Anticancer effects of natural phytochemicals in anaplastic thyroid cancer (Review)
- Authors:
- Yitian Li
- Jing Zhang
- Huihui Zhou
- Zhen Du
-
Affiliations: Department of Hygiene, Public Health College, Jining Medical University, Jining, Shandong 272067, P.R. China - Published online on: July 15, 2022 https://doi.org/10.3892/or.2022.8368
- Article Number: 156
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
O'Neill JP and Shaha AR: Anaplastic thyroid cancer. Oral Oncol. 49:702–706. 2013. View Article : Google Scholar : PubMed/NCBI | |
Saini S, Tulla K, Maker AV, Burman KD and Prabhakar BS: Therapeutic advances in anaplastic thyroid cancer: A current perspective. Mol Cancer. 17:1542018. View Article : Google Scholar : PubMed/NCBI | |
Tesselaar MH, Crezee T, Schuurmans I, Gerrits D, Nagarajah J, Boerman OC, van Engen-van Grunsven I, Smit JWA, Netea-Maier RT and Plantinga TS: Digitalislike compounds restore hNIS expression and iodide uptake capacity in anaplastic thyroid cancer. J Nucl Med. 59:780–786. 2018. View Article : Google Scholar : PubMed/NCBI | |
Haugen BR, Sawka AM, Alexander EK, Bible KC, Caturegli P, Doherty GM, Mandel SJ, Morris JC, Nassar A, Pacini F, et al: American thyroid association guidelines on the management of thyroid nodules and differentiated thyroid cancer task force review and recommendation on the proposed renaming of encapsulated follicular variant papillary thyroid carcinoma without invasion to noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Thyroid. 27:481–483. 2017. View Article : Google Scholar : PubMed/NCBI | |
Haddad RI, Nasr C, Bischoff L, Busaidy NL, Byrd D, Callender G, Dickson P, Duh QY, Ehya H, Goldner W, et al: NCCN guidelines insights: Thyroid carcinoma, version 2.2018. J Natl Compr Cancer Netw. 16:1429–1440. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Cui D, Xu S, Brabant G and Derwahl M: Doxorubicin fails to eradicate cancer stem cells derived from anaplastic thyroid carcinoma cells: Characterization of resistant cells. Int J Oncol. 37:307–315. 2010.PubMed/NCBI | |
Xu Y, Han YF, Ye B, Zhang YL, Dong JD, Zhu SJ and Chen J: MiR-27b-3p is involved in doxorubicin resistance of human anaplastic thyroid cancer cells via targeting peroxisome proliferator-activated receptor gamma. Basic Clin Pharmacol Toxicol. 123:670–677. 2018. View Article : Google Scholar : PubMed/NCBI | |
Abbasifarid E, Sajjadi-Jazi SM, Beheshtian M, Samimi H, Larijani B and Haghpanah V: The role of ATP-binding cassette transporters in the chemoresistance of anaplastic thyroid cancer: A systematic review. Endocrinology. 160:2015–2023. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lan L, Basourakos S, Cui D, Zuo X, Deng W, Huo L, Chen H, Zhang G, Deng L, Shi B and Luo Y: ATRA increases iodine uptake and inhibits the proliferation and invasiveness of human anaplastic thyroid carcinoma SW1736 cells: Involvement of β-catenin phosphorylation inhibition. Oncol Lett. 14:7733–7738. 2017.PubMed/NCBI | |
Avila-Carrasco L, Majano P, Sánchez-Toméro JA, Selgas R, López-Cabrera M, Aguilera A and Mateo GG: Natural plants compounds as modulators of epithelial-to-mesenchymal transition. Front Pharmacol. 10:7152019. View Article : Google Scholar : PubMed/NCBI | |
Chen CY, Kao CL and Liu CM: The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway. Int J Mol Sci. 19:27292018. View Article : Google Scholar : PubMed/NCBI | |
