1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Schabath MB and Cote ML: Cancer progress
and priorities: Lung cancer. Cancer Epidemiol Biomarkers Prev.
28:1563–1579. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wahbah M, Boroumand N, Castro C, El-Zeky F
and Eltorky M: Changing trends in the distribution of the
histologic types of lung cancer: A review of 4,439 cases. Ann Diagn
Pathol. 11:89–96. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chansky K, Detterbeck FC, Nicholson AG,
Rusch VW, Vallieres E, Groome P, Kennedy C, Krasnik M, Peake M,
Shemanski L, et al: The IASLC lung cancer staging project: External
validation of the revision of the TNM stage groupings in the eighth
edition of the TNM classification of lung cancer. J Thorac Oncol.
12:1109–1121. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Govindan R, Ding L, Griffith M,
Subramanian J, Dees ND, Kanchi KL, Maher CA, Fulton R, Fulton L,
Wallis J, et al: Genomic landscape of non-small cell lung cancer in
smokers and never-smokers. Cell. 150:1121–1134. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Cancer Genome Atlas Research Network, .
Comprehensive molecular profiling of lung adenocarcinoma. Nature.
511:543–550. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Skoulidis F, Byers LA, Diao L,
Papadimitrakopoulou VA, Tong P, Izzo J, Behrens C, Kadara H, Parra
ER, Canales JR, et al: Co-occurring genomic alterations define
major subsets of KRAS-mutant lung adenocarcinoma with distinct
biology, immune profiles, and therapeutic vulnerabilities. Cancer
Discov. 5:860–877. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cox AD, Fesik SW, Kimmelman AC, Luo J and
Der CJ: Drugging the undruggable RAS: Mission possible? Nat Rev
Drug Discov. 13:828–851. 2014. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Janes MR, Zhang J, Li LS, Hansen R, Peters
U, Guo X, Chen Y, Babbar A, Firdaus SJ, Darjania L, et al:
Targeting KRAS mutant cancers with a covalent G12C-specific
inhibitor. Cell. 172:578–589.e17. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Park MT, Kim MJ, Suh Y, Kim RK, Kim H, Lim
EJ, Yoo KC, Lee GH, Kim YH, Hwang SG, et al: Novel signaling axis
for ROS generation during K-Ras-induced cellular transformation.
Cell Death Differ. 21:1185–1197. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Romero R, Sayin VI, Davidson SM, Bauer MR,
Singh SX, LeBoeuf SE, Karakousi TR, Ellis DC, Bhutkar A,
Sanchez-Rivera FJ, et al: Keap1 loss promotes Kras-driven lung
cancer and results in dependence on glutaminolysis. Nat Med.
23:1362–1368. 2017. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Naiki-Ito A, Asamoto M, Hokaiwado N,
Takahashi S, Yamashita H, Tsuda H, Ogawa K and Shirai T: Gpx2 is an
overexpressed gene in rat breast cancers induced by three different
chemical carcinogens. Cancer Res. 67:11353–11358. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Suzuki S, Pitchakarn P, Ogawa K, Naiki-Ito
A, Chewonarin T, Punfa W, Asamoto M, Shirai T and Takahashi S:
Expression of glutathione peroxidase 2 is associated with not only
early hepatocarcinogenesis but also late stage metastasis.
Toxicology. 311:115–123. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Naiki T, Naiki-Ito A, Iida K, Etani T,
Kato H, Suzuki S, Yamashita Y, Kawai N, Yasui T and Takahashi S:
GPX2 promotes development of bladder cancer with squamous cell
differentiation through the control of apoptosis. Oncotarget.
9:15847–15859. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Naiki T, Naiki-Ito A, Asamoto M, Kawai N,
Tozawa K, Etani T, Sato S, Suzuki S, Shirai T, Kohri K and
Takahashi S: GPX2 overexpression is involved in cell proliferation
and prognosis of castration-resistant prostate cancer.
Carcinogenesis. 35:1962–1967. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Du H, Chen B, Jiao NL, Liu YH, Sun SY and
Zhang YW: Elevated glutathione peroxidase 2 expression promotes
cisplatin resistance in lung adenocarcinoma. Oxid Med Cell Longev.
