The role of interaction between autophagy and apoptosis in tumorigenesis (Review)
- Authors:
- Hongyan Xi
- Shuo Wang
- Beibei Wang
- Xuelan Hong
- Xueping Liu
- Meichao Li
- Ruxia Shen
- Qixiu Dong
-
Affiliations: Department of Obstetrics and Gynecology, Yancheng Hospital of Traditional Chinese Medicine, Yancheng, Jiangsu 224000, P.R. China, Department of Traditional Chinese Medicine, Traditional Chinese Medicine Cangzhou Integrated Traditional Chinese and Western Medicine Hospital, Cangzhou, Hebei 061000, P.R. China, School of Basic Medicine, Hebei University of Traditional Chinese Medicine, Shijiazhuang, Hebei 050000, P.R. China, Department of Traditional Chinese Medicine, Liuzhou People's Hospital, Liuzhou, Guangxi 545000, P.R. China, Department of Traditional Chinese Medicine, Heyi Community Health Service Center, Beijing 100000, P.R. China - Published online on: October 11, 2022 https://doi.org/10.3892/or.2022.8423
- Article Number: 208
-
Copyright: © Xi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Zhang X, Wu D, Wang C, Luo Y, Ding X, Yang X, Silva F, Arenas S, Weaver JM, Mandell M, et al: Sustained activation of autophagy suppresses adipocyte maturation via a lipolysis-dependent mechanism. Autophagy. 16:1668–1682. 2020. View Article : Google Scholar : PubMed/NCBI | |
Varusai TM, Jupe S, Sevilla C, Matthews L, Gillespie M, Stein L, Wu G, D'Eustachio P, Metzakopian E and Hermjakob H: Using reactome to build an autophagy mechanism knowledgebase. Autophagy. 17:1543–1554. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu K, Guo C, Lao Y, Yang J, Chen F, Zhao Y, Yang Y, Yang J and Yi J: A fine-tuning mechanism underlying self-control for autophagy: deSUMOylation of BECN1 by SENP3. Autophagy. 16:975–990. 2020. View Article : Google Scholar : PubMed/NCBI | |
Thorburn A: A new mechanism for autophagy regulation of anti-tumor immune responses. Autophagy. 16:2282–2284. 2020. View Article : Google Scholar : PubMed/NCBI | |
Saleem M, Asif J, Asif M and Saleem U: Amygdalin from apricot kernels induces apoptosis and causes cell cycle arrest in cancer cells: An updated review. Anticancer Agents Med Chem. 18:1650–1655. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang JY, Zhang YF, Meng XP and Kong XF: Delayed effects of autophagy on T-2 toxin-induced apoptosis in mouse primary leydig cells. Toxicol Ind Health. 35:256–263. 2019. View Article : Google Scholar : PubMed/NCBI | |
Girardot T, Rimmelé T, Venet F and Monneret G: Apoptosis-induced lymphopenia in sepsis and other severe injuries. Apoptosis. 22:295–305. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Song Y and Wang F: Rational design of genetically encoded reporter genes for optical imaging of apoptosis. Apoptosis. 25:459–473. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee IH, Kawai Y, Fergusson MM, Rovira II, Bishop AJ, Motoyama N, Cao L and Finkel T: Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science. 336:225–228. 2012. View Article : Google Scholar : PubMed/NCBI | |
Saxton RA and Sabatini DM: mTOR signaling in growth, metabolism, and disease. Cell. 168:960–976. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dossou AS and Basu A: The emerging roles of mTORC1 in macromanaging autophagy. Cancers (Basel). 11:14222019. View Article : Google Scholar : PubMed/NCBI | |
Bodemann BO, Orvedahl A, Cheng T, Ram RR, Ou YH, Formstecher E, Maiti M, Hazelett CC, Wauson EM, Balakireva M, et al: RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell. 144:253–267. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang JF, Mei ZG, Fu Y, Yang SB, Zhang SZ, Huang WF, Xiong L, Zhou HJ, Tao W and Feng ZT: Puerarin protects rat brain against ischemia/reperfusion injury by suppressing autophagy via the AMPK-mTOR-ULK1 signaling pathway. Neural Regen Res. 13:989–998. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen WR, Yang JQ, Liu F, Shen XQ and Zhou YJ: Melatonin attenuates vascular calcification by activating autophagy via an AMPK/mTOR/ULK1 signaling pathway. Exp Cell Res. 389:1118832020. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Liu JM, Song HH, Yang QK, Ying H, Tong WL, Zhou Y and Liu ZL: Aurora-B knockdown inhibits osteosarcoma metastasis by inducing autophagy via the mTOR/ULK1 pathway. Cancer Cell Int. 20:5752020. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Wen Y, Zhang M, Liu Q, Zhang H, Zhang J, Lu L, Ye T, Bai X, Xiao G and Wang M: MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint. Autophagy. 16:271–288. 2020. View Article : Google Scholar : PubMed/NCBI | |