Asadi-Samani M, Kooti W, Aslani E and Shirzad H: A systematic review of Iran's medicinal plants with anticancer effects. J Evid Based Complement Altern Med. 21:143–153. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li YT, Tian XT, Wu ML, Zheng X, Kong QY, Cheng XX, Zhu GW, Liu J and Li H: Resveratrol suppresses the growth and enhances retinoic acid sensitivity of anaplastic thyroid cancer cells. Int J Mol Sci. 19:10302018. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Deng X, Gao Q, Wu X, Han L, Gao X, Zhao S, Chen W, Zhou R, Li Z and Bai C: Sophora alopecuroides L: An ethnopharmacological, phytochemical, and pharmacological review. J Ethnopharmacol. 248:1121722020. View Article : Google Scholar : PubMed/NCBI | |
Tian D, Li Y, Li X and Tian Z: Aloperine inhibits proliferation, migration and invasion and induces apoptosis by blocking the Ras signaling pathway in human breast cancer cells. Mol Med Rep. 18:3699–3710. 2018.PubMed/NCBI | |
Ling Z, Guan H, You Z, Wang C, Hu L, Zhang L, Wang Y, Chen S, Xu B and Chen M: Aloperine executes antitumor effects through the induction of apoptosis and cell cycle arrest in prostate cancer in vitro and in vivo. Onco Targets Ther. 11:2735–2743. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qiu M, Liu J, Su Y, Liu J, Wu C and Zhao B: Aloperine induces apoptosis by a reactive oxygen species activation mechanism in human ovarian cancer cells. Protein Pept Lett. 27:860–869. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu HI, Shen HC, Chen SH, Lim YP, Chuang HH, Tai TS, Kung FP, Lu CH, Hou CY, Lee YR, et al: Autophagy modulation in human thyroid cancer cells following aloperine treatment. Int J Mol Sci. 20:53152019. View Article : Google Scholar : PubMed/NCBI | |
Lee YR, Chen SH, Lin CY, Chao WY, Lim YP, Yu HI and Lu CH: In vitro antitumor activity of aloperine on human thyroid cancer cells through caspase-dependent apoptosis. Int J Mol Sci. 19:3122018. View Article : Google Scholar : PubMed/NCBI | |
Sharma A, Ghani A, Sak K, Tuli HS, Sharma AK, Setzer WN, Sharma S and Das AK: Probing into therapeutic anti-cancer potential of apigenin: Recent trends and future directions. Recent Pat Inflamm Allergy Drug Discov. 13:124–133. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao G, Han X, Cheng W, Ni J, Zhang Y, Lin J and Song Z: Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells. Oncol Rep. 37:2277–2285. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yin F, Giuliano AE and Van Herle AJ: Growth inhibitory effects of flavonoids in human thyroid cancer cell lines. Thyroid. 9:369–376. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ and Lee SJ: Apigenin induces c-Myc-mediated apoptosis in FRO anaplastic thyroid carcinoma cells. Mol Cell Endocrinol. 369:130–139. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yin F, Giuliano AE and Van Herle AJ: Signal pathways involved in apigenin inhibition of growth and induction of apoptosis of human anaplastic thyroid cancer cells (ARO). Anticancer Res. 19:4297–4303. 1999.PubMed/NCBI | |
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ and Lee SJ: Akt inhibition enhances the cytotoxic effect of apigenin in combination with PLX4032 in anaplastic thyroid carcinoma cells harboring BRAFV600E. J Endocrinol Invest. 36:1099–1104. 2013.PubMed/NCBI | |
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ and Lee SJ: Suppression of AKT potentiates synergistic cytotoxicity of apigenin with trail in anaplastic thyroid carcinoma cells. Anticancer Res. 35:6529–6537. 2015.PubMed/NCBI | |
