Roles of DNA damage repair and precise targeted therapy in renal cancer (Review)
- Authors:
- Yongchang Lai
- Zhibiao Li
- Zechao Lu
- Hanxiong Zheng
- Chiheng Chen
- Can Liu
- Yafei Yang
- Fucai Tang
- Zhaohui He
-
Affiliations: Department of Urology, The Eighth Affiliated Hospital of Sun Yat‑sen University, Shenzhen, Guangdong 518033, P.R. China - Published online on: October 19, 2022 https://doi.org/10.3892/or.2022.8428
- Article Number: 213
-
Copyright: © Lai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Abbotts R and Wilson DR: Coordination of DNA single strand break repair. Free Radic Biol Med. 107:228–244. 2017. View Article : Google Scholar : PubMed/NCBI | |
Anand SK, Sharma A, Singh N and Kakkar P: Entrenching role of cell cycle checkpoints and autophagy for maintenance of genomic integrity. DNA Repair (Amst). 86:1027482020. View Article : Google Scholar : PubMed/NCBI | |
Oh JM and Myung K: Crosstalk between different DNA repair pathways for DNA double strand break repairs. Mutat Res Genet Toxicol Environ Mutagen. 873:5034382022. View Article : Google Scholar : PubMed/NCBI | |
Lavrik OI: PARPs' impact on base excision DNA repair. DNA Repair (Amst). 93:1029112020. View Article : Google Scholar : PubMed/NCBI | |
Ray CA and Nussenzweig A: The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 18:610–621. 2017. View Article : Google Scholar : PubMed/NCBI | |
Koczor CA, Saville KM, Andrews JF, Clark J, Fang Q, Li J, Al-Rahahleh RQ, Ibrahim M, McClellan S, Makarov MV, et al: Temporal dynamics of base Excision/Single-Strand break repair protein complex assembly/disassembly are modulated by the PARP/NAD+/SIRT6 axis. Cell Rep. 37:1099172021. View Article : Google Scholar : PubMed/NCBI | |
Richard IA, Burgess JT, O'Byrne KJ and Bolderson E: Beyond PARP1: The potential of other members of the poly (ADP-Ribose) polymerase family in DNA repair and cancer therapeutics. Front Cell Dev Biol. 9:8012002021. View Article : Google Scholar : PubMed/NCBI | |
Covarrubias AJ, Perrone R, Grozio A and Verdin E: NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 22:119–141. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gupte R, Liu Z and Kraus WL: PARPs and ADP-ribosylation: Recent advances linking molecular functions to biological outcomes. Genes Dev. 31:101–126. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Li C, Wei L, Teng Y, Nakajima S, Chen X, Xu J, Leger B, Ma H, Spagnol ST, et al: SSRP1 cooperates with PARP and XRCC1 to facilitate single-strand DNA break repair by chromatin priming. Cancer Res. 77:2674–2685. 2017. View Article : Google Scholar : PubMed/NCBI | |
Prokhorova E, Zobel F, Smith R, Zentout S, Gibbs-Seymour I, Schutzenhofer K, Peters A, Groslambert J, Zorzini V, Agnew T, et al: Serine-linked PARP1 auto-modification controls PARP inhibitor response. Nat Commun. 12:40552021. View Article : Google Scholar : PubMed/NCBI | |
Demeny MA and Virag L: The PARP enzyme family and the hallmarks of cancer part 1. Cell intrinsic hallmarks. Cancers (Basel). 13:20422021. View Article : Google Scholar : PubMed/NCBI | |
Shaw G: The silent disease. Nature. 537 (Suppl):S98–S99. 2016. View Article : Google Scholar : PubMed/NCBI | |
Linehan WM and Ricketts CJ: The Cancer Genome Atlas of renal cell carcinoma: Findings and clinical implications. Nat Rev Urol. 16:539–552. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mao W, Wang K, Wu Z, Xu B and Chen M: Current status of research on exosomes in general, and for the diagnosis and treatment of kidney cancer in particular. J Exp Clin Cancer Res. 40:3052021. View Article : Google Scholar : PubMed/NCBI | |
Lai Y, Zeng T, Liang X and Wu W, Zhong F and Wu W: Cell death-related molecules and biomarkers for renal cell carcinoma targeted therapy. Cancer Cell Int. 19:2212019. View Article : Google Scholar : PubMed/NCBI | |
Xiong W, Zhang B, Yu H, Zhu L, Yi L and Jin X: RRM2 Regulates sensitivity to sunitinib and PD-1 blockade in renal cancer by stabilizing ANXA1 and activating the AKT pathway. Adv Sci (Weinh). 8:e21008812021. View Article : Google Scholar : PubMed/NCBI | |
Popovic M, Matovina-Brko G, Jovic M and Popovic LS: Immunotherapy: A new standard in the treatment of metastatic clear cell renal cell carcinoma. World J Clin Oncol. 13:28–38. 2022. View Article : Google Scholar : PubMed/NCBI | |