Das S, Shukla N, Singh SS, Kushwaha S and Shrivastava R: Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis. 26:512–533. 2021. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Quach C and Liang C: UVRAG in autophagy, inflammation, and cancer. Autophagy. 16:387–388. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Morris DH, Jin L, Patel MS, Karunakaran SK, Fu YJ, Matuszak EA, Weiss HL, Chait BT and Wang QJ: Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels. J Biol Chem. 289:26021–26037. 2014. View Article : Google Scholar : PubMed/NCBI | |
Itakura E, Kishi C, Inoue K and Mizushima N: Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell. 19:5360–5372. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kuijpers M and Haucke V: Neuronal autophagy controls the axonal endoplasmic reticulum to regulate neurotransmission in healthy neurons. Autophagy. 17:1049–1051. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T and Yamamoto A: A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol. 11:1433–1437. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ylä-Anttila P, Vihinen H, Jokitalo E and Eskelinen EL: 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy. 5:1180–1185. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong Q and Guan KL: Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell. 152:290–303. 2013. View Article : Google Scholar : PubMed/NCBI | |
Munson MJ, Allen GF, Toth R, Campbell DG, Lucocq JM and Ganley IG: mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J. 34:2272–2290. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N and Yue Z: Distinct regulation of autophagic activity by Atg14L and Rubicon associated with beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol. 11:468–476. 2009. View Article : Google Scholar : PubMed/NCBI | |
Funderburk SF, Wang QJ and Yue Z: The beclin 1-VPS34 complex-at the crossroads of autophagy and beyond. Trends Cell Biol. 20:355–362. 2010. View Article : Google Scholar : PubMed/NCBI | |
Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, et al: Two beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol. 11:385–396. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wirth M, Joachim J and Tooze SA: Autophagosome formation-the role of ULK1 and beclin1-PI3KC3 complexes in setting the stage. Semin Cancer Biol. 23:301–309. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ma B, Cao W, Li W, Gao C, Qi Z, Zhao Y, Du J, Xue H, Peng J, Wen J, et al: Dapper1 promotes autophagy by enhancing the beclin1-Vps34-Atg14L complex formation. Cell Res. 24:912–924. 2014. View Article : Google Scholar : PubMed/NCBI | |
Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mulé JJ, et al: Bif-1 interacts with beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol. 9:1142–1151. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hardie DG, Schaffer BE and Brunet A: AMPK: An energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 26:190–201. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hardie DG: AMPK-sensing energy while talking to other signaling pathways. Cell Metab. 20:939–952. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jung TY, Ryu JE, Jang MM, Lee SY, Jin GR, Kim CW, Lee CY, Kim H, Kim E, Park S, et al: Naa20, the catalytic subunit of NatB complex, contributes to hepatocellular carcinoma by regulating the LKB1-AMPK-mTOR axis. Exp Mol Med. 52:1831–1844. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li N, Wang Y, Neri S, Zhen Y, Fong LWR, Qiao Y, Li X, Chen Z, Stephan C, Deng W, et al: Tankyrase disrupts metabolic homeostasis and promotes tumorigenesis by inhibiting LKB1-AMPK signalling. Nat Commun. 10:43632019. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Pan Y, Wang S, Liu Y, Chen G, Zhou L, Ni W, Wang A and Lu Y: Cryptotanshinone activates AMPK-TSC2 axis leading to inhibition of mTORC1 signaling in cancer cells. BMC Cancer. 17:342017. View Article : Google Scholar : PubMed/NCBI | |
Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, et al: Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 331:456–461. 2011. View Article : Google Scholar : PubMed/NCBI | |
Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A and Guan KL: ULK1 induces autophagy by phosphorylating beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 15:741–750. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gao X and Locasale JW: Serine metabolism links tumor suppression to the epigenetic landscape. Cell Metab. 24:777–779. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cheong H, Nair U, Geng J and Klionsky DJ: The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in saccharomyces cerevisiae. Mol Biol Cell. 19:668–681. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ganley IG, Lam du H, Wang J, Ding X, Chen S and Jiang X: ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 284:12297–12305. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 20:1981–1991. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M and Kim DH: ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 20:1992–2003. 2009. View Article : Google Scholar : PubMed/NCBI | |