Ma N, Zhang Z, Liao F, Jiang T and Tu Y: The birth of artemisinin. Pharmacol Ther. 216:1076582020. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Yu Q, Huo C, Li Y, He L, Ran B, Chen J, Li Y and Liu W: Ferroptosis: A novel mechanism of artemisinin and its derivatives in cancer therapy. Curr Med Chem. 28:329–345. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y: Pyrvinium pamoate can overcome artemisinin's resistance in anaplastic thyroid cancer. BMC Complement Med Ther. 21:1562021. View Article : Google Scholar : PubMed/NCBI | |
Zeng Q, Zhang Y, Zhang W and Guo Q: Baicalein suppresses the proliferation and invasiveness of colorectal cancer cells by inhibiting snail-induced epithelial-mesenchymal transition. Mol Med Rep. 21:2544–2552. 2020.PubMed/NCBI | |
Yu G, Chen L, Hu Y, Yuan Z, Luo Y and Xiong Y: Antitumor effects of baicalein and its mechanism via TGFβ pathway in cervical cancer hela cells. Evid Based Complement Altern Med. 2021:55271902021.PubMed/NCBI | |
Yan W, Ma X, Zhao X and Zhang S: Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro. Drug Des Devel Ther. 12:3961–3972. 2018. View Article : Google Scholar : PubMed/NCBI | |
Park CH, Han SE, Nam-Goong IS, Kim YI and Kim ES: Combined effects of baicalein and docetaxel on apoptosis in 8505c anaplastic thyroid cancer cells via downregulation of the ERK and Akt/mTOR pathways. Endocrinol Metab (Seoul). 33:121–132. 2018. View Article : Google Scholar : PubMed/NCBI | |
Han SE, Park CH, Nam-Goong IS, Kim YI and Kim ES: Anticancer effects of baicalein in FRO thyroid cancer cells through the up-regulation of ERK/p38 MAPK and Akt pathway. In Vivo. 33:375–382. 2019. View Article : Google Scholar : PubMed/NCBI | |
Naz S, Imran M, Rauf A, Orhan IE, Shariati MA, Iahtisham-Ul-Haq, IqraYasmin, Shahbaz M, Qaisrani TB, Shah ZA, et al: Chrysin: Pharmacological and therapeutic properties. Life Sci. 235:1167972019. View Article : Google Scholar : PubMed/NCBI | |
Jung J: Emerging utilization of chrysin using nanoscale modification. J Nanomater. 2016:e28940892016. View Article : Google Scholar | |
Kasala ER, Bodduluru LN, Madana RM, Athira KV, Gogoi R and Barua CC: Chemopreventive and therapeutic potential of chrysin in cancer: Mechanistic perspectives. Toxicol Lett. 233:214–225. 2015. View Article : Google Scholar : PubMed/NCBI | |
Phan T, Yu XM, Kunnimalaiyaan M and Chen H: Antiproliferative effect of chrysin on anaplastic thyroid cancer. J Surg Res. 170:84–88. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yu XM, Phan T, Patel PN, Jaskula-Sztul R and Chen H: Chrysin activates notch1 signaling and suppresses tumor growth of anaplastic thyroid carcinoma in vitro and in vivo. Cancer. 119:774–781. 2013. View Article : Google Scholar : PubMed/NCBI | |
Giordano A and Tommonaro G: Curcumin and cancer. Nutrients. 11:23762019. View Article : Google Scholar : PubMed/NCBI | |
Allegri L, Rosignolo F, Mio C, Filetti S, Baldan F and Damante G: Effects of nutraceuticals on anaplastic thyroid cancer cells. J Cancer Res Clin Oncol. 144:285–294. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kocdor MA, Cengiz H, Ates H and Kocdor H: Inhibition of cancer stem-like phenotype by curcumin and deguelin in CAL-62 anaplastic thyroid cancer cells. Anticancer Agents Med Chem. 19:1887–1898. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hong JM, Park CS, Nam-Goong IS, Kim YS, Lee JC, Han MW, Choi JI, Kim YI and Kim ES: Curcumin enhances docetaxel-induced apoptosis of 8505C anaplastic thyroid carcinoma cells. Endocrinol Metab (Seoul). 29:54–61. 2014. View Article : Google Scholar : PubMed/NCBI | |
