Research progress on the therapeutic effect and mechanism of metformin for lung cancer (Review)
- Authors:
- Pengkai Han
- Junhao Zhou
- Jianhua Xiang
- Qiping Liu
- Kai Sun
-
Affiliations: Department of Pulmonary and Critical Care Medicine, Chongqing University Three Gorges Hospital, Chongqing 404100, P.R. China - Published online on: November 7, 2022 https://doi.org/10.3892/or.2022.8440
- Article Number: 3
-
Copyright: © Han et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, Furlong TJ, Greenfield JR, Greenup LC, Kirkpatrick CM, et al: Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 50:81–98. 2011. View Article : Google Scholar : PubMed/NCBI | |
Apostolova N, Iannantuoni F, Gruevska A, Muntane J, Rocha M and Victor VM: Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions. Redox Biol. 34:1015172020. View Article : Google Scholar : PubMed/NCBI | |
Rena G, Hardie DG and Pearson ER: The mechanisms of action of metformin. Diabetologia. 60:1577–1585. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ma T, Tian X, Zhang B, Li M, Wang Y, Yang C, Wu J, Wei X, Qu Q, Yu Y, et al: Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature. 603:159–165. 2022. View Article : Google Scholar : PubMed/NCBI | |
Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M and Andreelli F: Cellular and molecular mechanisms of metformin: An overview. Clin Sci (Lond). 122:253–270. 2012. View Article : Google Scholar : PubMed/NCBI | |
Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD and Evans JM: New users of metformin are at low risk of incident cancer: A cohort study among people with type 2 diabetes. Diabetes Care. 32:1620–1625. 2009. View Article : Google Scholar : PubMed/NCBI | |
Landman GW, Kleefstra N, van Hateren KJ, Groenier KH, Gans RO and Bilo HJ: Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care. 33:322–326. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA and Cantley LC: The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 6:91–99. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tomic T, Botton T, Cerezo M, Robert G, Luciano F, Puissant A, Gounon P, Allegra M, Bertolotto C, Bereder JM, et al: Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis. 2:e1992011. View Article : Google Scholar : PubMed/NCBI | |
Taubes G: Cancer research. Cancer prevention with a diabetes pill? Science. 335:292012.PubMed/NCBI | |
Tian RH, Zhang YG, Wu Z, Liu X, Yang JW and Ji HL: Effects of metformin on survival outcomes of lung cancer patients with type 2 diabetes mellitus: A meta-analysis. Clin Transl Oncol. 18:641–649. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin JJ, Gallagher EJ, Sigel K, Mhango G, Galsky MD, Smith CB, LeRoith D and Wisnivesky JP: Survival of patients with stage IV lung cancer with diabetes treated with metformin. Am J Respir Crit Care Med. 191:448–454. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guo W, Kuang Y, Wu J, Wen D, Zhou A, Liao Y, Song H, Xu D, Wang T, Jing B, et al: Hexokinase 2 depletion confers sensitization to metformin and inhibits glycolysis in lung squamous cell carcinoma. Front Oncol. 10:522020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Gao Q, Wang D, Wang Z and Hu C: Metformin inhibits growth of lung adenocarcinoma cells by inducing apoptosis via the mitochondria-mediated pathway. Oncol Lett. 10:1343–1349. 2015. View Article : Google Scholar : PubMed/NCBI | |
Teixeira SF, Guimarães Idos S, Madeira KP, Daltoé RD, Silva IV and Rangel LB: Metformin synergistically enhances antiproliferative effects of cisplatin and etoposide in NCI-H460 human lung cancer cells. J Bras Pneumol. 39:644–649. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ashinuma H, Takiguchi Y, Kitazono S, Kitazono-Saitoh M, Kitamura A, Chiba T, Tada Y, Kurosu K, Sakaida E, Sekine I, et al: Antiproliferative action of metformin in human lung cancer cell lines. Oncol Rep. 28:8–14. 2012.PubMed/NCBI | |