Corona Velazquez A, Corona AK, Klein KA and Jackson WT: Poliovirus induces autophagic signaling independent of the ULK1 complex. Autophagy. 14:1201–1213. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Nguyen PT, Wang X, Zhao Y, Meacham CE, Zou Z, Bordieanu B, Johanns M, Vertommen D, Wijshake T, et al: TLR9 and beclin 1 crosstalk regulates muscle AMPK activation in exercise. Nature. 578:605–609. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y and Nakatogawa H: Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature. 522:359–362. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fujita N, Itoh T, Omori H, Fukuda M, Noda T and Yoshimori T: The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell. 19:2092–2100. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vujić N, Bradić I, Goeritzer M, Kuentzel KB, Rainer S, Kratky D and Radović B: ATG7 is dispensable for LC3-PE conjugation in thioglycolate-elicited mouse peritoneal macrophages. Autophagy. 17:3402–3407. 2021. View Article : Google Scholar : PubMed/NCBI | |
Frudd K, Burgoyne T and Burgoyne JR: Oxidation of Atg3 and Atg7 mediates inhibition of autophagy. Nat Commun. 9:952018. View Article : Google Scholar : PubMed/NCBI | |
Nath S, Dancourt J, Shteyn V, Puente G, Fong WM, Nag S, Bewersdorf J, Yamamoto A, Antonny B and Melia TJ: Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat Cell Biol. 16:415–424. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kuehl WM and Bergsagel PL: Molecular pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest. 122:3456–3463. 2012. View Article : Google Scholar : PubMed/NCBI | |
He JP, Hou PP, Chen QT, Wang WJ, Sun XY, Yang PB, Li YP, Yao LM, Li X, Jiang XD, et al: Flightless-I blocks p62-mediated recognition of LC3 to impede selective autophagy and promote breast cancer progression. Cancer Res. 78:4853–4864. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu G, Wang X, Yu H, Wang C, Liu Y, Zhao R and Zhang G: Beclin 1, LC3, and p62 expression in paraquat-induced pulmonary fibrosis. Hum Exp Toxicol. 38:794–802. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cao K and Tait SWG: Apoptosis and cancer: Force awakens, phantom menace, or both? Int Rev Cell Mol Biol. 337:135–152. 2018. View Article : Google Scholar : PubMed/NCBI | |
Boege Y, Malehmir M, Healy ME, Bettermann K, Lorentzen A, Vucur M, Ahuja AK, Böhm F, Mertens JC, Shimizu Y, et al: A dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development. Cancer Cell. 32:342–359.e10. 2017. View Article : Google Scholar : PubMed/NCBI | |
D'Orsi B, Mateyka J and Prehn JHM: Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok. Neurochem Int. 109:162–170. 2017. View Article : Google Scholar : PubMed/NCBI | |
Czabotar PE, Lessene G, Strasser A and Adams JM: Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat Rev Mol Cell Biol. 15:49–63. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sunilkumar D, Drishya G, Chandrasekharan A, Shaji SK, Bose C, Jossart J, Perry JJP, Mishra N, Kumar GB and Nair BG: Oxyresveratrol drives caspase-independent apoptosis-like cell death in MDA-MB-231 breast cancer cells through the induction of ROS. Biochem Pharmacol. 173:1137242020. View Article : Google Scholar : PubMed/NCBI | |
Roumane A, Berthenet K, El Fassi C and Ichim G: Caspase-independent cell death does not elicit a proliferative response in melanoma cancer cells. BMC Cell Biol. 19:112018. View Article : Google Scholar : PubMed/NCBI | |
Chang WL, Cui L, Gu Y, Li M, Ma Q, Zhang Z, Ye J, Zhang F, Yu J and Gui Y: TBC1D20 deficiency induces Sertoli cell apoptosis by triggering irreversible endoplasmic reticulum stress in mice. Mol Hum Reprod. 25:773–786. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xiong Y, Jin E, Yin Q, Che C and He S: Boron attenuates heat stress-induced apoptosis by inhibiting endoplasmic reticulum stress in mouse granulosa cells. Biol Trace Elem Res. 199:611–621. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bromati CR, Lellis-Santos C, Yamanaka TS, Nogueira TC, Leonelli M, Caperuto LC, Gorjão R, Leite AR, Anhê GF and Bordin S: UPR induces transient burst of apoptosis in islets of early lactating rats through reduced AKT phosphorylation via ATF4/CHOP stimulation of TRB3 expression. Am J Physiol Regul Integr Comp Physiol. 300:R92–R100. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Xie JJ, Shi KS, Gu YT, Wu CC, Xuan J, Ren Y, Chen L, Wu YS, Zhang XL, et al: Glucagon-like peptide-1 receptor regulates endoplasmic reticulum stress-induced apoptosis and the associated inflammatory response in chondrocytes and the progression of osteoarthritis in rat. Cell Death Dis. 9:2122018. View Article : Google Scholar : PubMed/NCBI | |