Criscuolo D, Morra F, Giannella R, Visconti R, Cerrato A and Celetti A: New combinatorial strategies to improve the PARP inhibitors efficacy in the urothelial bladder Cancer treatment. J Exp Clin Cancer Res. 38:912019. View Article : Google Scholar : PubMed/NCBI | |
Yuasa T, Urasaki T and Oki R: Recent advances in medical therapy for urological cancers. Front Oncol. 12:7469222022. View Article : Google Scholar : PubMed/NCBI | |
Yin M, Grivas P, Wang QE, Mortazavi A, Emamekhoo H, Holder SL, Drabick JJ, Woo MS, Pal S, Vasekar M, et al: Prognostic value of DNA damage response genomic alterations in Relapsed/Advanced urothelial cancer. Oncologist. 25:680–688. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, van Gent DC, Incrocci L, van Weerden WM and Nonnekens J: Role of the DNA damage response in prostate cancer formation, progression and treatment. Prostate Cancer Prostatic Dis. 23:24–37. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chakraborty G, Armenia J, Mazzu YZ, Nandakumar S, Stopsack KH, Atiq MO, Komura K, Jehane L, Hirani R, Chadalavada K, et al: Significance of BRCA2 and RB1 Co-loss in aggressive prostate cancer progression. Clin Cancer Res. 26:2047–2064. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rimar KJ, Tran PT, Matulewicz RS, Hussain M and Meeks JJ: The emerging role of homologous recombination repair and PARP inhibitors in genitourinary malignancies. Cancer-Am Cancer Soc. 123:1912–1924. 2017.PubMed/NCBI | |
Lord CJ and Ashworth A: PARP inhibitors: Synthetic lethality in the clinic. Science. 355:1152–1158. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guo E, Wu C, Ming J, Zhang W, Zhang L and Hu G: The clinical significance of DNA damage repair signatures in clear cell renal cell carcinoma. Front Genet. 11:5930392020. View Article : Google Scholar : PubMed/NCBI | |
Hartman TR, Demidova EV, Lesh RW, Hoang L, Richardson M, Forman A, Kessler L, Speare V, Golemis EA, Hall MJ, et al: Prevalence of pathogenic variants in DNA damage response and repair genes in patients undergoing cancer risk assessment and reporting a personal history of early-onset renal cancer. Sci Rep. 10:135182020. View Article : Google Scholar : PubMed/NCBI | |
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, et al: The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 581:434–443. 2020. View Article : Google Scholar : PubMed/NCBI | |
Peng L, Liang J, Wang Q and Chen G: A DNA Damage repair gene signature associated with immunotherapy response and clinical prognosis in clear cell renal cell carcinoma. Front Genet. 13:7988462022. View Article : Google Scholar : PubMed/NCBI | |
Meng H, Jiang X, Cui J, Yin G, Shi B, Liu Q, Xuan H and Wang Y: Genomic analysis reveals novel specific metastatic mutations in Chinese clear cell renal cell carcinoma. Biomed Res Int. 2020:24951572020. View Article : Google Scholar : PubMed/NCBI | |
Ged Y, Chaim JL, DiNatale RG, Knezevic A, Kotecha RR, Carlo MI, Lee CH, Foster A, Feldman DR, Teo MY, et al: DNA damage repair pathway alterations in metastatic clear cell renal cell carcinoma and implications on systemic therapy. J Immunother Cancer. 8:e0002302020. View Article : Google Scholar : PubMed/NCBI | |
Tapia-Laliena MA, Korzeniewski N, Pena-Llopis S, Scholl C, Frohling S, Hohenfellner M, Duensing A and Duensing S: Cullin 5 is a novel candidate tumor suppressor in renal cell carcinoma involved in the maintenance of genome stability. Oncogenesis. 8:42019. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharjee S and Nandi S: Choices have consequences: The nexus between DNA repair pathways and genomic instability in cancer. Clin Transl Med. 5:452016. View Article : Google Scholar : PubMed/NCBI | |
Huang R and Zhou PK: DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 6:2542021. View Article : Google Scholar : PubMed/NCBI | |
Schrempf A, Slyskova J and Loizou JI: Targeting the DNA repair enzyme polymerase theta in cancer therapy. Trends Cancer. 7:98–111. 2021. View Article : Google Scholar : PubMed/NCBI | |
Horton JK, Stefanick DF, Prasad R, Gassman NR, Kedar PS and Wilson SH: Base excision repair defects invoke hypersensitivity to PARP inhibition. Mol Cancer Res. 12:1128–1139. 2014. View Article : Google Scholar : PubMed/NCBI | |
Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S and Pommier Y: Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72:5588–5599. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shao Z, Lee BJ, Rouleau-Turcotte E, Langelier MF, Lin X, Estes VM, Pascal JM and Zha S: Clinical PARP inhibitors do not abrogate PARP1 exchange at DNA damage sites in vivo. Nucleic Acids Res. 48:9694–9709. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rao PD, Sankrityayan H, Srivastava A, Kulkarni YA, Mulay SR and Gaikwad AB: ‘PARP'ing fibrosis: Repurposing poly (ADP ribose) polymerase (PARP) inhibitors. Drug Discov Today. 25:1253–1261. 2020. View Article : Google Scholar : PubMed/NCBI | |
Houl JH, Ye Z, Brosey CA, Balapiti-Modarage L, Namjoshi S, Bacolla A, Laverty D, Walker BL, Pourfarjam Y, Warden LS, et al: Selective small molecule PARG inhibitor causes replication fork stalling and cancer cell death. Nat Commun. 10:56542019. View Article : Google Scholar : PubMed/NCBI | |
Slade D: PARP and PARG inhibitors in cancer treatment. Genes Dev. 34:360–394. 2020. View Article : Google Scholar : PubMed/NCBI | |
Suskiewicz MJ, Zobel F, Ogden T, Fontana P, Ariza A, Yang JC, Zhu K, Bracken L, Hawthorne WJ, Ahel D, et al: HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Nature. 579:598–602. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hsieh MH, Chen YT, Chen YT, Lee YH, Lu J, Chien CL, Chen HF, Ho HN, Yu CJ, Wang ZQ and Teng SC: PARP1 controls KLF4-mediated telomerase expression in stem cells and cancer cells. Nucleic Acids Res. 45:10492–10503. 2017. View Article : Google Scholar : PubMed/NCBI | |
Miwa M and Masutani M: PolyADP-ribosylation and cancer. Cancer Sci. 98:1528–1535. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pillay N, Tighe A, Nelson L, Littler S, Coulson-Gilmer C, Bah N, Golder A, Bakker B, Spierings D, James DI, et al: DNA replication vulnerabilities render ovarian cancer cells sensitive to poly(ADP-Ribose) glycohydrolase inhibitors. Cancer Cell. 35:519–533. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pilie PG, Gay CM, Byers LA, O'Connor MJ and Yap TA: PARP inhibitors: Extending benefit beyond BRCA-mutant cancers. Clin Cancer Res. 25:3759–3771. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chang WS, Ke HL, Tsai CW, Lien CS, Liao WL, Lin HH, Lee MH, Wu HC, Chang CH, Chen CC, et al: The role of XRCC6 T-991C functional polymorphism in renal cell carcinoma. Anticancer Res. 32:3855–3860. 2012.PubMed/NCBI | |
Wu C, Xu C, Wang G, Zhang D and Zhao X: Noninvasive circulating tumor cell and urine cellular XPC (rs2228001, A2815C) and XRCC1 (rs25487, G1196A) polymorphism detection as an effective screening panel for genitourinary system cancers. Transl Cancer Res. 8:2803–2812. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hsueh YM, Lin YC, Chen WJ, Huang CY, Shiue HS, Pu YS, Chen CH and Su CT: The polymorphism XRCC1 Arg194Trp and 8-hydroxydeoxyguanosine increased susceptibility to arsenic-related renal cell carcinoma. Toxicol Appl Pharmacol. 332:1–7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Malka MM, Eberle J, Niedermayer K, Zlotos DP and Wiesmuller L: Dual PARP and RAD51 inhibitory drug conjugates show synergistic and selective effects on breast cancer cells. Biomolecules. 11:9812021. View Article : Google Scholar : PubMed/NCBI | |
Xu YY, Ren ZL, Liu XL, Zhang GM, Huang SS, Shi WH, Ye LX, Luo X, Liu SW, Li YL and Yu L: BAP1 loss augments sensitivity to BET inhibitors in cancer cells. Acta Pharmacol Sin. 43:1803–1815. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhang Z, Fan B, Li Y, Song D and Li GY: PARP-1 Is a potential marker of retinal photooxidation and a key signal regulator in retinal light injury. Oxid Med Cell Longev. 2022:68813222022. View Article : Google Scholar : PubMed/NCBI | |
Li X and Darzynkiewicz Z: Cleavage of Poly(ADP-ribose) polymerase measured in situ in individual cells: Relationship to DNA fragmentation and cell cycle position during apoptosis. Exp Cell Res. 255:125–132. 2000. View Article : Google Scholar : PubMed/NCBI | |
Desroches A and Denault JB: Caspase-7 uses RNA to enhance proteolysis of poly(ADP-ribose) polymerase 1 and other RNA-binding proteins. Proc Natl Acad Sci USA. 116:21521–21528. 2019. View Article : Google Scholar : PubMed/NCBI | |
Koh DW, Dawson TM and Dawson VL: Mediation of cell death by poly(ADP-ribose) polymerase-1. Pharmacol Res. 52:5–14. 2005. View Article : Google Scholar : PubMed/NCBI | |
D'Amours D, Sallmann FR, Dixit VM and Poirier GG: Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: Implications for apoptosis. J Cell Sci. 114:3771–3778. 2001. View Article : Google Scholar : PubMed/NCBI | |