Tan BX, Yao WX, Ge J, Peng XC, Du XB, Zhang R, Yao B, Xie K, Li LH, Dong H, et al: Prognostic influence of metformin as first-line chemotherapy for advanced nonsmall cell lung cancer in patients with type 2 diabetes. Cancer. 117:5103–5111. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stevens RJ, Ali R, Bankhead CR, Bethel MA, Cairns BJ, Camisasca RP, Crowe FL, Farmer AJ, Harrison S, Hirst JA, et al: Cancer outcomes and all-cause mortality in adults allocated to metformin: Systematic review and collaborative meta-analysis of randomised clinical trials. Diabetologia. 55:2593–2603. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ece H, Cigdem E, Yuksel K, Ahmet D, Hakan E and Oktay TM: Use of oral antidiabetic drugs (metformin and pioglitazone) in diabetic patients with breast cancer: How does it effect serum Hif-1 alpha and 8Ohdg levels? Asian Pac J Cancer Prev. 13:5143–5148. 2012. View Article : Google Scholar : PubMed/NCBI | |
Berbée JF, Boon MR, Khedoe PP, Bartelt A, Schlein C, Worthmann A, Kooijman S, Hoeke G, Mol IM, John C, et al: Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun. 6:63562015. View Article : Google Scholar : PubMed/NCBI | |
Hardie DG and Alessi DR: LKB1 and AMPK and the cancer-metabolism link-ten years after. BMC Biol. 11:362013. View Article : Google Scholar : PubMed/NCBI | |
Koivunen JP, Kim J, Lee J, Rogers AM, Park JO, Zhao X, Naoki K, Okamoto I, Nakagawa K, Yeap BY, et al: Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasian but not Asian lung cancer patients. Br J Cancer. 99:245–252. 2008. View Article : Google Scholar : PubMed/NCBI | |
Han D, Li SJ, Zhu YT, Liu L and Li MX: LKB1/AMPK/mTOR signaling pathway in non-small-cell lung cancer. Asian Pac J Cancer Prev. 14:4033–4039. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shaw RJ and Cantley LC: Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 441:424–430. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE and Shaw RJ: AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 30:214–226. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rabiee A, Krüger M, Ardenkjær-Larsen J, Kahn CR and Emanuelli B: Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action. Cell Signal. 47:1–15. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang X and Proud CG: The mTOR pathway in the control of protein synthesis. Physiology (Bethesda). 21:362–369. 2006.PubMed/NCBI | |
Morita M, Gravel SP, Hulea L, Larsson O, Pollak M, St-Pierre J and Topisirovic I: mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle. 14:473–480. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ren GF, Xiao LL, Ma XJ, Yan YS and Jiao PF: Metformin decreases insulin resistance in type 1 diabetes through regulating p53 and RAP2A in vitro and in vivo. Drug Des Devel Ther. 14:2381–2392. 2020. View Article : Google Scholar : PubMed/NCBI | |
Storozhuk Y, Hopmans SN, Sanli T, Barron C, Tsiani E, Cutz JC, Pond G, Wright J, Singh G and Tsakiridis T: Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br J Cancer. 108:2021–2032. 2013. View Article : Google Scholar : PubMed/NCBI | |
Blagih J, Buck MD and Vousden KH: p53, cancer and the immune response. J Cell Sci. 133:jcs2374532020. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Pei F, Yang F, Li L, Amin AD, Liu S, Buchan JR and Cho WC: Role of autophagy and apoptosis in non-small-cell lung cancer. Int J Mol Sci. 18:3672017. View Article : Google Scholar : PubMed/NCBI | |
Bykov VJN, Eriksson SE, Bianchi J and Wiman KG: Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer. 18:89–102. 2018. View Article : Google Scholar : PubMed/NCBI | |
Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, Viollet B and Thompson CB: Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67:6745–6752. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dogan Turacli I, Candar T, Yuksel BE and Demirtas S: Role of metformin on base excision repair pathway in p53 wild-type H2009 and HepG2 cancer cells. Hum Exp Toxicol. 37:909–919. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ben Sahra I, Regazzetti C, Robert G, Laurent K, Le Marchand-Brustel Y, Auberger P, Tanti JF, Giorgetti-Peraldi S and Bost F: Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res. 71:4366–4372. 2011. View Article : Google Scholar : PubMed/NCBI | |
Blandino G, Valerio M, Cioce M, Mori F, Casadei L, Pulito C, Sacconi A, Biagioni F, Cortese G, Galanti S, et al: Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat Commun. 3:8652012. View Article : Google Scholar : PubMed/NCBI | |