Boyd J and Han A: Deguelin and its role in chronic diseases. Adv Exp Med Biol. 929:363–375. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tuli HS, Mittal S, Loka M, Aggarwal V, Aggarwal D, Masurkar A, Kaur G, Varol M, Sak K, Kumar M, et al: Deguelin targets multiple oncogenic signaling pathways to combat human malignancies. Pharmacol Res. 166:1054872021. View Article : Google Scholar : PubMed/NCBI | |
Kim HS, Quon MJ and Kim JA: New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2:187–195. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hayakawa S, Ohishi T, Miyoshi N, Oishi Y, Nakamura Y and Isemura M: Anti-cancer effects of green tea epigallocatchin–3-gallate and coffee chlorogenic acid. Molecules. 25:45532020. View Article : Google Scholar : PubMed/NCBI | |
Wu D, Liu Z, Li J, Zhang Q, Zhong P, Teng T, Chen M, Xie Z, Ji A and Li Y: Epigallocatechin-3-gallate inhibits the growth and increases the apoptosis of human thyroid carcinoma cells through suppression of EGFR/RAS/RAF/MEK/ERK signaling pathway. Cancer Cell Int. 19:432019. View Article : Google Scholar : PubMed/NCBI | |
Li T, Zhao N, Lu J, Zhu Q, Liu X, Hao F and Jiao X: Epigallocatechin gallate (EGCG) suppresses epithelial-mesenchymal transition (EMT) and invasion in anaplastic thyroid carcinoma cells through blocking of TGF-β1/smad signaling pathways. Bioengineered. 10:282–291. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiang ZB, Huang JM, Xie YJ, Zhang YZ, Chang C, Lai HL, Wang W, Yao XJ, Fan XX, Wu QB, et al: Evodiamine suppresses non-small cell lung cancer by elevating CD8+ T cells and downregulating the MUC1-C/PD-L1 axis. J Exp Clin Cancer Res. 39:2492020. View Article : Google Scholar : PubMed/NCBI | |
Luo C, Ai J, Ren E, Li J, Feng C, Li X and Luo X: Research progress on evodiamine, a bioactive alkaloid of Evodiae fructus: Focus on its anti-cancer activity and bioavailability (Review). Exp Ther Med. 22:13272021. View Article : Google Scholar : PubMed/NCBI | |
Chen MC, Yu CH, Wang SW, Pu HF, Kan SF, Lin LC, Chi CW, Ho LLT, Lee CH and Wang PS: Anti-proliferative effects of evodiamine on human thyroid cancer cell line ARO. J Cell Biochem. 110:1495–1503. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yu HI, Chou HC, Su YC, Lin LH, Lu CH, Chuang HH, Tsai YT, Liao EC, Wei YS, Yang YT, et al: Proteomic analysis of evodiamine-induced cytotoxicity in thyroid cancer cells. J Pharm Biomed Anal. 160:344–350. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG and Lee SJ: Evodiamine suppresses survival, proliferation, migration and epithelial-mesenchymal transition of thyroid carcinoma cells. Anticancer Res. 38:6339–6352. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG and Lee SJ: Evodiamine in combination with histone deacetylase inhibitors has synergistic cytotoxicity in thyroid carcinoma cells. Endocrine. 65:110–120. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chien CC, Wu MS, Chou SW, Jargalsaikhan G and Chen YC: Roles of reactive oxygen species, mitochondrial membrane potential, and p53 in evodiamine-induced apoptosis and G2/M arrest of human anaplastic thyroid carcinoma cells. Chin Med. 16:1342021. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Hao Y, Liu B and Qian L: Indirubin and meisoindigo in the treatment of chronic myelogenous leukemia in China. Leuk Lymphoma. 43:1763–1768. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hoessel R, Leclerc S, Endicott JA, Nobel ME, Lawrie A, Tunnah P, Leost M, Damiens E, Marie D, Marko D, et al: Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol. 1:60–67. 1999. View Article : Google Scholar : PubMed/NCBI | |