Huang Q and Shen HM: To die or to live: The dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage. Autophagy. 5:273–276. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Vargas JM, Ruiz-Magana MJ, Ruiz-Ruiz C, Majuelos-Melguizo J, Peralta-Leal A, Rodriguez MI, Munoz-Gamez JA, de Almodovar MR, Siles E, Rivas AL, et al: ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res. 22:1181–1198. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, Martin-Chouly C, Le Moigne-Muller G, Van Herreweghe F, Takahashi N, Sergent O, Lagadic-Gossmann D, Vandenabeele P, et al: TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ. 19:2003–2014. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Liu L, Tao S, Yao Y, Wang Y, Wei Q, Shao A and Deng Y: Parthanatos and its associated components: Promising therapeutic targets for cancer. Pharmacol Res. 163:1052992021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Kim NS, Haince JF, Kang HC, David KK, Andrabi SA, Poirier GG, Dawson VL and Dawson TM: Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci Signal. 4:a202011. View Article : Google Scholar | |
Hong T, Lei G, Chen X, Li H, Zhang X, Wu N, Zhao Y, Zhang Y and Wang J: PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biol. 42:1019282021. View Article : Google Scholar : PubMed/NCBI | |
Wolf C, Smith S and van Wijk SJL: Zafirlukast Induces VHL- and HIF-2α-dependent oxidative cell death in 786-O clear cell renal carcinoma cells. Int J Mol Sci. 23:35672022. View Article : Google Scholar : PubMed/NCBI | |
Manco G, Lacerra G, Porzio E and Catara G: ADP-Ribosylation Post-translational modification: An overview with a focus on RNA biology and new pharmacological perspectives. Biomolecules. 12:4432022. View Article : Google Scholar : PubMed/NCBI | |
Deeks ED: Olaparib: First global approval. Drugs. 75:231–240. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kummar S, Chen A, Parchment RE, Kinders RJ, Ji J, Tomaszewski JE and Doroshow JH: Advances in using PARP inhibitors to treat cancer. BMC Med. 10:252012. View Article : Google Scholar : PubMed/NCBI | |
Bian C, Zhang C, Luo T, Vyas A, Chen SH, Liu C, Kassab MA, Yang Y, Kong M and Yu X: NADP+ is an endogenous PARP inhibitor in DNA damage response and tumor suppression. Nat Commun. 10:6932019. View Article : Google Scholar : PubMed/NCBI | |
Murata S, Zhang C, Finch N, Zhang K, Campo L and Breuer EK: Predictors and modulators of synthetic lethality: An update on PARP inhibitors and personalized medicine. Biomed Res Int. 2016:23465852016. View Article : Google Scholar : PubMed/NCBI | |
Zatreanu D, Robinson H, Alkhatib O, Boursier M, Finch H, Geo L, Grande D, Grinkevich V, Heald RA, Langdon S, et al: Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat Commun. 12:36362021. View Article : Google Scholar : PubMed/NCBI | |
Boussios S, Rassy E, Moschetta M, Ghose A, Adeleke S, Sanchez E, Sheriff M, Chargari C and Pavlidis N: BRCA mutations in ovarian and prostate cancer: Bench to bedside. Cancers (Basel). 14:36362021. | |
Min A and Im SA: PARP inhibitors as therapeutics: Beyond modulation of PARylation. Cancers (Basel). 12:3942020. View Article : Google Scholar : PubMed/NCBI | |
Kinoshita T, Nakanishi I, Warizaya M, Iwashita A, Kido Y, Hattori K and Fujii T: Inhibitor-induced structural change of the active site of human poly(ADP-ribose) polymerase. Febs Lett. 556:43–46. 2004. View Article : Google Scholar : PubMed/NCBI | |
Makhov P, Uzzo RG, Tulin AV and Kolenko VM: Histone-dependent PARP-1 inhibitors: A novel therapeutic modality for the treatment of prostate and renal cancers. Urol Oncol. 39:312–315. 2021. View Article : Google Scholar : PubMed/NCBI | |
Karpova Y, Guo D, Makhov P, Haines AM, Markov DA, Kolenko V and Tulin AV: Poly(ADP)-Ribosylation Inhibition: A promising approach for clear cell renal cell carcinoma therapy. Cancers (Basel). 13:49732021. View Article : Google Scholar : PubMed/NCBI | |