Szczyrek M, Grenda A, Kuźnar-Kamińska B, Krawczyk P, Sawicki M, Batura-Gabryel H, Mlak R, Szudy-Szczyrek A, Krajka T, Krajka A, et al: Methylation of DROSHA and DICER as a biomarker for the detection of lung cancer. Cancers (Basel). 13:61392021. View Article : Google Scholar : PubMed/NCBI | |
Pradhan AK, Bhoopathi P, Talukdar S, Scheunemann D, Sarkar D, Cavenee WK, Das SK, Emdad L and Fisher PB: MDA-7/IL-24 regulates the miRNA processing enzyme DICER through downregulation of MITF. Proc Natl Acad Sci USA. 116:5687–5692. 2019. View Article : Google Scholar : PubMed/NCBI | |
Prodromaki E, Korpetinou A, Giannopoulou E, Vlotinou E, Chatziathanasiadou Μ, Papachristou NI, Scopa CD, Papadaki H, Kalofonos HP and Papachristou DJ: Expression of the microRNA regulators drosha, dicer and Ago2 in non-small cell lung carcinomas. Cell Oncol (Dordr). 38:307–317. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen JC, Su YH, Chiu CF, Chang YW, Yu YH, Tseng CF, Chen HA and Su JL: Suppression of Dicer increases sensitivity to gefitinib in human lung cancer cells. Ann Surg Oncol. 21 (Suppl 4):S555–563. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li C, Chen L, Song W, Peng B, Zhu J and Fang L: DICER activates autophagy and promotes cisplatin resistance in non-small cell lung cancer by binding with let-7i-5p. Acta Histochem. 123:1517882021. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Kundu M, Viollet B and Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Zhang Z, Wang H, Chen X and Jin C: Activation of AMPK by metformin promotes renal cancer cell proliferation under glucose deprivation through its interaction with PKM2. Int J Biol Sci. 15:617–627. 2019. View Article : Google Scholar : PubMed/NCBI | |
Volm M and Koomägi R: Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res. 20:1527–1533. 2000.PubMed/NCBI | |
Yang SL, Ren QG, Wen L and Hu JL: Clinicopathological and prognostic significance of hypoxia-inducible factor-1 alpha in lung cancer: A systematic review with meta-analysis. J Huazhong Univ Sci Technolog Med Sci. 36:321–327. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Wang Q, Wang Q, Guo P, Wang Y, Xing Y, Zhang M, Liu F and Zeng Q: Chrysophanol exhibits anti-cancer activities in lung cancer cell through regulating ROS/HIF-1a/VEGF signaling pathway. Naunyn Schmiedebergs Arch Pharmacol. 393:469–480. 2020. View Article : Google Scholar : PubMed/NCBI | |
Akakura N, Kobayashi M, Horiuchi I, Suzuki A, Wang J, Chen J, Niizeki H, Kawamura K, Hosokawa M and Asaka M: Constitutive expression of hypoxia-inducible factor-1alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res. 61:6548–6554. 2001.PubMed/NCBI | |
Pineda CT, Ramanathan S, Fon Tacer K, Weon JL, Potts MB, Ou YH, White MA and Potts PR: Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell. 160:715–728. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fürstenberger G and Senn HJ: Insulin-like growth factors and cancer. Lancet Oncol. 3:298–302. 2002. View Article : Google Scholar : PubMed/NCBI | |
Favoni RE, de Cupis A, Ravera F, Cantoni C, Pirani P, Ardizzoni A, Noonan D and Biassoni R: Expression and function of the insulin-like growth factor I system in human non-small-cell lung cancer and normal lung cell lines. Int J Cancer. 56:858–866. 1994. View Article : Google Scholar : PubMed/NCBI | |
Tseng SC, Huang YC, Chen HJ, Chiu HC, Huang YJ, Wo TY, Weng SH and Lin YW: Metformin-mediated downregulation of p38 mitogen-activated protein kinase-dependent excision repair cross-complementing 1 decreases DNA repair capacity and sensitizes human lung cancer cells to paclitaxel. Biochem Pharmacol. 85:583–594. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kuribayashi A, Kataoka K, Kurabayashi T and Miura M: Evidence that basal activity, but not transactivation, of the epidermal growth factor receptor tyrosine kinase is required for Insulin-like growth factor I-induced activation of extracellular signal-regulated kinase in oral carcinoma cells. Endocrinology. 145:4976–4984. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cao H, Dong W, Qu X, Shen H, Xu J, Zhu L, Liu Q and Du J: Metformin enhances the therapy effects of Anti-IGF-1R mAb figitumumab to NSCLC. Sci Rep. 6:310722016. View Article : Google Scholar : PubMed/NCBI | |
