In vitro characterization and rational analog design of a novel inhibitor of telomerase assembly in MDA MB 231 breast cancer cell line
- Authors:
- Romina Armando
- Maia Cabrera
- Roman Vilarullo
- Patricio Chinestrad
- Julian Maggio
- Camila Paderta
- Pablo Lorenzano Menna
- Daniel Gomez
- Diego Mengual Gómez
-
Affiliations: Molecular Oncology Unit, Center of Molecular and Translational Oncology, Quilmes National University, Bernal, Buenos Aires B1876BXD, Argentina, Laboratory of Molecular Pharmacology, Quilmes National University, Bernal, Buenos Aires B1876BXD, Argentina - Published online on: September 13, 2022 https://doi.org/10.3892/or.2022.8403
- Article Number: 188
-
Copyright: © Armando et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Jafri MA, Ansari SA, Alqahtani MH and Shay JW: Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 8:692016. View Article : Google Scholar : PubMed/NCBI | |
Berardinelli F, Coluzzi E, Sgura A and Antoccia A: Targeting telomerase and telomeres to enhance ionizing radiation effects in in vitro and in vivo cancer models. Mutat Res Rev Mutat Res. 773:204–219. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lipinska N, Romaniuk A, Paszel-Jaworska A, Toton E, Kopczynski P and Rubis B: Telomerase and drug resistance in cancer. Cell Mol Life Sci. 74:4121–4132. 2017. View Article : Google Scholar | |
Mender I, LaRanger R, Luitel K, Peyton M, Girard L, Lai TP, Batten K, Cornelius C, Dalvi MP, Ramirez M, et al: Telomerase-Mediated strategy for overcoming non-small cell lung cancer targeted therapy and chemotherapy resistance. Neoplasia. 20:826–837. 2018. View Article : Google Scholar | |
Sengupta S, Sobo M, Lee K, Senthil Kumar S, White AR, Mender I, Fuller C, Chow LML, Fouladi M, Shay JW and Drissi R: Induced telomere damage to treat telomerase expressing therapy-resistant pediatric brain tumors. Mol Cancer Ther. 17:1504–1514. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Wu LW, Mender I, Barzily-Rokni M, Hammond MR, Ope O, Cheng C, Vasilopoulos T, Randell S, Sadek N, et al: Induction of telomere dysfunction prolongs disease control of therapy-resistant melanoma. Clin Cancer Res. 24:4771–4784. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Zhong D, Li Y, Wu H, Xu X, Yang J and Gu Z: Tumor-Oriented telomerase-terminated nanoplatform as versatile strategy for multidrug resistance reversal in cancer treatment. Adv Healthc Mater. 9:e19017392020. View Article : Google Scholar : PubMed/NCBI | |
Gomez DL, Armando RG, Cerrudo CS, Ghiringhelli PD and Gomez DE: Telomerase as a cancer target. Development of new molecules. Curr Top Med Chem. 16:2432–2440. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guterres AN and Villanueva J: Targeting telomerase for cancer therapy. Oncogene. 39:5811–5824. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jager K and Walter M: Therapeutic Targeting of Telomerase. Genes. 7:2016. View Article : Google Scholar : PubMed/NCBI | |
Armando RG, Mengual Gomez DL, Juritz EI, Lorenzano Menna P and Gomez DE: Homology model and docking-based virtual screening for ligands of human dyskerin as new inhibitors of telomerase for cancer treatment. Int J Mol Sci. 19:32162018. View Article : Google Scholar | |
Jaiswal RK and Yadava PK: Assessment of telomerase as drug target in breast cancer. J Biosci. 45:722020. View Article : Google Scholar | |
Holliday DL and Speirs V: Choosing the right cell line for breast cancer research. Breast Cancer Res. 13:2152011. View Article : Google Scholar : PubMed/NCBI | |
Cawthon RM: Telomere measurement by quantitative PCR. Nucleic Acids Res. 30:e472002. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Skalic M, Jimenez J, Sabbadin D and De Fabritiis G: Shape-Based generative modeling for de novo drug design. J Chem Inf Model. 59:1205–1214. 2019. View Article : Google Scholar | |
RDKit, . Open-source cheminformatics. GitHub and SourceForge, 2021. https://www.rdkit.org/ | |