Broecker-Preuss M, Becher-Boveleth N, Gall S, Rehmann K, Schenke S and Mann K: Induction of atypical cell death in thyroid carcinoma cells by the indirubin derivative 7-bromoindirubin-3′-oxime (7BIO). Cancer Cell Int. 15:972015. View Article : Google Scholar : PubMed/NCBI | |
Mukund V, Mukund D, Sharma V, Mannarapu M and Alam A: Genistein: Its role in metabolic diseases and cancer. Crit Rev Oncol Hematol. 119:13–22. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ahn JC, Biswas R and Chung PS: Combination with genistein enhances the efficacy of photodynamic therapy against human anaplastic thyroid cancer cells. Lasers Surg Med. 44:840–849. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li M, Chen J, Yu X, Xu S, Li D, Zheng Q and Yin Y: Myricetin suppresses the propagation of hepatocellular carcinoma via down-regulating expression of YAP. Cells. 8:3582019. View Article : Google Scholar : PubMed/NCBI | |
Knickle A, Fernando W, Greenshields AL, Rupasinghe HPV and Hoskin DW: Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide. Food Chem Toxicol. 118:154–167. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Xie Q, Wu S, Yi D, Yu Y, Liu S, Li S and Li Z: Myricetin induces apoptosis via endoplasmic reticulum stress and DNA double-strand breaks in human ovarian cancer cells. Mol Med Rep. 13:2094–2100. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Cao X, Wang H, Lu K, Wang Y, Tu C, Dai Y, Meng Y, Li Y, Yu P, et al: Discovery of Myricetin as a potent inhibitor of human flap endonuclease 1, which potentially can be used as sensitizing agent against HT-29 human colon cancer cells. J Agric Food Chem. 67:1656–1665. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jo S, Ha TK, Han SH, Kim ME, Jung I, Lee HW, Bae SK and Lee JS: Myricetin induces apoptosis of human anaplastic thyroid cancer cells via mitochondria dysfunction. Anticancer Res. 37:1705–1710. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang SM, Deng XT, Zhou J, Li QP, Ge XX and Miao L: Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed Pharmacother. 121:1096042020. View Article : Google Scholar : PubMed/NCBI | |
Kang HJ, Youn YK, Hong MK and Kim LS: Antiproliferation and redifferentiation in thyroid cancer cell lines by polyphenol phytochemicals. J Korean Med Sci. 26:893–899. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hoang-Vu C, Bull K, Schwarz I, Krause G, Schmutzler C, Aust G, Köhrle J and Dralle H: Regulation of CD97 protein in thyroid carcinoma. J Clin Endocrinol Metab. 84:1104–1109. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ren B, Kwah MXY, Liu C, Ma Z, Shanmugam MK, Ding L, Xiang X, Ho PCL, Wang L, Ong PS and Goh BC: Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett. 515:63–72. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rauf A, Imran M, Butt MS, Nadeem M, Peters DG and Mubarak MS: Resveratrol as an anti-cancer agent: A review. Crit Rev Food Sci Nutr. 58:1428–1447. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu XM, Jaskula-Sztul R, Ahmed K, Harrison AD, Kunnimalaiyaan M and Chen H: Resveratrol induces differentiation markers expression in anaplastic thyroid carcinoma via activation of notch1 signaling and suppresses cell growth. Mol Cancer Ther. 12:1276–1287. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Li H, Wu ML, Wu J, Sun Y, Zhang KL and Liu J: Resveratrol reverses retinoic acid resistance of anaplastic thyroid cancer cells via demethylating CRABP2 gene. Front Endocrinol (Lausanne). 10:7342019. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Li YT, Tian XT, Liu YS, Wu ML, Li PN and Liu J: STAT3 signaling statuses determine the fate of resveratrol-treated anaplastic thyroid cancer cells. Cancer Biomark Sect Dis Markers. 27:461–469. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Jia B, Tian XT, Song X, Wu ML, Kong QY, Li H and Liu J: Correlation of reactive oxygen species levels with resveratrol sensitivities of anaplastic thyroid cancer cells. Oxid Med Cell Longev. 2018:62354172018. View Article : Google Scholar : PubMed/NCBI | |