Shuch B, Amin A, Armstrong AJ, Eble JN, Ficarra V, Lopez-Beltran A, Martignoni G, Rini BI and Kutikov A: Understanding pathologic variants of renal cell carcinoma: Distilling therapeutic opportunities from biologic complexity. Eur Urol. 67:85–97. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Lopez R, Luchtel RA, Hafizi S, Gartrell B and Shenoy N: Immune evasion in renal cell carcinoma: Biology, clinical translation, future directions. Kidney Int. 99:75–85. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nguyen-Tran HH, Nguyen TN, Chen CY and Hsu T: Endothelial reprogramming stimulated by oncostatin m promotes inflammation and tumorigenesis in VHL-deficient kidney tissue. Cancer Res. 81:5060–5073. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sharma R, Kadife E, Myers M, Kannourakis G, Prithviraj P and Ahmed N: Determinants of resistance to VEGF-TKI and immune checkpoint inhibitors in metastatic renal cell carcinoma. J Exp Clin Cancer Res. 40:1862021. View Article : Google Scholar : PubMed/NCBI | |
Hsieh JJ, Chen D, Wang PI, Marker M, Redzematovic A, Chen YB, Selcuklu SD, Weinhold N, Bouvier N, Huberman KH, et al: Genomic biomarkers of a randomized trial comparing first-line everolimus and sunitinib in patients with metastatic renal cell carcinoma. Eur Urol. 71:405–414. 2017. View Article : Google Scholar : PubMed/NCBI | |
Miao D, Margolis CA, Gao W, Voss MH, Li W, Martini DJ, Norton C, Bosse D, Wankowicz SM, Cullen D, et al: Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science. 359:801–806. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pal SK, Sonpavde G, Agarwal N, Vogelzang NJ, Srinivas S, Haas NB, Signoretti S, McGregor BA, Jones J, Lanman RB, et al: Evolution of circulating tumor DNA profile from first-line to subsequent therapy in metastatic renal cell carcinoma. Eur Urol. 72:557–564. 2017. View Article : Google Scholar : PubMed/NCBI | |
Martinez CN, Xie W, Asim BM, Dzimitrowicz H, Burkart J, Geynisman DM, Balakrishnan A, Bowman IA, Jain R, Stadler W, et al: Cabozantinib in advanced non-clear-cell renal cell carcinoma: A multicentre, retrospective, cohort study. Lancet Oncol. 20:581–590. 2019. View Article : Google Scholar : PubMed/NCBI | |
Maroto P, Anguera G, Roldan-Romero JM, Apellaniz-Ruiz M, Algaba F, Boonman J, Nellist M, Montero-Conde C, Cascon A, Robledo M and Rodríguez-Antona C: Biallelic TSC2 mutations in a patient with chromophobe renal cell carcinoma showing extraordinary response to temsirolimus. J Natl Compr Canc Netw. 16:352–358. 2018. View Article : Google Scholar : PubMed/NCBI | |
McGregor BA, McKay RR, Braun DA, Werner L, Gray K, Flaifel A, Signoretti S, Hirsch MS, Steinharter JA, Bakouny Z, et al: Results of a multicenter Phase II study of atezolizumab and bevacizumab for patients with metastatic renal cell carcinoma with variant histology and/or sarcomatoid features. J Clin Oncol. 38:63–70. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fallah J, Brave MH, Weinstock C, Mehta GU, Bradford D, Gittleman H, Bloomquist EW, Charlab R, Hamed SS, Miller CP, et al: FDA approval summary: Belzutifan for von Hippel-Lindau disease associated tumors. Clin Cancer Res. Jun 21–2022.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Stransky LA, Vigeant SM, Huang B, West D, Denize T, Walton E, Signoretti S and Kaelin WJ: Sensitivity of VHL mutant kidney cancers to HIF2 inhibitors does not require an intact p53 pathway. Proc Natl Acad Sci USA. 119:e21204031192022. View Article : Google Scholar : PubMed/NCBI | |
He X, Gan F, Zhou Y, Zhang Y, Zhao P, Zhao B, Tang Q, Ye L, Bu J, Mei J, et al: Nonplanar Helicene Benzo[4]Helicenium for the precise treatment of renal cell carcinoma. Small Methods. 5:e21007702021. View Article : Google Scholar : PubMed/NCBI | |
Yan S, Liu L, Ren F, Gao Q, Xu S, Hou B, Wang Y, Jiang X and Che Y: Sunitinib induces genomic instability of renal carcinoma cells through affecting the interaction of LC3-II and PARP-1. Cell Death Dis. 8:e29882017. View Article : Google Scholar : PubMed/NCBI | |
Yang XD, Kong FE, Qi L, Lin JX, Yan Q, Loong J, Xi SY, Zhao Y, Zhang Y, Yuan YF, et al: PARP inhibitor Olaparib overcomes Sorafenib resistance through reshaping the pluripotent transcriptome in hepatocellular carcinoma. Mol Cancer. 20:202021. View Article : Google Scholar : PubMed/NCBI | |
Pletcher JP, Bhattacharjee S, Doan JP, Wynn R, Sindhwani P, Nadiminty N and Petros FG: The Emerging role of poly (ADP-Ribose) polymerase inhibitors as effective therapeutic agents in renal cell carcinoma. Front Oncol. 11:6814412021. View Article : Google Scholar : PubMed/NCBI | |
Scanlon SE, Hegan DC, Sulkowski PL and Glazer PM: Suppression of homology-dependent DNA double-strand break repair induces PARP inhibitor sensitivity in VHL-deficient human renal cell carcinoma. Oncotarget. 9:4647–4660. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Xu Y, Zhang Z, Li J, Xia Q and Chen Y: Folliculin deficient renal cancer cells exhibit BRCA1 a complex expression impairment and sensitivity to PARP1 inhibitor olaparib. Gene. 769:1452432021. View Article : Google Scholar : PubMed/NCBI | |