Rappé AK, Casewit CJ, Colwell K, Goddard WA III and Skiff WM: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 114:10024–10035. 1992. View Article : Google Scholar | |
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS and Olson AJ: AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 30:2785–2791. 2009. View Article : Google Scholar : PubMed/NCBI | |
Salentin S, Schreiber S, Haupt VJ, Adasme MF and Schroeder M: PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Res. 43((W1)): W443–447. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schildge S, Bohrer C, Beck K and Schachtrup C: Isolation and culture of mouse cortical astrocytes. J Vis Exp. ((71)): 500792013. | |
Pires DE, Blundell TL and Ascher DB: pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 58:4066–4072. 2015. View Article : Google Scholar : PubMed/NCBI | |
Daina A, Michielin O and Zoete V: SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 47((W1)): W357–W364. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sander T, Freyss J, von Korff M and Rufener C: DataWarrior: An open-source program for chemistry aware data visualization and analysis. J Chem Inf Model. 55:460–473. 2015. View Article : Google Scholar | |
Gasteiger J and Engel T: Chemoinformatics: a textbook. John Wiley & Sons, 2006. Chapter 2.9. Volume. 1:92–110. 2006. | |
Leach AR and Gillet VJ: An introduction to chemoinformatics. Springer, 2007. Chapter 5 - Similiraty Methods. Volume. 1:99–117. 2007. | |
Sharma A and Lal SP: Tanimoto based similarity measure for intrusion detection system. J Inf Sec. 2:195–201. 2011. | |
Willett P, Barnard JM and Downs GM: Chemical similarity searching. J Chem Inf Comput Sci. 38:983–996. 1998. View Article : Google Scholar | |
Bemis GW and Murcko MA: The properties of known drugs. 1. Molecular frameworks. J Med Chem. 39:2887–2893. 1996. View Article : Google Scholar : PubMed/NCBI | |
Durant JL, Leland BA, Henry DR and Nourse JG: Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci. 42:1273–1280. 2002. View Article : Google Scholar | |
BIOVIA, . The keys to understanding MDL keyset technology. Dassault Systemes; Waltham, MA: 2011, https://docplayer.net/64556108-The-keys-to-understanding-mdl-keyset-technology-white-paper.html | |
Axen SD, Huang XP, Caceres EL, Gendelev L, Roth BL and Keiser MJ: A Simple Representation of three-dimensional molecular structure. J Med Chem. 60:7393–7409. 2017. View Article : Google Scholar : PubMed/NCBI | |
Deng Y, Chan SS and Chang S: Telomere dysfunction and tumour suppression: The senescence connection. Nat Rev Cancer. 8:450–458. 2008. View Article : Google Scholar : PubMed/NCBI | |
Roake CM and Artandi SE: Control of cellular aging, tissue function, and cancer by p53 downstream of telomeres. Cold Spring Harb Perspect Med. 7:a0260882017. View Article : Google Scholar : PubMed/NCBI | |
Lin J and Epel E: Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res Rev. 73:1015072022. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Zhang J, Hu CQ, Zhang X, Ma B and Zhang P: In silico ADME and toxicity prediction of ceftazidime and its impurities. Front Pharmacol. 10:4342019. View Article : Google Scholar | |
Hou T, Wang J, Zhang W and Xu X: ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. J Chem Inf Model. 47:208–218. 2007. View Article : Google Scholar | |
Holt K, Nagar S and Korzekwa K: Methods to predict volume of distribution. Curr Pharmacol Rep. 5:391–399. 2019. View Article : Google Scholar : PubMed/NCBI | |
Muehlbacher M, Spitzer GM, Liedl KR and Kornhuber J: Qualitative prediction of blood-brain barrier permeability on a large and refined dataset. J Comput Aided Mol Des. 25:1095–1106. 2011. View Article : Google Scholar : PubMed/NCBI | |
Suenderhauf C, Hammann F and Huwyler J: Computational prediction of blood-brain barrier permeability using decision tree induction. Molecules. 17:10429–10445. 2012. View Article : Google Scholar : PubMed/NCBI | |