Xiong L, Nie JH, Lin XM, Wu JB, Chen Z, Xu B and Liu J: Biological implications of PTEN upregulation and altered sodium/iodide symporter intracellular distribution in resveratrol-suppressed anaplastic thyroid cancer cells. J Cancer. 11:6883–6891. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xiong L, Lin XM, Nie JH, Ye HS and Liu J: Resveratrol and its nanoparticle suppress doxorubicin/docetaxel-resistant anaplastic thyroid cancer cells in vitro and in vivo. Nanotheranostics. 5:143–154. 2021. View Article : Google Scholar : PubMed/NCBI | |
Imran M, Rauf A, Khan IA, Shahbaz M, Qaisrani TB, Fatmawati S, Abu-Izneid T, Imran A, Rahman KU and Gondal TA: Thymoquinone: A novel strategy to combat cancer: A review. Biomed Pharmacother Biomedecine Pharmacother. 106:390–402. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Du H, Wang L, Yue Y, Zhang P, Huang Z, Lv W, Ma J, Shao Q, Ma M, et al: Thymoquinone suppresses invasion and metastasis in bladder cancer cells by reversing EMT through the Wnt/β-catenin signaling pathway. Chem Biol Interact. 320:1090222020. View Article : Google Scholar : PubMed/NCBI | |
Ozturk SA, Alp E, Saglam ASY, Konac E and Menevse ES: The effects of thymoquinone and genistein treatment on telomerase activity, apoptosis, angiogenesis, and survival in thyroid cancer cell lines. J Cancer Res Ther. 14:328–334. 2018.PubMed/NCBI | |
Kupchan SM, Court WA, Dailey RG Jr, Gilmore CJ and Bryan RF: Triptolide and tripdiolide, novel antileukemic diterpenoid triepoxides from Tripterygium wilfordii. J Am Chem Soc. 94:7194–7195. 1972. View Article : Google Scholar : PubMed/NCBI | |
Noel P, Von Hoff DD, Saluja AK, Velagapudi M, Borazanci E and Han H: Triptolide and its derivatives as cancer therapies. Trends Pharmacol Sci. 40:327–341. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Hu H, Qiu P and Yan G: Triptolide induces apoptosis in human anaplastic thyroid carcinoma cells by a p53-independent but NF-kappaB-related mechanism. Oncol Rep. 22:1397–1401. 2009.PubMed/NCBI | |
Zhu W, Ou Y, Li Y, Xiao R, Shu M, Zhou Y, Xie J, He S, Qiu P and Yan G: A small-molecule triptolide suppresses angiogenesis and invasion of human anaplastic thyroid carcinoma cells via down-regulation of the nuclear factor-kappa B pathway. Mol Pharmacol. 75:812–819. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, He S, Li Y, Qiu P, Shu M, Ou Y, Zhou Y, Leng T, Xie J, Zheng X, et al: Anti-angiogenic activity of triptolide in anaplastic thyroid carcinoma is mediated by targeting vascular endothelial and tumor cells. Vascul Pharmacol. 52:46–54. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ and Lee SJ: Synergistic cytotoxicity of BIIB021 with triptolide through suppression of PI3K/Akt/mTOR and NF-κB signal pathways in thyroid carcinoma cells. Biomed Pharmacother. 83:22–32. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S and Singhal SS: Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett. 413:122–134. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ahmad SS, Waheed T, Rozeen S, Mahmood S and Kamal MA: Therapeutic study of phytochemicals against cancer and Alzheimer's disease management. Curr Drug Metab. 20:1006–1013. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tendulkar S and Dodamani S: Chemoresistance in ovarian cancer: Prospects for new drugs. Anticancer Agents Med Chem. 21:668–678. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shin HJ, Hwang KA and Choi KC: Antitumor effect of various phytochemicals on diverse types of thyroid cancers. Nutrients. 11:1252019. View Article : Google Scholar : PubMed/NCBI | |
