1
|
Manthri RG, Jeepalem SM, Krishna Mohan VS,
Bhargavi D, Hulikal N and Kalawat T: Metachronous second primary
malignancies in known breast cancer patients on
18F-Fluoro-2-Deoxyglucose positron emission tomography-computerized
tomography in a tertiary care center. Indian J Nucl Med.
34:284–289. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hessami Arani S and Kerachian MA: Rising
rates of colorectal cancer among younger Iranians: Is diet to
blame? Curr Oncol. 24:e131–e137. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Fahad Ullah M: Breast cancer: Current
perspectives on the disease status. Adv Exp Med Biol. 1152:51–64.
2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bernier J: Post-mastectomy radiotherapy
after neodjuvant chemotherapy in breast cancer patients: A review.
Crit Rev Oncol Hematol. 93:180–189. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Byler S, Goldgar S, Heerboth S, Leary M,
Housman G, Moulton K and Sarkar S: Genetic and epigenetic aspects
of breast cancer progression and therapy. Anticancer Res.
34:1071–1077. 2014.PubMed/NCBI
|
7
|
Cobain EF, Milliron KJ and Merajver SD:
Updates on breast cancer genetics: Clinical implications of
detecting syndromes of inherited increased susceptibility to breast
cancer. Semin Oncol. 43:528–535. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Boisvert FM, van Koningsbruggen S,
Navascués J and Lamond AI: The multifunctional nucleolus. Nat Rev
Mol Cell Biol. 8:574–585. 2007. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Brina D, Grosso S, Miluzio A and Biffo S:
Translational control by 80S formation and 60S availability: The
central role of eIF6, a rate limiting factor in cell cycle
progression and tumorigenesis. Cell Cycle. 10:3441–3446. 2011.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Hang R, Liu C, Ahmad A, Zhang Y, Lu F and
Cao X: Arabidopsis protein arginine methyltransferase 3 is required
for ribosome biogenesis by affecting precursor ribosomal RNA
processing. Proc Natl Acad Sci USA. 111:16190–16195. 2014.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Montanaro L, Trere D and Derenzini M:
Changes in ribosome biogenesis may induce cancer by down-regulating
the cell tumor suppressor potential. Biochim Biophys Acta.
1825:101–110. 2012.PubMed/NCBI
|
12
|
Penzo M, Casoli L, Pollutri D, Sicuro L,
Ceccarelli C, Santini D, Taffurelli M, Govoni M, Brina D, Trere D
and Montanaro L: JHDM1B expression regulates ribosome biogenesis
and cancer cell growth in a p53 dependent manner. Int J Cancer.
136:E272–E281. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Catez F, Dalla Venezia N, Marcel V, Zorbas
C, Lafontaine DLJ and Diaz JJ: Ribosome biogenesis: An emerging
druggable pathway for cancer therapeutics. Biochem Pharmacol.
159:74–81. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zemp I and Kutay U: Nuclear export and
cytoplasmic maturation of ribosomal subunits. FEBS Lett.
581:2783–2793. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Strunk BS and Karbstein K: Powering
through ribosome assembly. RNA. 15:2083–2104. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kressler D, Hurt E and Bassler J: Driving
ribosome assembly. Biochim Biophys Acta. 1803:673–283. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Rodriguez-Galan O, Garcia-Gomez JJ and de
la Cruz J: Yeast and human RNA helicases involved in ribosome
biogenesis: Current status and perspectives. Biochim Biophys Acta.
1829:775–790. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Iadevaia V, Liu R and Proud CG: mTORC1
signaling controls multiple steps in ribosome biogenesis. Semin
Cell Dev Biol. 36:113–120. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Pelletier J, Thomas G and Volarevic S:
Ribosome biogenesis in cancer: New players and therapeutic avenues.
Nat Rev Cancer. 18:51–63. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Vizoso-Vazquez A, Barreiro-Alonso A,
Gonzalez-Siso MI, Rodriguez-Belmonte E, Lamas-Maceiras M and Cerdan
ME: HMGB proteins involved in TOR signaling as general regulators
of cell growth by controlling ribosome biogenesis. Curr Genet.
64:1205–1213. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Freed EF, Bleichert F, Dutca LM and
Baserga SJ: When ribosomes go bad: Diseases of ribosome biogenesis.
Mol Biosyst. 6:481–493. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Armistead J and Triggs-Raine B: Diverse
diseases from a ubiquitous process: The ribosomopathy paradox. FEBS
Lett. 588:1491–1500. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Stumpf CR and Ruggero D: The cancerous
translation apparatus. Curr Opin Genet Dev. 21:474–483. 2011.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Shen A, Chen Y, Liu L, Huang Y, Chen H, Qi
F, Lin J, Shen Z, Wu X, Wu M, et al: EBF1-mediated upregulation of
ribosome assembly factor PNO1 contributes to cancer progression by
negatively regulating the p53 signaling pathway. Cancer Res.
79:2257–2270. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Curtis C, Shah SP, Chin SF, Turashvili G,
Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, et
al: The genomic and transcriptomic architecture of 2,000 breast
tumours reveals novel subgroups. Nature. 486:346–352. 2012.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhao H, Langerod A, Ji Y, Nowels KW,
Nesland JM, Tibshirani R, Bukholm IK, Karesen R, Botstein D,
Borresen-Dale AL and Jeffrey SS: Different gene expression patterns
in invasive lobular and ductal carcinomas of the breast. Mol Biol
Cell. 15:2523–2536. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jezequel P, Campone M, Gouraud W,
Guerin-Charbonnel C, Leux C, Ricolleau G and Campion L:
bc-GenExMiner: An easy-to-use online platform for gene prognostic
analyses in breast cancer. Breast Cancer Res Treat. 131:765–775.
2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Jezequel P, Frenel JS, Campion L,
Guerin-Charbonnel C, Gouraud W, Ricolleau G and Campone M:
bc-GenExMiner 3.0: New mining module computes breast cancer gene
expression correlation analyses. Database (Oxford).
2013:bas0602013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Shen A, Liu L, Chen H, Qi F, Huang Y, Lin
J, Sferra TJ, Sankararaman S, Wei L, Chu J, et al: Cell division
cycle associated 5 promotes colorectal cancer progression by
activating the ERK signaling pathway. Oncogenesis. 8:192019.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Turowski TW, Lebaron S, Zhang E, Peil L,
Dudnakova T, Petfalski E, Granneman S, Rappsilber J and Tollervey
D: Rio1 mediates ATP-dependent final maturation of 40S ribosomal
subunits. Nucleic Acids Res. 42:12189–12199. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
He XW, Feng T, Yin QL, Jian YW and Liu T:
NOB1 is essential for the survival of RKO colorectal cancer cells.
World J Gastroenterol. 21:868–877. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ruggero D: Revisiting the nucleolus: From
marker to dynamic integrator of cancer signaling. Sci Signal.
5:pe382012. View Article : Google Scholar : PubMed/NCBI
|