol. 6:1312018. View Article : Google Scholar : PubMed/NCBI | |
Balta E, Wabnitz GH and Samstag Y: Hijacked immune cells in the tumor microenvironment: Molecular mechanisms of immunosuppression and cues to improve T cell-based immunotherapy of solid tumors. Int J Mol Sci. 22:57362021. View Article : Google Scholar : PubMed/NCBI | |
Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, Belaygorod L, Carpenter D, Collins L, Piwnica-Worms D, et al: Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73:1128–1141. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH and Ruttinger D: Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 5:532017. View Article : Google Scholar : PubMed/NCBI |