Manach C, Williamson G, Morand C, Scalbert A and Rémésy C: Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 81 (1 Suppl):230S–242S. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pannu N and Bhatnagar A: Resveratrol: From enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed Pharmacother. 109:2237–2251. 2019. View Article : Google Scholar : PubMed/NCBI | |
Somjen D, Grafi-Cohen M, Katzburg S, Weisinger G, Izkhakov E, Nevo N, Sharon O, Kraiem Z, Kohen F and Stern N: Anti-thyroid cancer properties of a novel isoflavone derivative, 7-(O)-carboxymethyl daidzein conjugated to N-t-Boc-hexylenediamine in vitro and in vivo. J Steroid Biochem Mol Biol. 126:95–103. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Jia B, Song X, Kong QY, Wu ML, Qiu ZW, Li H and Liu J: Preventive potential of resveratrol in carcinogen-induced rat thyroid tumorigenesis. Nutrients. 10:2792018. View Article : Google Scholar : PubMed/NCBI | |
Jafarpour SM, Safaei M, Mohseni M, Salimian M, Aliasgharzadeh A and Farhood B: The radioprotective effects of curcumin and trehalose against genetic damage caused by I-131. Indian J Nucl Med. 33:99–104. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stancioiu F, Mihai D, Papadakis GZ, Tsatsakis A, Spandidos DA and Badiu C: Treatment for benign thyroid nodules with a combination of natural extracts. Mol Med Rep. 20:2332–2338. 2019.PubMed/NCBI | |
Chmielik E, Rusinek D, Oczko-Wojciechowska M, Jarzab M, Krajewska J, Czarniecka A and Jarzab B: Heterogeneity of thyroid cancer. Pathobiolgy. 85:117–129. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cabanillas ME, McFadden DG and Durante C: Thyroid cancer. Lancet. 388:2783–2795. 2016. View Article : Google Scholar : PubMed/NCBI | |
Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ and Cronin KA: SEER Cancer Statistics Review, 1975–2018. National Cancer Institute; Bethesda, MD: 2018 | |
La Vecchia C, Malvezzi M, Bosetti C, Garavello W, Bertuccio P, Levi F and Negri E: Thyroid cancer mortality and incidence: A global overview. Int J Cancer. 136:2187–2195. 2015. View Article : Google Scholar : PubMed/NCBI | |
Molinaro E, Romei C, Biagini A, Sabini E, Agate L, Mazzeo S, Materazzi G, Sellari-Franceschini S, Ribechini A, Torregrossa L, et al: Anaplastic thyroid carcinoma: From clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol. 13:644–660. 2017. View Article : Google Scholar : PubMed/NCBI | |
Smallridge RC and Copland JA: Anaplastic thyroid carcinoma: Pathogenesis and emerging therapies. Clin Oncol (R Coll Radiol). 22:486–497. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ain KB: Anaplastic thyroid carcinoma: Behavior, biology, and therapeutic approaches. Thyroid. 8:715–726. 1998. View Article : Google Scholar : PubMed/NCBI | |