Ohoka N, Yoshii S, Hattori T, Onozaki K and Hayashi H: TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J. 24:1243–1255. 2005. View Article : Google Scholar : PubMed/NCBI | |
Aimé P, Karuppagounder SS, Rao A, Chen Y, Burke RE, Ratan RR and Greene LA: The drug adaptaquin blocks ATF4/CHOP-dependent pro-death Trib3 induction and protects in cellular and mouse models of Parkinson's disease. Neurobiol Dis. 136:1047252020. View Article : Google Scholar : PubMed/NCBI | |
Hu F, Duan M and Peng N: Knockdown of TRB3 improved the MPP+/MPTP-induced Parkinson's disease through the MAPK and AKT signaling pathways. Neurosci Lett. 709:1343522019. View Article : Google Scholar : PubMed/NCBI | |
Han CW, Lee HN, Jeong MS, Park SY and Jang SB: Structural basis of the p53 DNA binding domain and PUMA complex. Biochem Biophys Res Commun. 548:39–46. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rubinstein AD, Eisenstein M, Ber Y, Bialik S and Kimchi A: The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell. 44:698–709. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kessel DH, Price M and Reiners JJ Jr: ATG7 deficiency suppresses apoptosis and cell death induced by lysosomal photodamage. Autophagy. 8:1333–1341. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lin TY, Chan HH, Chen SH, Sarvagalla S, Chen PS, Coumar MS, Cheng SM, Chang YC, Lin CH, Leung E and Cheung CHA: BIRC5/Survivin is a novel ATG12-ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. Autophagy. 16:1296–1313. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rami A and Benz A: Exclusive activation of caspase-3 in mossy fibers and altered dynamics of autophagy markers in the mice hippocampus upon status epilepticus induced by kainic acid. Mol Neurobiol. 55:4492–4503. 2018.PubMed/NCBI | |
Shravage BV, Hill JH, Powers CM, Wu L and Baehrecke EH: Atg6 is required for multiple vesicle trafficking pathways and hematopoiesis in Drosophila. Development. 140:1321–1329. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qiu Y, Li C, Wang Q, Zeng X and Ji P: Tanshinone IIA induces cell death via beclin-1-dependent autophagy in oral squamous cell carcinoma SCC-9 cell line. Cancer Med. 7:397–407. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chang CH, Lee CY, Lu CC, Tsai FJ, Hsu YM, Tsao JW, Juan YN, Chiu HY, Yang JS and Wang CC: Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling. Int J Oncol. 50:873–882. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dagdeviren Ozsoylemez O and Ozcan G: Effects of colchicum baytopiorum leaf extract on cytotoxicity and cell death pathways in C-4 I and Vero cell lines. J BUON. 26:1135–1137. 2021.PubMed/NCBI | |
Xie C, Ginet V, Sun Y, Koike M, Zhou K, Li T, Li H, Li Q, Wang X, Uchiyama Y, et al: Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy. 12:410–423. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nezis IP, Shravage BV, Sagona AP, Lamark T, Bjørkøy G, Johansen T, Rusten TE, Brech A, Baehrecke EH and Stenmark H: Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis. J Cell Biol. 190:523–531. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gump JM, Staskiewicz L, Morgan MJ, Bamberg A, Riches DW and Thorburn A: Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nat Cell Biol. 16:47–54. 2014. View Article : Google Scholar : PubMed/NCBI | |
Doherty J and Baehrecke EH: Life, death and autophagy. Nat Cell Biol. 20:1110–1117. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pagliarini V, Wirawan E, Romagnoli A, Ciccosanti F, Lisi G, Lippens S, Cecconi F, Fimia GM, Vandenabeele P, Corazzari M and Piacentini M: Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death Differ. 19:1495–1504. 2012. View Article : Google Scholar : PubMed/NCBI | |
Toton E, Lisiak N, Sawicka P and Rybczynska M: Beclin-1 and its role as a target for anticancer therapy. J Physiol Pharmacol. 65:459–467. 2014.PubMed/NCBI | |
Miller DR and Thorburn A: Autophagy and organelle homeostasis in cancer. Dev Cell. 56:906–918. 2021. View Article : Google Scholar : PubMed/NCBI | |
Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Pozzoli G, Morrione A, Giordano A and Cenciarelli C: p53 signaling in cancer progression and therapy. Cancer Cell Int. 21:7032021. View Article : Google Scholar : PubMed/NCBI | |
Wilson AJ, Gupta VG, Liu Q, Yull F, Crispens MA and Khabele D: Panobinostat enhances olaparib efficacy by modifying expression of homologous recombination repair and immune transcripts in ovarian cancer. Neoplasia. 24:63–75. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lopez J and Tait SW: Mitochondrial apoptosis: Killing cancer using the enemy within. Br J Cancer. 112:957–962. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Zhan Y, Chen B, Lu Y, Yin T, Zhou S, Zhang W, Liu X, Du B, Wei X and Xiao J: Tubeimoside I-induced lung cancer cell death and the underlying crosstalk between lysosomes and mitochondria. Cell Death Dis. 11:7082020. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Yu Y, He S, Cheng J, Gong Y, Zhang Z, Yang X, Xu B, Liu X, Li CY, et al: Dying glioma cells establish a proangiogenic microenvironment through a caspase 3 dependent mechanism. Cancer Lett. 385:12–20. 2017. View Article : Google Scholar : PubMed/NCBI | |