Szanto M and Bai P: The role of ADP-ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism. Genes Dev. 34:321–340. 2020. View Article : Google Scholar : PubMed/NCBI | |
Szanto M, Gupte R, Kraus WL, Pacher P and Bai P: PARPs in lipid metabolism and related diseases. Prog Lipid Res. 84:1011172021. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, Wang W, Tseng YY, Deasy R, Kost-Alimova M, Dancik V, et al: A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun. 10:16172019. View Article : Google Scholar : PubMed/NCBI | |
Okazaki A, Gameiro PA, Christodoulou D, Laviollette L, Schneider M, Chaves F, Stemmer-Rachamimov A, Yazinski SA, Lee R, Stephanopoulos G, et al: Glutaminase and poly(ADP-ribose) polymerase inhibitors suppress pyrimidine synthesis and VHL-deficient renal cancers. J Clin Invest. 127:1631–1645. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shen YA, Hong J, Asaka R, Asaka S, Hsu FC, Suryo RY, Jung JG, Chen YW, Yen TT, Tomaszewski A, et al: Inhibition of the MYC-Regulated glutaminase metabolic axis is an effective synthetic lethal approach for treating chemoresistant ovarian cancers. Cancer Res. 80:4514–4526. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Li P, Wu W, Wang Q, Qian B, Li X and Shen M: Roles of ferroptosis in urologic malignancies. Cancer Cell Int. 21:6762021. View Article : Google Scholar : PubMed/NCBI | |
Courtney KD, Bezwada D, Mashimo T, Pichumani K, Vemireddy V, Funk AM, Wimberly J, McNeil SS, Kapur P, Lotan Y, et al: Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo. Cell Metab. 28:793–800. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Huang J, Huang Y, Zhang S and Wu W, Long H, Duan X, Lai Y and Wu W: Tanshinone I and simvastatin inhibit melanoma tumour cell growth by regulating poly (ADP ribose) polymerase 1 expression. Mol Med Rep. 23:402021.PubMed/NCBI | |
Yun EJ, Lin CJ, Dang A, Hernandez E, Guo J, Chen WM, Allison J, Kim N, Kapur P, Brugarolas J, et al: Downregulation of human DAB2IP gene expression in renal cell carcinoma results in resistance to ionizing radiation. Clin Cancer Res. 25:4542–4551. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Fabbrizi MR, Hughes JR, Grundy GJ and Parsons JL: Effectiveness of PARP inhibition in enhancing the radiosensitivity of 3D spheroids of head and neck squamous cell carcinoma. Front Oncol. 12:9403772022. View Article : Google Scholar : PubMed/NCBI | |
Meng Y, Efimova EV, Hamzeh KW, Darga TE, Mauceri HJ, Fu YX, Kron SJ and Weichselbaum RR: Radiation-inducible immunotherapy for cancer: Senescent tumor cells as a cancer vaccine. Mol Ther. 20:1046–1055. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Xiao Q, Sun Z, Wang B, Wang L, Wang N, Wang K, Song C and Yang Q: Exosome component 1 cleaves single-stranded DNA and sensitizes human kidney renal clear cell carcinoma cells to poly(ADP-ribose) polymerase inhibitor. Elife. 10:e694542021. View Article : Google Scholar : PubMed/NCBI | |
Cella D, Motzer RJ, Suarez C, Blum SI, Ejzykowicz F, Hamilton M, Wallace JF, Simsek B, Zhang J, Ivanescu C, et al: Patient-reported outcomes with first-line nivolumab plus cabozantinib versus sunitinib in patients with advanced renal cell carcinoma treated in CheckMate 9ER: An open-label, randomised, phase 3 trial. Lancet Oncol. 23:292–303. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hagiwara M, Fushimi A, Matsumoto K and Oya M: The Significance of PARP1 as a biomarker for predicting the response to PD-L1 blockade in patients with PBRM1-mutated clear cell renal cell carcinoma. Eur Urol. 81:145–148. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chabanon RM, Morel D, Eychenne T, Colmet-Daage L, Bajrami I, Dorvault N, Garrido M, Meisenberg C, Lamb A, Ngo C, et al: PBRM1 deficiency confers synthetic lethality to DNA repair inhibitors in cancer. Cancer Res. 81:2888–2902. 2021. View Article : Google Scholar : PubMed/NCBI | |
Park JS, Lee ME, Jang WS, Rha KH, Lee SH, Lee J and Ham WS: The DEAD/DEAH box helicase, DDX11, is essential for the survival of advanced clear cell renal cell carcinoma and is a determinant of PARP inhibitor sensitivity. Cancers (Basel). 13:25742021. View Article : Google Scholar : PubMed/NCBI | |