2020:73701572020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen YS, Ma HL, Yang Y, Lai WY, Sun BF and
Yang YG: 5-methylcytosine analysis by RNA-BisSeq. Methods Mol Biol.
1870:237–248. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Selamat SA, Chung BS, Girard L, Zhang W,
Zhang Y, Campan M, Siegmund KD, Koss MN, Hagen JA, Lam WL, et al:
Genome-scale analysis of DNA methylation in lung adenocarcinoma and
integration with mRNA expression. Genome Res. 22:1197–1211. 2012.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang Y, Foreman O, Wigle DA, Kosari F,
Vasmatzis G, Salisbury JL, van Deursen J and Galardy PJ: USP44
regulates centrosome positioning to prevent aneuploidy and suppress
tumorigenesis. J Clin Invest. 122:4362–4374. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Girard L, Rodriguez-Canales J, Behrens C,
Thompson DM, Botros IW, Tang H, Xie Y, Rekhtman N, Travis WD,
Wistuba II, et al: An expression signature as an aid to the
histologic classification of non-small cell lung cancer. Clin
Cancer Res. 22:4880–4889. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mitchell KA, Zingone A, Toulabi L,
Boeckelman J and Ryan BM: Comparative transcriptome profiling
reveals coding and noncoding RNA differences in NSCLC FROM African
Americans and European Americans. Clin Cancer Res. 23:7412–7425.
2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wen X, Ou YC, Zarick HF, Zhang X, Hmelo
AB, Victor QJ, Paul EP, Slocik JM, Naik RR, Bellan LM, et al:
PRADA: Portable reusable accurate diagnostics with nanostar
antennas for multiplexed biomarker screening. Bioeng Transl Med.
5:e101652020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Putri GH, Anders S, Pyl PT, Pimanda JE and
Zanini F: Analysing high-throughput sequencing data in python with
HTSeq 2.0. Bioinformatics. 21:btac1662022.
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Li Z, Shao C, Liu X, Lu X, Jia X, Zheng X,
Wang S, Zhu L, Li K, Pang Y, et al: Oncogenic ERBB2 aberrations and
KRAS mutations cooperate to promote pancreatic ductal
adenocarcinoma progression. Carcinogenesis. 41:44–55.
2020.PubMed/NCBI
|
26
|
Reck M, Carbone DP, Garassino M and
Barlesi F: Targeting KRAS in non-small-cell lung cancer: Recent
progress and new approaches. Ann Oncol. 32:1101–1110. 2021.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Dogan S, Shen R, Ang DC, Johnson ML,
D'Angelo SP, Paik PK, Brzostowski EB, Riely GJ, Kris MG, Zakowski
MF and Ladanyi M: Molecular epidemiology of EGFR and KRAS mutations
in 3,026 lung adenocarcinomas: Higher susceptibility of women to
smoking-related KRAS-mutant cancers. Clin Cancer Res. 18:6169–6177.
2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mirzaei S, Hushmandi K, Zabolian A, Saleki
H, Torabi SMR, Ranjbar A, SeyedSaleh S, Sharifzadeh SO, Khan H,
Ashrafizadeh M, et al: Elucidating role of reactive oxygen species
(ROS) in cisplatin chemotherapy: A focus on molecular pathways and
possible therapeutic strategies. Molecules. 26:23822021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wiel C, Le Gal K, Ibrahim MX, Jahangir CA,
Kashif M, Yao H, Ziegler DV, Xu X, Ghosh T, Mondal T, et al: BACH1
stabilization by antioxidants stimulates lung cancer metastasis.
Cell. 178:330–345.e22. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hayes JD, Dinkova-Kostova AT and Tew KD:
Oxidative stress in cancer. Cancer Cell. 38:167–197. 2020.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Foley CJ, Luo C, O'Callaghan K, Hinds PW,
Covic L and Kuliopulos A: Matrix metalloprotease-1a promotes
tumorigenesis and metastasis. J Biol Chem. 287:24330–24338. 2012.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang Y, Ding X, Liu B, Li M, Chang Y, Shen
H, Xie SM, Xing L and Li Y: ETV4 overexpression promotes
progression of non-small cell lung cancer by upregulating PXN and
MMP1 transcriptionally. Mol Carcinog. 59:73–86. 2020. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wu KL, Tsai YM, Lien CT, Kuo PL and Hung
AJ: The roles of microRNA in lung cancer. Int J Mol Sci.