Song P, Li Y, Dong Y, Liang Y, Qu H, Qi D, Lu Y, Jin X, Guo Y, Jia Y, et al: Estrogen receptor β inhibits breast cancer cells migration and invasion through CLDN6-mediated autophagy. J Exp Clin Cancer Res. 38:3542019. View Article : Google Scholar : PubMed/NCBI | |
Bhutia SK, Mukhopadhyay S, Sinha N, Das DN, Panda PK, Patra SK, Maiti TK, Mandal M, Dent P, Wang XY, et al: Autophagy: Cancer's friend or foe? Adv Cancer Res. 118:61–95. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vousden KH and Lane DP: p53 in health and disease. Nat Rev Mol Cell Biol. 8:275–283. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Gómez-Sintes R and Boya P: Lysosomal membrane permeabilization and cell death. Traffic. 19:918–931. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mariño G, Niso-Santano M, Baehrecke EH and Kroemer G: Self-consumption: The interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 15:81–94. 2014. View Article : Google Scholar : PubMed/NCBI | |
Timofeev O, Schlereth K, Wanzel M, Braun A, Nieswandt B, Pagenstecher A, Rosenwald A, Elsässer HP and Stiewe T: p53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo. Cell Rep. 3:1512–1525. 2013. View Article : Google Scholar : PubMed/NCBI | |
Della-Fazia MA, Castelli M, Piobbico D, Pieroni S and Servillo G: HOPS and p53: Thick as thieves in life and death. Cell Cycle. 19:2996–3003. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lévy J, Cacheux W, Bara MA, L'Hermitte A, Lepage P, Fraudeau M, Trentesaux C, Lemarchand J, Durand A, Crain AM, et al: Intestinal inhibition of Atg7 prevents tumour initiation through a microbiome-influenced immune response and suppresses tumour growth. Nat Cell Biol. 17:1062–1073. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mardenborough YSN, Nitsenko K, Laffeber C, Duboc C, Sahin E, Quessada-Vial A, Winterwerp HHK, Sixma TK, Kanaar R, Friedhoff P, et al: The unstructured linker arms of MutL enable GATC site incision beyond roadblocks during initiation of DNA mismatch repair. Nucleic Acids Res. 47:11667–11680. 2019. View Article : Google Scholar : PubMed/NCBI | |
de Rosa N, Rodriguez-Bigas MA, Chang GJ, Veerapong J, Borras E, Krishnan S, Bednarski B, Messick CA, Skibber JM, Feig BW, et al: DNA mismatch repair deficiency in rectal cancer: Benchmarking its impact on prognosis, neoadjuvant response prediction, and clinical cancer genetics. J Clin Oncol. 34:3039–3046. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zeng X, Yan T, Schupp JE, Seo Y and Kinsella TJ: DNA mismatch repair initiates 6-thioguanine-induced autophagy through p53 activation in human tumor cells. Clin Cancer Res. 13:1315–1321. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zeng X and Kinsella TJ: A novel role for DNA mismatch repair and the autophagic processing of chemotherapy drugs in human tumor cells. Autophagy. 3:368–370. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jacob S, Aguado M, Fallik D and Praz F: The role of the DNA mismatch repair system in the cytotoxicity of the topoisomerase inhibitors camptothecin and etoposide to human colorectal cancer cells. Cancer Res. 61:6555–6562. 2001.PubMed/NCBI | |
Kang C, Kang M, Han Y, Zhang T, Quan W and Gao J: 6-Gingerols (6G) reduces hypoxia-induced PC-12 cells apoptosis and autophagy through regulation of miR-103/BNIP3. Artif Cells Nanomed Biotechnol. 47:1653–1661. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zeng X and Kinsella TJ: BNIP3 is essential for mediating 6-thioguanine- and 5-fluorouracil-induced autophagy following DNA mismatch repair processing. Cell Res. 20:665–675. 2010. View Article : Google Scholar : PubMed/NCBI | |
Burton TR and Gibson SB: The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death. Cell Death Differ. 16:515–523. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen BC, Weng YJ, Shibu MA, Han CK, Chen YS, Shen CY, Lin YM, Viswanadha VP, Liang HY and Huang CY: Estrogen and/or estrogen receptor α inhibits BNIP3-induced apoptosis and autophagy in H9c2 cardiomyoblast cells. Int J Mol Sci. 19:12982018. View Article : Google Scholar : PubMed/NCBI | |
Yuan J, Luo K, Zhang L, Cheville JC and Lou Z: USP10 regulates p53 localization and stability by deubiquitinating p53. Cell. 140:384–396. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Chen H, Xing L, Wang B, Hu M, Ou X, Chen H, Deng Y, Liu D, Jiang R and Chen J: Hypoxia-induced circWSB1 promotes breast cancer progression through destabilizing p53 by interacting with USP10. Mol Cancer. 21:882022. View Article : Google Scholar : PubMed/NCBI | |