Pan XW, Zhang H, Xu D, Chen JX, Chen WJ, Gan SS, Qu FJ, Chu CM, Cao JW, Fan YH, et al: Identification of a novel cancer stem cell subpopulation that promotes progression of human fatal renal cell carcinoma by single-cell RNA-seq analysis. Int J Biol Sci. 16:3149–3162. 2020. View Article : Google Scholar : PubMed/NCBI | |
Olson D, Bhalla S, Yang X, Martone B and Kuzel TM: Novel use of targeted therapy via PARP-Inhibition in a rare form of papillary renal cell carcinoma: A case report and literature review. Clin Genitourin Cancer. 14:e445–e448. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lian BJ, Zhang K, Fang XD, Li F, Dai Z, Chen WY and Qi XP: Clinical benefit of Niraparib to TKI/mTORi-resistance metastatic ccRCC with BAP1-frame shift mutation: Case report and literature review. Front Oncol. 12:9272502022. View Article : Google Scholar : PubMed/NCBI | |
Saatchi F and Kirchmaier AL: Tolerance of DNA replication stress is promoted by fumarate through modulation of histone demethylation and enhancement of replicative intermediate processing in saccharomyces cerevisiae. Genetics. 212:631–654. 2019. View Article : Google Scholar : PubMed/NCBI | |
Johnson TI, Costa A, Ferguson AN and Frezza C: Fumarate hydratase loss promotes mitotic entry in the presence of DNA damage after ionising radiation. Cell Death Dis. 9:9132018. View Article : Google Scholar : PubMed/NCBI | |
Sulkowski PL, Sundaram RK, Oeck S, Corso CD, Liu Y, Noorbakhsh S, Niger M, Boeke M, Ueno D, Kalathil AN, et al: Krebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair. Nat Genet. 50:1086–1092. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sulkowski PL, Oeck S, Dow J, Economos NG, Mirfakhraie L, Liu Y, Noronha K, Bao X, Li J, Shuch BM, et al: Oncometabolites suppress DNA repair by disrupting local chromatin signalling. Nature. 582:586–591. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ueno D, Vasquez JC, Sule A, Liang J, van Doorn J, Sundaram R, Friedman S, Caliliw R, Ohtake S, Bao X, et al: Targeting Krebs-cycle-deficient renal cell carcinoma with Poly ADP-ribose polymerase inhibitors and low-dose alkylating chemotherapy. Oncotarget. 13:1054–1067. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li X, Hu D, Li Y, Luo Y, Liang B, Yu K, Xiong W and Zuo D: Overexpression of TP53INP2 promotes apoptosis in clear cell renal cell cancer via caspase-8/TRAF6 signaling pathway. J Immunol Res. 2022:12604232022.PubMed/NCBI | |
Lee HK, Cha HS, Nam MJ, Park K, Yang YH, Lee J and Park SH: Broussochalcone A induces apoptosis in human renal cancer cells via ROS level elevation and activation of FOXO3 signaling pathway. Oxid Med Cell Longev. 2021:28007062021. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Chua CC, Zhang M, Geng D, Liu CF, Hamdy RC and Chua BH: The role of PARP activation in glutamate-induced necroptosis in HT-22 cells. Brain Res. 1343:206–212. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zheng W, Zhou CY, Zhu XQ, Wang XJ, Li ZY, Chen XC, Chen F, Che XY and Xie X: Oridonin enhances the cytotoxicity of 5-FU in renal carcinoma cells by inducting necroptotic death. Biomed Pharmacother. 106:175–182. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tsai MF, Chen SM, Ong AZ, Chung YH, Chen PN, Hsieh YH, Kang YT and Hsu LS: Shikonin induced program cell death through generation of reactive oxygen species in renal cancer cells. Antioxidants (Basel). 10:18312021. View Article : Google Scholar : PubMed/NCBI | |
Clou E and Luque Y: Angiogenesis inhibitors: Mechanism of action and nephrotoxicity. Nephrol Ther. 18:1–6. 2022.(In French). View Article : Google Scholar : PubMed/NCBI | |
Al-Harbi NO, Imam F, Alharbi MM, Khan MR, Qamar W, Afzal M, Algahtani M, Alobaid S, Alfardan AS, Alshammari A, et al: Role of rivaroxaban in sunitinib-induced renal injuries via inhibition of oxidative stress-induced apoptosis and inflammation through the tissue nacrosis factor-α induced nuclear factor-κappa B signaling pathway in rats. J Thromb Thrombolysis. 50:361–370. 2020. View Article : Google Scholar : PubMed/NCBI | |
Studentova H, Volakova J, Spisarova M, Zemankova A, Aiglova K, Szotkowski T and Melichar B: Severe tyrosine-kinase inhibitor induced liver injury in metastatic renal cell carcinoma patients: Two case reports assessed for causality using the updated RUCAM and review of the literature. BMC Gastroenterol. 22:492022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, An R, Umanah GK, Park H, Nambiar K, Eacker SM, Kim B, Bao L, Harraz MM, Chang C, et al: A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science. 354:aad68722016. View Article : Google Scholar : PubMed/NCBI | |