Glaser SM, Mandish SF, Gill BS, Balasubramani GK, Clump DA and Beriwal S: Anaplastic thyroid cancer: Prognostic factors, patterns of care, and overall survival. Head Neck. 38 (Suppl 1):E2083–E2090. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ferrari SM, Elia G, Ragusa F, Ruffilli I, Motta CL, Paparo SR, Patrizio A, Vita R, Benvenga S, Materazzi G, et al: Novel treatments for anaplastic thyroid carcinoma. Gland Surg. 9 (Suppl 1):S28–S42. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu G, Chen J, Wang G, Xiao J, Zhang N, Chen Y, Yu H, Wang G and Zhao Y: Resveratrol inhibits the tumorigenesis of follicular thyroid cancer via ST6GAL2-regulated activation of the hippo signaling pathway. Mol Ther Oncolytics. 16:124–133. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shih A, Davis FB, Lin HY and Davis PJ: Resveratrol induces apoptosis in thyroid cancer cell lines via a MAPK- and p53-dependent mechanism. J Clin Endocrinol Metab. 87:1223–1232. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ferretti E, Tosi E, Po A, Scipioni A, Morisi R, Espinola MS, Russo D, Durante C, Schlumberger M, Screpanti I, et al: Notch signaling is involved in expression of thyrocyte differentiation markers and is down-regulated in thyroid tumors. J Clin Endocrinol Metab. 93:4080–4087. 2008. View Article : Google Scholar : PubMed/NCBI | |
Davis RJ, Pinchot S, Jarjour S, Kunnimalaiyaan M and Chen H: Resveratrol-induced notch activation potentially mediates autophagy in human follicular thyroid cancer cells. J Surg Res. 2:331–332. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Hu Z, Ma W, Niu Y, Su J, Zhang L and Zhao P: Signal transducer and activator of transcription 3 inhibition alleviates resistance to BRAF inhibition in anaplastic thyroid cancer. Invest New Drugs. 39:764–774. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kartal-Yandim M, Adan-Gokbulut A and Baran Y: Molecular mechanisms of drug resistance and its reversal in cancer. Crit Rev Biotechnol. 36:716–726. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pick A and Wiese M: Tyrosine kinase inhibitors influence ABCG2 expression in EGFR-positive MDCK BCRP cells via the PI3K/Akt signaling pathway. ChemMedChem. 7:650–662. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann K, Shibo L, Xiao Z, Longerich T, Büchler MW and Schemmer P: Correlation of gene expression of ATP-binding cassette protein and tyrosine kinase signaling pathway in patients with hepatocellular carcinoma. Anticancer Res. 31:3883–3890. 2011.PubMed/NCBI | |
Wang Z, Li Y, Ahmad A, Azmi AS, Banerjee S, Kong D and Sarkar FH: Targeting notch signaling pathway to overcome drug resistance for cancer therapy. Biochim Biophys Acta. 1806:258–267. 2010.PubMed/NCBI | |
Ma L and Cheng Q: Inhibiting 6-phosphogluconate dehydrogenase reverses doxorubicin resistance in anaplastic thyroid cancer via inhibiting NADPH-dependent metabolic reprogramming. Biochem Biophys Res Commun. 498:912–917. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Y: Inactivation of PDH can reduce anaplastic thyroid cancer cells' sensitivity to artemisinin. Anticancer Agents Med Chem. 22:1753–1760. 2021. View Article : Google Scholar : PubMed/NCBI | |
Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI | |
Enriquez-Navas PM, Wojtkowiak JW and Gatenby RA: Application of evolutionary principles to cancer therapy. Cancer Res. 75:4675–4680. 2015. View Article : Google Scholar : PubMed/NCBI | |
Siddiqui FA, Prakasam G, Chattopadhyay S, Rehman AU, Padder RA, Ansari MA, Irshad R, Mangalhara K, Bamezai RNK, Husain M, et al: Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition. Sci Rep. 8:83232018. View Article : Google Scholar : PubMed/NCBI | |
Gibellini L, Bianchini E, De Biasi S, Nasi M, Cossarizza A and Pinti M: Natural compounds modulating mitochondrial functions. Evid Based Complement Altern Med. 2015:5272092015. View Article : Google Scholar : PubMed/NCBI |