Cui L, Song Z, Liang B, Jia L, Ma S and Liu X: Radiation induces autophagic cell death via the p53/DRAM signaling pathway in breast cancer cells. Oncol Rep. 35:3639–3647. 2016. View Article : Google Scholar : PubMed/NCBI | |
Robin M, Issa AR, Santos CC, Napoletano F, Petitgas C, Chatelain G, Ruby M, Walter L, Birman S, Domingos PM, et al: Drosophila p53 integrates the antagonism between autophagy and apoptosis in response to stress. Autophagy. 15:771–784. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Woosley AN, Sivalingam N, Natarajan S and Howe PH: Cathepsin-B-mediated cleavage of disabled-2 regulates TGF-β-induced autophagy. Nat Cell Biol. 18:851–863. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Xie S, Yang J, Xiong H, Jia Y, Zhou Y, Chen Y, Ying X, Chen C, Ye C, et al: The long noncoding RNA H19 promotes tamoxifen resistance in breast cancer via autophagy. J Hematol Oncol. 12:812019. View Article : Google Scholar : PubMed/NCBI | |
Aita VM, Liang XH, Murty VV, Pincus DL, Yu W, Cayanis E, Kalachikov S, Gilliam TC and Levine B: Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics. 59:59–65. 1999. View Article : Google Scholar : PubMed/NCBI | |
Miracco C, Cosci E, Oliveri G, Luzi P, Pacenti L, Monciatti I, Mannucci S, De Nisi MC, Toscano M, Malagnino V, et al: Protein and mRNA expression of autophagy gene beclin 1 in human brain tumours. Int J Oncol. 30:429–436. 2007.PubMed/NCBI | |
Wang ZH, Xu L, Duan ZL, Zeng LQ, Yan NH and Peng ZL: Beclin 1-mediated macroautophagy involves regulation of caspase-9 expression in cervical cancer HeLa cells. Gynecol Oncol. 107:107–113. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhang S, Shi Q, Allen TD, You F and Yang D: The anti-apoptotic proteins Bcl-2 and Bcl-xL suppress beclin 1/Atg6-mediated lethal autophagy in polyploid cells. Exp Cell Res. 394:1121122020. View Article : Google Scholar : PubMed/NCBI | |
Ma R, Yu D, Peng Y, Yi H, Wang Y, Cheng T, Shi B, Yang G, Lai W, Wu X, et al: Resveratrol induces AMPK and mTOR signaling inhibition-mediated autophagy and apoptosis in multiple myeloma cells. Acta Biochim Biophys Sin (Shanghai). 53:775–783. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C and Levine B: Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell. 128:931–946. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH and Lenardo MJ: Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science. 304:1500–1502. 2004. View Article : Google Scholar : PubMed/NCBI | |
Almasi S, Long CY, Sterea A, Clements DR, Gujar S and El Hiani Y: TRPM2 silencing causes G2/M arrest and apoptosis in lung cancer cells via increasing intracellular ROS and RNS levels and activating the JNK pathway. Cell Physiol Biochem. 52:742–757. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jing ZF, Bi JB, Li Z, Liu X, Li J, Zhu Y, Zhang XT, Zhang Z, Li Z and Kong CZ: Inhibition of miR-34a-5p can rescue disruption of the p53-DAPK axis to suppress progression of clear cell renal cell carcinoma. Mol Oncol. 13:2079–2097. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wei F, Wu Y, Wang Z, Li Y, Wang J, Shao G, Yang Y and Shi B: Diagnostic significance of DNA methylation of PTEN and DAPK in thyroid tumors. Clin Endocrinol (Oxf). 93:187–195. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Fan Y, Liu X, Shang X, Qi K and Zhang S: Clinicopathological significance of DAPK gene promoter hypermethylation in non-small cell lung cancer: A meta-analysis. Int J Biol Markers. 37:47–57. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, Sabanay H, Pinkas-Kramarski R and Kimchi A: DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 10:285–292. 2009. View Article : Google Scholar : PubMed/NCBI | |
Eisenberg-Lerner A and Kimchi A: PKD is a kinase of Vps34 that mediates ROS-induced autophagy downstream of DAPk. Cell Death Differ. 19:788–797. 2012. View Article : Google Scholar : PubMed/NCBI | |
Argyris PP, Slama Z, Malz C, Koutlas IG, Pakzad B, Patel K, Kademani D, Khammanivong A and Herzberg MC: Intracellular calprotectin (S100A8/A9) controls epithelial differentiation and caspase-mediated cleavage of EGFR in head and neck squamous cell carcinoma. Oral Oncol. 95:1–10. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ghavami S, Eshragi M, Ande SR, Chazin WJ, Klonisch T, Halayko AJ, McNeill KD, Hashemi M, Kerkhoff C and Los M: S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Res. 20:314–331. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tang Z, Chen J, Zhang Z, Bi J, Xu R, Lin Q and Wang Z: HIF-1 α activation promotes luteolysis by enhancing ROS levels in the corpus luteum of pseudopregnant rats. Oxid Med Cell Longev. 2021:17649292021. View Article : Google Scholar : PubMed/NCBI | |