McDonnell AM and Dang CH: Basic review of the cytochrome p450 system. J Adv Pract Oncol. 4:263–268. 2013. | |
Laufkotter O, Sturm N, Bajorath J, Chen H and Engkvist O: Combining structural and bioactivity-based fingerprints improves prediction performance and scaffold hopping capability. J Cheminform. 11:542019. View Article : Google Scholar : PubMed/NCBI | |
Bajusz D, Racz A and Heberger K: Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J Cheminform. 7:202015. View Article : Google Scholar : PubMed/NCBI | |
Snarey M, Terrett NK, Willett P and Wilton DJ: Comparison of algorithms for dissimilarity-based compound selection. J Mol Graph Model. 15:372–385. 1997. View Article : Google Scholar | |
Zhang JM and Zou L: Alternative lengthening of telomeres: From molecular mechanisms to therapeutic outlooks. Cell Biosci. 10:302020. View Article : Google Scholar | |
Shay JW and Wright WE: Telomeres and telomerase in normal and cancer stem cells. FEBS Lett. 584:3819–3825. 2010. View Article : Google Scholar | |
Gurung RL, Lim SN, Low GK and Hande MP: MST-312 alters telomere dynamics, gene expression profiles and growth in human breast cancer cells. J Nutrigenet Nutrigenomics. 7:283–298. 2014.PubMed/NCBI | |
Kazemi-Lomedasht F, Rami A and Zarghami N: Comparison of inhibitory effect of curcumin nanoparticles and free curcumin in human telomerase reverse transcriptase gene expression in breast cancer. Adv Pharm Bull. 3:127–130. 2013. | |
Wardi L, Alaaeddine N, Raad I, Sarkis R, Serhal R, Khalil C and Hilal G: Glucose restriction decreases telomerase activity and enhances its inhibitor response on breast cancer cells: Possible extra-telomerase role of BIBR 1532. Cancer Cell Int. 14:602014. View Article : Google Scholar | |
Noureini SK and Wink M: Dose-dependent cytotoxic effects of boldine in HepG-2 cells-telomerase inhibition and apoptosis induction. Molecules. 20:3730–3743. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang YL, Huang PH, Chiu HC, Kulp SK and Chen CS, Kuo CJ, Chen HD and Chen CS: Histone deacetylase inhibitor AR42 regulates telomerase activity in human glioma cells via an Akt-dependent mechanism. Biochem Biophys Res Commun. 435:107–112. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bashash D, Ghaffari SH, Mirzaee R, Alimoghaddam K and Ghavamzadeh A: Telomerase inhibition by non-nucleosidic compound BIBR1532 causes rapid cell death in pre-B acute lymphoblastic leukemia cells. Leuk Lymphoma. 54:561–568. 2013. View Article : Google Scholar | |
Chen RJ, Wu PH, Ho CT, Way TD, Pan MH, Chen HM, Ho YS and Wang YJ: P53-dependent downregulation of hTERT protein expression and telomerase activity induces senescence in lung cancer cells as a result of pterostilbene treatment. Cell Death Dis. 8:e29852017. View Article : Google Scholar : PubMed/NCBI | |
Fang JL and Beland FA: Long-term exposure to zidovudine delays cell cycle progression, induces apoptosis, and decreases telomerase activity in human hepatocytes. Toxicol Sci. 111:120–130. 2009. View Article : Google Scholar | |
Hu Y, Bobb D, He J, Hill DA and Dome JS: The HSP90 inhibitor alvespimycin enhances the potency of telomerase inhibition by imetelstat in human osteosarcoma. Cancer Biol Ther. 16:949–957. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tejera AM, Alonso DF, Gomez DE and Olivero OA: Chronic in vitro exposure to 3′-azido-2′, 3′-dideoxythymidine induces senescence and apoptosis and reduces tumorigenicity of metastatic mouse mammary tumor cells. Breast Cancer Res Treat. 65:93–99. 2001. View Article : Google Scholar | |
Frink RE, Peyton M, Schiller JH, Gazdar AF, Shay JW and Minna JD: Telomerase inhibitor imetelstat has preclinical activity across the spectrum of non-small cell lung cancer oncogenotypes in a telomere length dependent manner. Oncotarget. 7:31639–31651. 2016. View Article : Google Scholar | |