Pernicova I and Korbonits M: Metformin-mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 10:143–156. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fumarola C, Bonelli MA, Petronini PG and Alfieri RR: Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem Pharmacol. 90:197–207. 2014. View Article : Google Scholar : PubMed/NCBI | |
Heavey S, O'Byrne KJ and Gately K: Strategies for co-targeting the PI3K/AKT/mTOR pathway in NSCLC. Cancer Treat Rev. 40:445–456. 2014. View Article : Google Scholar : PubMed/NCBI | |
Granville CA, Memmott RM, Balogh A, Mariotti J, Kawabata S, Han W, Lopiccolo J, Foley J, Liewehr DJ, Steinberg SM, et al: A central role for Foxp3+ regulatory T cells in K-Ras-driven lung tumorigenesis. PLoS One. 4:e50612009. View Article : Google Scholar : PubMed/NCBI | |
Zou W: Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol. 6:295–307. 2006. View Article : Google Scholar : PubMed/NCBI | |
Memmott RM, Mercado JR, Maier CR, Kawabata S, Fox SD and Dennis PA: Metformin prevents tobacco carcinogen-induced lung tumorigenesis. Cancer Prev Res (Phila). 3:1066–1076. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, et al: Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11:390–401. 2010. View Article : Google Scholar : PubMed/NCBI | |
Efeyan A, Zoncu R, Chang S, Gumper I, Snitkin H, Wolfson RL, Kirak O, Sabatini DD and Sabatini DM: Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature. 493:679–683. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bar-Peled L, Schweitzer LD, Zoncu R and Sabatini DM: Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell. 150:1196–1208. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim J and Kim E: Rag GTPase in amino acid signaling. Amino Acids. 48:915–928. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, He C and Huang X: Metformin partially reverses the carboplatin-resistance in NSCLC by inhibiting glucose metabolism. Oncotarget. 8:75206–75216. 2017. View Article : Google Scholar : PubMed/NCBI | |
Salani B, Del Rio A, Marini C, Sambuceti G, Cordera R and Maggi D: Metformin, cancer and glucose metabolism. Endocr Relat Cancer. 21:R461–R471. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schuurbiers OC, Meijer TW, Kaanders JH, Looijen-Salamon MG, de Geus-Oei LF, van der Drift MA, van der Heijden EH, Oyen WJ, Visser EP, Span PN, et al: Glucose metabolism in NSCLC is histology-specific and diverges the prognostic potential of 18FDG-PET for adenocarcinoma and squamous cell carcinoma. J Thorac Oncol. 9:1485–1493. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Joo J, Lee YJ, Lee EK, Park S, Kim TS, Lee SH, Kim SY, Wie GA, Park M, et al: Randomized phase II study of Platinum-based chemotherapy plus controlled diet with or without metformin in patients with advanced Non-small cell lung cancer. Lung Cancer. 151:8–15. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chun SG, Liao Z, Jeter MD, Chang JY, Lin SH, Komaki RU, Guerrero TM, Mayo RC, Korah BM, Koshy SM, et al: Metabolic responses to metformin in inoperable early-stage non-small cell lung cancer treated with stereotactic radiotherapy: Results of a randomized Phase II clinical trial. Am J Clin Oncol. 43:231–235. 2020. View Article : Google Scholar : PubMed/NCBI | |
O JH, Lodge MA and Wahl RL: Practical PERCIST: A Simplified Guide to PET response criteria in solid tumors 1.0. Radiology. 280:576–584. 2016. View Article : Google Scholar : PubMed/NCBI | |
Goodwin PJ, Ligibel JA and Stambolic V: Metformin in breast cancer: Time for action. J Clin Oncol. 27:3271–3273. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pollak MN: Investigating metformin for cancer prevention and treatment: The end of the beginning. Cancer Discov. 2:778–790. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, Glasauer A, Dufour E, Mutlu GM, Budigner GS, et al: Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife. 3:e022422014. View Article : Google Scholar : PubMed/NCBI | |
Andrzejewski S, Gravel SP, Pollak M and St-Pierre J: Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metab. 2:122014. View Article : Google Scholar : PubMed/NCBI | |