Abdrakhmanov A, Yapryntseva MA, Kaminskyy VO, Zhivotovsky B and Gogvadze V: Receptor-mediated mitophagy rescues cancer cells under hypoxic conditions. Cancers (Basel). 13:40272021. View Article : Google Scholar : PubMed/NCBI | |
Zhang J and Ney PA: Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 16:939–946. 2009. View Article : Google Scholar : PubMed/NCBI | |
Roßwag S, Sleeman JP and Thaler S: RASSF1A-mediated suppression of estrogen receptor alpha (ERα)-driven breast cancer cell growth depends on the hippo-kinases LATS1 and 2. Cells. 10:28682021. View Article : Google Scholar | |
Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A, Sciarretta S, Del Re DP, Zablocki DK, Hsu CP, et al: Mst1 inhibits autophagy by promoting the interaction between beclin1 and Bcl-2. Nat Med. 19:1478–1488. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tan X, Thapa N, Sun Y and Anderson RA: A kinase-independent role for EGF receptor in autophagy initiation. Cell. 160:145–160. 2015. View Article : Google Scholar : PubMed/NCBI | |
Friedlaender A, Subbiah V, Russo A, Banna GL, Malapelle U, Rolfo C and Addeo A: EGFR and HER2 exon 20 insertions in solid tumours: From biology to treatment. Nat Rev Clin Oncol. 19:51–69. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G, Kinch L, Koduru P, Christudass CS, Veltri RW, et al: EGFR-mediated beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell. 154:1269–1284. 2013. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, He D, Yao Z and Klionsky DJ: The machinery of macroautophagy. Cell Res. 24:24–41. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou K, Dichlberger A, Martinez-Seara H, Nyholm TKM, Li S, Kim YA, Vattulainen I, Ikonen E and Blom T: A ceramide-regulated element in the late endosomal protein LAPTM4B controls amino acid transporter interaction. ACS Cent Sci. 4:548–558. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li L, Shan Y, Yang H, Zhang S, Lin M, Zhu P, Chen XY, Yi J, McNutt MA, Shao GZ and Zhou RL: Upregulation of LAPTM4B-35 promotes malignant transformation and tumorigenesis in L02 human liver cell line. Anat Rec (Hoboken). 294:1135–1142. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Xiong F, Wei X, Yang Y, McNutt MA and Zhou R: Overexpression of LAPTM4B-35 promotes growth and metastasis of hepatocellular carcinoma in vitro and in vivo. Cancer Lett. 294:236–244. 2010. View Article : Google Scholar : PubMed/NCBI | |
Singh AB: EGFR-signaling and autophagy: How they fit in the cancer landscape. J Adenocarcinoma. 1:92016. View Article : Google Scholar : PubMed/NCBI | |
Yu JJ, Zhou DD, Cui B, Zhang C, Tan FW, Chang S, Li K, Lv XX, Zhang XW, Shang S, et al: Disruption of the EGFR-SQSTM1 interaction by a stapled peptide suppresses lung cancer via activating autophagy and inhibiting EGFR signaling. Cancer Lett. 474:23–35. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Holowatyj AN, Roy T, Pronovost SM, Marchetti M, Liu H, Ulrich CM and Edgar BA: An SH3PX1-dependent endocytosis-autophagy network restrains intestinal stem cell proliferation by counteracting EGFR-ERK signaling. Dev Cell. 49:574–589.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
Birkeland ES, Koch LM and Dechant R: Another consequence of the Warburg effect? Metabolic regulation of Na+/H+ exchangers may link aerobic glycolysis to cell growth. Front Oncol. 10:15612020. View Article : Google Scholar : PubMed/NCBI | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Lin Y, Zhou X, Chen Y, Li X, Luo W, Zhou Y and Cai L: CYLD deficiency enhances metabolic reprogramming and tumor progression in nasopharyngeal carcinoma via PFKFB3. Cancer Lett. 532:2155862022. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Li T, Wang K, Zhao F, Chen J, Xu G, Zhao J, Li T, Chen L, Li L, et al: AMPK-mediated activation of MCU stimulates mitochondrial Ca2+ entry to promote mitotic progression. Nat Cell Biol. 21:476–486. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hardie DG, Ross FA and Hawley SA: AMP-activated protein kinase: A target for drugs both ancient and modern. Chem Biol. 19:1222–1236. 2012. View Article : Google Scholar : PubMed/NCBI | |
Doménech E, Maestre C, Esteban-Martínez L, Partida D, Pascual R, Fernández-Miranda G, Seco E, Campos-Olivas R, Pérez M, Megias D, et al: AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat Cell Biol. 17:1304–1316. 2015. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Bravo-San Pedro JM and Kroemer G: Organelle-specific initiation of cell death. Nat Cell Biol. 16:728–736. 2014. View Article : Google Scholar : PubMed/NCBI | |
Codogno P and Meijer AJ: Atg5: More than an autophagy factor. Nat Cell Biol. 8:1045–1047. 2006.García-Fernández M, Karras P, Checinska A, Cañón E, Calvo GT, Gómez-López G, Cifdaloz M, Colmenar A, Espinosa-Hevia L, Olmeda D and Soengas MS: Metastatic risk and resistance to BRAF inhibitors in melanoma defined by selective allelic loss of ATG5. Autophagy 12. 1776–1790. 2016. View Article : Google Scholar : PubMed/NCBI | |