Morais KS, Guimaraesb AFR, Ramos DAR, Silva FP and de Oliveira DM: Long-term exposure to MST-312 leads to telomerase reverse transcriptase overexpression in MCF-7 breast cancer cells. Anticancer Drugs. 28:750–756. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mueller S, Hartmann U, Mayer F, Balabanov S, Hartmann JT, Brummendorf TH and Bokemeyer C: Targeting telomerase activity by BIBR1532 as a therapeutic approach in germ cell tumors. Invest New Drugs. 25:519–524. 2007. View Article : Google Scholar : PubMed/NCBI | |
van Deursen JM: The role of senescent cells in ageing. Nature. 509:439–446. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sharpless NE and Sherr CJ: Forging a signature of in vivo senescence. Nat Rev Cancer. 15:397–408. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao R, Choi BY, Lee MH, Bode AM and Dong Z: Implications of genetic and epigenetic alterations of CDKN2A (p16(INK4a)) in cancer. EBioMedicine. 8:30–39. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Liang B, Wu XR, Chen W and Zhao LZ: Network pharmacology-based systematic analysis of molecular mechanisms of dingji fumai decoction for ventricular arrhythmia. Evid Based Complement Alternat Med. 2021:55354802021. View Article : Google Scholar : PubMed/NCBI | |
Bernadotte A, Mikhelson VM and Spivak IM: Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging (Albany NY). 8:3–11. 2016. View Article : Google Scholar : PubMed/NCBI | |
Burchett KM, Yan Y and Ouellette MM: Telomerase inhibitor imetelstat (GRN163L) limits the lifespan of human pancreatic cancer cells. PloS One. 9:e851552014. View Article : Google Scholar : PubMed/NCBI | |
Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, DiMaio D and Hwang ES: Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 5:187–195. 2006. View Article : Google Scholar | |
Su Z, Yang Z, Xu Y, Chen Y and Yu Q: Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer. 14:482015. View Article : Google Scholar : PubMed/NCBI | |
Asghari-Kia L, Bashash D, Safaroghli-Azar A, Momeny M, Hamidpour M and Ghaffari SH: Targeting human telomerase RNA component using antisense oligonucleotide induces rapid cell death and increases ATO-induced apoptosis in APL cells. Eur J Pharmacol. 809:215–223. 2017. View Article : Google Scholar | |
Bashash D, Ghaffari SH, Zaker F, Kazerani M, Hezave K, Hassani S, Rostami M, Alimoghaddam K and Ghavamzadeh A: BIBR 1532 increases arsenic trioxide-mediated apoptosis in acute promyelocytic leukemia cells: Therapeutic potential for APL. Anticancer Agents Med Chem. 13:1115–1125. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vairano M, Graziani G, Tentori L, Tringali G, Navarra P and Dello Russo C: Primary cultures of microglial cells for testing toxicity of anticancer drugs. Toxicol Lett. 148:91–94. 2004. View Article : Google Scholar | |
Cardama GA, Comin MJ, Hornos L, Gonzalez N, Defelipe L, Turjanski AG, Alonso DF, Gomez DE and Menna PL: Preclinical development of novel Rac1-GEF signaling inhibitors using a rational design approach in highly aggressive breast cancer cell lines. Anticancer Agents Med Chem. 14:840–851. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ramana M, Lokhande R, Bhar S, Ranade P, Mehta A and Gadre G: In Silico design, synthesis and bioactivity of N-(2, 4-Dinitrophenyl)-3-oxo-3-phenyl-N-(aryl) phenyl propanamide derivatives as breast cancer inhibitors. Curr Comput Aided Drug Des. 13:112–126. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gerbelli BB, Vassiliades SV, Rojas JEU, Pelin JNBD, Mancini RSN, Pereira WSG, Aguilar AM, Venanzi M, Cavalieri F, Giuntini F and Alves WA: Hierarchical Self-assembly of peptides and its applications in bionanotechnology. Bioin Bioba Mater. 220:19000852019. | |
Smith AJ, Zhang X, Leach AG and Houk KN: Beyond picomolar affinities: Quantitative aspects of noncovalent and covalent binding of drugs to proteins. J Med Chem. 52:225–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Alqahtani S: In silico ADME-Tox modeling: Progress and prospects. Expert Opin Drug Metab Toxicol. 13:1147–1158. 2017. View Article : Google Scholar | |