Algire C, Moiseeva O, Deschênes-Simard X, Amrein L, Petruccelli L, Birman E, Viollet B, Ferbeyre G and Pollak MN: Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev Res (Phila). 5:536–543. 2012. View Article : Google Scholar : PubMed/NCBI | |
Boyle KA, Van Wickle J, Hill RB, Marchese A, Kalyanaraman B and Dwinell MB: Mitochondria-targeted drugs stimulate mitophagy and abrogate colon cancer cell proliferation. J Biol Chem. 293:14891–14904. 2018. View Article : Google Scholar : PubMed/NCBI | |
Logie L, Harthill J, Patel K, Bacon S, Hamilton DL, Macrae K, McDougall G, Wang HH, Xue L, Jiang H, et al: Cellular responses to the metal-binding properties of metformin. Diabetes. 61:1423–1433. 2012. View Article : Google Scholar : PubMed/NCBI | |
Izzotti A, Balansky R, D'Agostini F, Longobardi M, Cartiglia C, Micale RT, La Maestra S, Camoirano A, Ganchev G, Iltcheva M, et al: Modulation by metformin of molecular and histopathological alterations in the lung of cigarette Smoke-exposed mice. Cancer Med. 3:719–730. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dweep H, Sticht C, Pandey P and Gretz N: miRWalk-database: Prediction of possible miRNA binding sites by ‘Walking’ the genes of three genomes. J Biomed Inform. 44:839–847. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bost F, Ben-Sahra I and Tanti JF: Prevention of mutagenesis: New potential mechanisms of metformin action in neoplastic cells. Cancer Prev Res (Phila). 5:503–506. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Liu T, Wu T, Wang Z, Rao Z and Gao J: microRNA-137 functions as a tumor suppressor in human non-small cell lung cancer by targeting SLC22A18. Int J Biol Macromol. 74:111–118. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA, Lawler S, et al: microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 68:3566–3572. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Dou W, He L, Liang S, Tie J, Liu C, Li T, Lu Y, Mo P, Shi Y, et al: MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting Insulin-like growth Factor-1 receptor. Oncogene. 32:1363–1372. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dong J, Peng H, Yang X, Wu W, Zhao Y, Chen D, Chen L and Liu J: Metformin mediated microRNA-7 upregulation inhibits growth, migration, and invasion of non-small cell lung cancer A549 cells. Anticancer Drugs. 31:345–352. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jin D, Guo J, Wu Y, Chen W, Du J, Yang L, Wang X, Gong K, Dai J, Miao S, et al: Metformin-repressed miR-381-YAP-snail axis activity disrupts NSCLC growth and metastasis. J Exp Clin Cancer Res. 39:62020. View Article : Google Scholar : PubMed/NCBI | |
Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, Jones RG and Choi Y: Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 460:103–107. 2009. View Article : Google Scholar : PubMed/NCBI | |
Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E and Udono H: Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci USA. 112:1809–1814. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao D, Long XD, Lu TF, Wang T, Zhang WW, Liu YX, Cui XL, Dai HJ, Xue F and Xia Q: Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int J Cancer. 136:2556–2565. 2015. View Article : Google Scholar : PubMed/NCBI | |
Justus CR, Sanderlin EJ and Yang LV: Molecular connections between cancer cell metabolism and the tumor microenvironment. Int J Mol Sci. 16:11055–11086. 2015. View Article : Google Scholar : PubMed/NCBI | |
Scharping NE, Menk AV, Whetstone RD, Zeng X and Delgoffe GM: Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol Res. 5:9–16. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee BB, Kim Y, Kim D, Cho EY, Han J, Kim HK, Shim YM and Kim DH: Metformin and tenovin-6 synergistically induces apoptosis through LKB1-independent SIRT1 Down-regulation in non-small cell lung cancer cells. J Cell Mol Med. 23:2872–2889. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Liu S, Lin X, Xu L, Mao X, Liu J, Zhang Z, Jiang W and Zhou H: Metformin inhibit lung cancer cell growth and invasion in vitro as well as tumor formation in vivo partially by activating PP2A. Med Sci Monit. 25:836–846. 2019. View Article : Google Scholar : PubMed/NCBI | |