Oh DS and Lee HK: Autophagy protein ATG5 regulates CD36 expression and anti-tumor MHC class II antigen presentation in dendritic cells. Autophagy. 15:2091–2106. 2019. View Article : Google Scholar : PubMed/NCBI | |
Martinez JD, Mo Q, Xu Y, Qin L, Li Y and Xu J: Common genomic aberrations in mouse and human breast cancers with concurrent P53 deficiency and activated PTEN-PI3K-AKT pathway. Int J Biol Sci. 18:229–241. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J and Levine B: Akt-mediated regulation of autophagy and tumorigenesis through beclin 1 phosphorylation. Science. 338:956–959. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jian M, Yunjia Z, Zhiying D, Yanduo J and Guocheng J: Interleukin 7 receptor activates PI3K/Akt/mTOR signaling pathway via downregulation of Beclin-1 in lung cancer. Mol Carcinog. 58:358–365. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Wu Y, Wang L, Qiu P, Zha W and Yu W: Prokineticin 2 (PK2) rescues cardiomyocytes from high glucose/high palmitic acid-induced damage by regulating the AKT/GSK3β pathway in vitro. Oxid Med Cell Longev. 2020:31636292020.PubMed/NCBI | |
Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH and Jung JU: Autophagic and tumour suppressor activity of a novel beclin1-binding protein UVRAG. Nat Cell Biol. 8:688–699. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wechman SL, Pradhan AK, DeSalle R, Das SK, Emdad L, Sarkar D and Fisher PB: New insights into beclin-1: Evolution and pan-malignancy inhibitor activity. Adv Cancer Res. 137:77–114. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ren T, Takahashi Y, Liu X, Loughran TP, Sun SC, Wang HG and Cheng H: HTLV-1 Tax deregulates autophagy by recruiting autophagic molecules into lipid raft microdomains. Oncogene. 34:334–345. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xie T, Li SJ, Guo MR, Wu Y, Wang HY, Zhang K, Zhang X, Ouyang L and Liu J: Untangling knots between autophagic targets and candidate drugs, in cancer therapy. Cell Prolif. 48:119–139. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee JW, Jeong EG, Soung YH, Nam SW, Lee JY, Yoo NJ and Lee SH: Decreased expression of tumour suppressor Bax-interacting factor-1 (Bif-1), a Bax activator, in gastric carcinomas. Pathology. 38:312–315. 2006. View Article : Google Scholar : PubMed/NCBI | |
Takahashi Y, Karbowski M, Yamaguchi H, Kazi A, Wu J, Sebti SM, Youle RJ and Wang HG: Loss of Bif-1 suppresses Bax/Bak conformational change and mitochondrial apoptosis. Mol Cell Biol. 25:9369–9382. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sheng JQ, Wang MR, Fang D, Liu L, Huang WJ, Tian DA, He XX and Li PY: LncRNA NBR2 inhibits tumorigenesis by regulating autophagy in hepatocellular carcinoma. Biomed Pharmacother. 133:1110232021. View Article : Google Scholar : PubMed/NCBI | |
Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B, et al: AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 17:113–124. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ulitsky I and Bartel DP: lincRNAs: Genomics, evolution, and mechanisms. Cell. 154:26–46. 2013. View Article : Google Scholar : PubMed/NCBI | |
Manirujjaman M, Ozaki I, Murata Y, Guo J, Xia J, Nishioka K, Perveen R, Takahashi H, Anzai K and Matsuhashi S: Degradation of the tumor suppressor PDCD4 is impaired by the suppression of p62/SQSTM1 and autophagy. Cells. 9:2182020. View Article : Google Scholar : PubMed/NCBI | |
Cui YH, Yang S, Wei J, Shea CR, Zhong W, Wang F, Shah P, Kibriya MG, Cui X, Ahsan H, et al: Autophagy of the m6A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis. Nat Commun. 12:21832021. View Article : Google Scholar : PubMed/NCBI | |
Li P, He J, Yang Z, Ge S, Zhang H, Zhong Q and Fan X: ZNNT1 long noncoding RNA induces autophagy to inhibit tumorigenesis of uveal melanoma by regulating key autophagy gene expression. Autophagy. 16:1186–1199. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto M, Gohda J, Akiyama T and Inoue JI: TNF receptor-associated factor 6 (TRAF6) plays crucial roles in multiple biological systems through polyubiquitination-mediated NF-κB activation. Proc Jpn Acad Ser B Phys Biol Sci. 97:145–160. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kim MJ, Min Y, Kwon J, Son J, Im JS, Shin J and Lee KY: p62 negatively regulates TLR4 signaling via functional regulation of the TRAF6-ECSIT complex. Immune Netw. 19:e162019. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Liao C, Liu R, Liu J, Chen Z, Zhao H, Li Z, Chen L, Wu C, Tan H, et al: IRGM promotes glioma M2 macrophage polarization through p62/TRAF6/NF-κB pathway mediated IL-8 production. Cell Biol Int. 43:125–135. 2019. View Article : Google Scholar : PubMed/NCBI |