Santos SS, Brunialti M, Soriano FG, Szabo C and Salomao R: Repurposing of clinically approved Poly-(ADP-Ribose) polymerase inhibitors for the therapy of sepsis. Shock. 56:901–909. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mukhopadhyay P, Horvath B, Kechrid M, Tanchian G, Rajesh M, Naura AS, Boulares AH and Pacher P: Poly(ADP-ribose) polymerase-1 is a key mediator of cisplatin-induced kidney inflammation and injury. Free Radic Biol Med. 51:1774–1788. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jang HR, Lee K, Jeon J, Kim JR, Lee JE, Kwon GY, Kim YG, Kim DJ, Ko JW and Huh W: Poly (ADP-Ribose) polymerase inhibitor treatment as a novel therapy attenuating renal ischemia-reperfusion injury. Front Immunol. 11:5642882020. View Article : Google Scholar : PubMed/NCBI | |
Ahmad A, Olah G, Herndon DN and Szabo C: The clinically used PARP inhibitor olaparib improves organ function, suppresses inflammatory responses and accelerates wound healing in a murine model of third-degree burn injury. Br J Pharmacol. 175:232–245. 2018. View Article : Google Scholar : PubMed/NCBI | |
Onji H and Murai J: Reconsidering the mechanisms of action of PARP inhibitors based on clinical outcomes. Cancer Sci. 113:2943–2951. 2022. View Article : Google Scholar : PubMed/NCBI | |
Simonaggio A, Epaillard N, Elaidi R, Sun CM, Moreira M, Oudard S and Vano YA: Impact of molecular signatures on the choice of systemic treatment for metastatic kidney cancer. Bull Cancer. 107 (Suppl):S24–S34. 2020.(In French). View Article : Google Scholar : PubMed/NCBI | |
Konstantinopoulos PA, Barry WT, Birrer M, Westin SN, Cadoo KA, Shapiro GI, Mayer EL, O'Cearbhaill RE, Coleman RL, Kochupurakkal B, et al: Olaparib and α-specific PI3K inhibitor alpelisib for patients with epithelial ovarian cancer: A dose-escalation and dose-expansion phase 1b trial. Lancet Oncol. 20:570–580. 2019. View Article : Google Scholar : PubMed/NCBI | |
Abbotts R, Dellomo AJ and Rassool FV: Pharmacologic induction of BRCAness in BRCA-proficient cancers: Expanding PARP inhibitor use. Cancers (Basel). 14:26402022. View Article : Google Scholar : PubMed/NCBI | |
Nelson LJ, Castro KE, Xu B, Li J, Dinh NB, Thompson JM, Woytash J, Kipp KR and Razorenova OV: Synthetic lethality of cyclin-dependent kinase inhibitor Dinaciclib with VHL-deficiency allows for selective targeting of clear cell renal cell carcinoma. Cell Cycle. 21:1103–1119. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Zhou K, Xia X, Guo Y and Tao L: Chk1 inhibition-induced BRCAness synergizes with olaparib in p53-deficient cancer cells. Cell Cycle. 1–13. 2022.doi: 10.1080/15384101.2022.2111769 (Epub ahead of print). View Article : Google Scholar | |
Zhou J, Gelot C, Pantelidou C, Li A, Yucel H, Davis RE, Farkkila A, Kochupurakkal B, Syed A, Shapiro GI, et al: A first-in-class polymerase theta inhibitor selectively targets homologous-recombination-deficient tumors. Nat Cancer. 2:598–610. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Chen X, Xu X, Qian Y, Liang G, Yao F, Yao Z, Wu H, Zhang J, He Q and Yang B: PARP1 suppresses the transcription of PD-L1 by Poly(ADP-Ribosyl)ating STAT3. Cancer Immunol Res. 7:136–149. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiao S, Xia W, Yamaguchi H, Wei Y, Chen MK, Hsu JM, Hsu JL, Yu WH, Du Y, Lee HH, et al: PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin Cancer Res. 23:3711–3720. 2017. View Article : Google Scholar : PubMed/NCBI | |
Higuchi T, Flies DB, Marjon NA, Mantia-Smaldone G, Ronner L, Gimotty PA and Adams SF: CTLA-4 blockade synergizes therapeutically with PARP inhibition in BRCA1-deficient ovarian cancer. Cancer Immunol Res. 3:1257–1268. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gallo D, Young JTF, Fourtounis J, Martino G, Alvarez-Quilon A, Bernier C, Duffy NM, Papp R, Roulston A, Stocco R, et al: CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition. Nature. 604:749–756. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bajrami I, Marlow R, van de Ven M, Brough R, Pemberton HN, Frankum J, Song F, Rafiq R, Konde A, Krastev DB, et al: E-Cadherin/ROS1 inhibitor synthetic lethality in breast cancer. Cancer Discov. 8:498–515. 2018. View Article : Google Scholar : PubMed/NCBI |