Nandini Asha R, Ravindran Durai Nayagam B and Bhuvanesh N: Synthesis, molecular docking, and in silico ADMET studies of 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine: Potential inhibitor of SARS-CoV2. Bioorg Chem. 112:1049672021. View Article : Google Scholar : PubMed/NCBI | |
Almeleebia TM, Shahrani MA, Alshahrani MY, Ahmad I, Alkahtani AM, Alam MJ, Kausar MA, Saeed A, Saeed M and Iram S: Identification of new mycobacterium tuberculosis proteasome inhibitors using a knowledge-based computational screening approach. Molecules. 26:23262021. View Article : Google Scholar : PubMed/NCBI | |
Gentile D, Floresta G, Patamia V, Chiaramonte R, Mauro GL, Rescifina A and Vecchio M: An integrated pharmacophore/Docking/3D-QSAR approach to screening a large library of products in search of future botulinum neurotoxin a inhibitors. Int J Mol Sci. 21:94702020. View Article : Google Scholar | |
Daina A, Michielin O and Zoete V: SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 7:427172017. View Article : Google Scholar : PubMed/NCBI | |
Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O and Zoete V: SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 42:(Web Server Issue). W32–W38. 2014. View Article : Google Scholar : PubMed/NCBI | |
Abdelfatah S, Bockers M, Asensio M, Kadioglu O, Klinger A, Fleischer E and Efferth T: Isopetasin and S-isopetasin as novel P-glycoprotein inhibitors against multidrug-resistant cancer cells. Phytomedicine. 86:1531962021. View Article : Google Scholar : PubMed/NCBI | |
Greish KF, Salerno L, Al Zahrani R, Amata E, Modica MN, Romeo G, Marrazzo A, Prezzavento O, Sorrenti V, Rescifina A, et al: Novel structural insight into inhibitors of heme oxygenase-1 (HO-1) by new imidazole-based compounds: Biochemical and in vitro anticancer activity evaluation. Molecules. 23:12092018. View Article : Google Scholar | |
Verma K, Kannan K, V S, R S, V K and K R: Exploring β-tubulin inhibitors from plant origin using computational approach. Phytochem Anal. 28:230–241. 2017. View Article : Google Scholar | |
Lo YC and Torres JZ: Chemical similarity networks for drug discovery. Special Topics in Drug Discovery. Chen T: IntechOpen; Volume 1. pp. 53–70. 2016 | |
Duran-Frigola M, Pauls E, Guitart-Pla O, Bertoni M, Alcalde V, Amat D, Juan-Blanco T and Aloy P: Extending the small-molecule similarity principle to all levels of biology with the Chemical Checker. Nat Biotechnol. 38:1087–1096. 2020. View Article : Google Scholar | |
Jasial S, Hu Y, Vogt M and Bajorath J: Activity-relevant similarity values for fingerprints and implications for similarity searching. F1000Res. 5:Chem Inf Sci. –591. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kropiwnicki E, Evangelista JE, Stein DJ, Clarke DJB, Lachmann A, Kuleshov MV, Jeon M, Jagodnik KM and Ma'ayan A: Drugmonizome and Drugmonizome-ML: Integration and abstraction of small molecule attributes for drug enrichment analysis and machine learning. Database (Oxford). 2021:baab0172021. View Article : Google Scholar : PubMed/NCBI | |
Lambert LJ, Grotegut S, Celeridad M, Gosalia P, Backer LJ, Bobkov AA, Salaniwal S, Chung TD, Zeng FY, Pass I, et al: Development of a robust high-throughput screening platform for inhibitors of the striatal-enriched tyrosine phosphatase (STEP). Int J Mol Sci. 22:44172021. View Article : Google Scholar | |
Lopez-Lopez E, Cerda-Garcia-Rojas CM and Medina-Franco JL: Tubulin inhibitors: A chemoinformatic analysis using cell-based data. Molecules. 26:24832021. View Article : Google Scholar : PubMed/NCBI | |
Thomas M, Smith RT, O'Boyle NM, de Graaf C and Bender A: Comparison of structure- and ligand-based scoring functions for deep generative models: A GPCR case study. J Cheminform. 13:392021. View Article : Google Scholar : PubMed/NCBI |