20:16112019. View Article : Google Scholar : PubMed/NCBI
|
34
|
El Founini Y, Chaoui I, Dehbi H, El Mzibri
M, Abounader R and Guessous F: MicroRNAs: Key regulators in lung
cancer. Microrna. 10:109–122. 2021. View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu K, Jin M, Xiao L, Liu H and Wei S:
Distinct prognostic values of mRNA expression of glutathione
peroxidases in non-small cell lung cancer. Cancer Manag Res.
10:2997–3005. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Huang H, Zhang W, Pan Y, Gao Y, Deng L, Li
F, Li F, Ma X, Hou S, Xu J, et al: YAP suppresses lung squamous
cell carcinoma progression via deregulation of the DNp63-GPX2 axis
and ROS accumulation. Cancer Res. 77:5769–5781. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Leon LM, Gautier M, Allan R, Ilie M,
Nottet N, Pons N, Paquet A, Lebrigand K, Truchi M, Fassy J, et al:
The nuclear hypoxia-regulated NLUCAT1 long non-coding RNA
contributes to an aggressive phenotype in lung adenocarcinoma
through regulation of oxidative stress. Oncogene. 38:7146–7165.
2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hu K, Li K, Lv J, Feng J, Chen J, Wu H,
Cheng F, Jiang W, Wang J, Pei H, et al: Suppression of the
SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant
lung adenocarcinoma. J Clin Invest. 130:1752–1766. 2020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yun J, Mullarky E, Lu C, Bosch KN,
Kavalier A, Rivera K, Roper J, Chio II, Giannopoulou EG, Rago C, et
al: Vitamin C selectively kills KRAS and BRAF mutant colorectal
cancer cells by targeting GAPDH. Science. 350:1391–1396. 2015.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Wong CC, Qian Y, Li X, Xu J, Kang W, Tong
JH, To KF, Jin Y, Li W, Chen H, et al: SLC25A22 promotes
proliferation and survival of colorectal cancer cells with KRAS
mutations and xenograft tumor progression in mice via intracellular
synthesis of aspartate. Gastroenterology. 151:945–960.e6. 2016.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Kessenbrock K, Plaks V and Werb Z: Matrix
metalloproteinases: Regulators of the tumor microenvironment. Cell.
141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ji S, Ma Y, Xing X, Ge B, Li Y, Xu X, Song
J, Xiao M, Gao F, Jiang W, et al: Suppression of CD13 enhances the
cytotoxic effect of chemotherapeutic drugs in hepatocellular
carcinoma cells. Front Pharmacol. 12:6603772021. View Article : Google Scholar : PubMed/NCBI
|
43
|
Jogo T, Oki E, Nakanishi R, Ando K,
Nakashima Y, Kimura Y, Saeki H, Oda Y, Maehara Y and Mori M:
Expression of CD44 variant 9 induces chemoresistance of gastric
cancer by controlling intracellular reactive oxygen spices
accumulation. Gastric Cancer. 24:1089–1099. 2021. View Article : Google Scholar : PubMed/NCBI
|
44
|
Xu Z, Zhang Y, Ding J, Hu W, Tan C, Wang
M, Tang J and Xu Y: MiR-17-3p downregulates mitochondrial
antioxidant enzymes and enhances the radiosensitivity of prostate
cancer cells. Mol Ther Nucleic Acids. 13:64–77. 2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Maciel-Dominguez A, Swan D, Ford D and
Hesketh J: Selenium alters miRNA profile in an intestinal cell
line: Evidence that miR-185 regulates expression of GPX2 and
SEPSH2. Mol Nutr Food Res. 57:2195–2205. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yao S, Zhao T and Jin H: Expression of
microRNA-325-3p and its potential functions by targeting HMGB1 in
non-small cell lung cancer. Biomed Pharmacother. 70:72–79. 2015.
View Article : Google Scholar : PubMed/NCBI
|