Moroishi T, Hansen CG and Guan KL: The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer. 15:73–79. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jin D, Guo J, Wang D, Wu Y, Wang X, Gao Y, Shao C, Xu X and Tan S: The antineoplastic drug metformin downregulates YAP by interfering with IRF-1 binding to the YAP promoter in NSCLC. EBioMedicine. 37:188–204. 2018. View Article : Google Scholar : PubMed/NCBI | |
Luo Z, Chen W, Wu W, Luo W, Zhu T, Guo G, Zhang L, Wang C, Li M and Shi S: Metformin promotes survivin degradation through AMPK/PKA/GSK-3β-axis in non-small cell lung cancer. J Cell Biochem. Feb 21–2019.doi: 10.1002/jcb.28470 (Epub ahead of print). View Article : Google Scholar | |
Salani B, Maffioli S, Hamoudane M, Parodi A, Ravera S, Passalacqua M, Alama A, Nhiri M, Cordera R and Maggi D: Caveolin-1 is essential for metformin inhibitory effect on IGF1 action in Non-small-cell lung cancer cells. FASEB J. 26:788–798. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vazquez-Martin A, Oliveras-Ferraros C, Cufí S, Martin-Castillo B and Menendez JA: Metformin activates an ataxia telangiectasia mutated (ATM)/Chk2-regulated DNA Damage-like response. Cell Cycle. 10:1499–1501. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu N, Gu C, Gu H, Hu H, Han Y and Li Q: Metformin induces apoptosis of lung cancer cells through activating JNK/p38 MAPK pathway and GADD153. Neoplasma. 58:482–490. 2011. View Article : Google Scholar : PubMed/NCBI | |
Iliopoulos D, Hirsch HA and Struhl K: Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res. 71:3196–3201. 2011. View Article : Google Scholar : PubMed/NCBI | |
Parikh AB, Kozuch P, Rohs N, Becker DJ and Levy BP: Metformin as a repurposed therapy in advanced Non-small cell lung cancer (NSCLC): Results of a phase II trial. Invest New Drugs. 35:813–819. 2017. View Article : Google Scholar : PubMed/NCBI | |
Marrone KA, Zhou X, Forde PM, Purtell M, Brahmer JR, Hann CL, Kelly RJ, Coleman B, Gabrielson E, Rosner GL, et al: A Randomized Phase II study of metformin plus Paclitaxel/Carboplatin/Bevacizumab in patients with Chemotherapy-Naïve advanced or metastatic nonsquamous non-small cell lung cancer. Oncologist. 23:859–865. 2018. View Article : Google Scholar : PubMed/NCBI | |
Parikh AB, Marrone KA, Becker DJ, Brahmer JR, Ettinger DS and Levy BP: A pooled analysis of two phase II trials evaluating metformin plus platinum-based chemotherapy in advanced non-small cell lung cancer. Cancer Treat Res Commun. 20:1001502019. View Article : Google Scholar : PubMed/NCBI | |
Sayed R, Saad AS, El Wakeel L, Elkholy E and Badary O: Metformin addition to chemotherapy in stage IV non-small cell lung cancer: An open label randomized controlled study. Asian Pac J Cancer Prev. 16:6621–6626. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin CC, Yeh HH, Huang WL, Yan JJ, Lai WW, Su WP, Chen HH and Su WC: Metformin enhances cisplatin cytotoxicity by suppressing signal transducer and activator of transcription-3 activity independently of the liver kinase B1-AMP-activated protein kinase pathway. Am J Respir Cell Mol Biol. 49:241–250. 2013. View Article : Google Scholar : PubMed/NCBI | |
Weerasinghe P, Garcia GE, Zhu Q, Yuan P, Feng L, Mao L and Jing N: Inhibition of Stat3 activation and tumor growth suppression of non-small cell lung cancer by G-quartet oligonucleotides. Int J Oncol. 31:129–136. 2007.PubMed/NCBI | |
Chiang GG and Abraham RT: Targeting the mTOR signaling network in cancer. Trends Mol Med. 13:433–442. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Lin B, Wu J, Zhang H and Wu B: Metformin inhibits the proliferation of A549/CDDP cells by activating p38 mitogen-activated protein kinase. Oncol Lett. 8:1269–1274. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Xia S and Zhu Z: Synergistic effect of phenformin in non-small cell lung cancer (NSCLC) ionizing radiation treatment. Cell Biochem Biophys. 71:513–518. 2015. View Article : Google Scholar : PubMed/NCBI | |
Koritzinsky M: Metformin: A novel biological modifier of tumor response to radiation therapy. Int J Radiat Oncol Biol Phys. 93:454–464. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bitterman PB and Polunovsky VA: eIF4E-mediated translational control of cancer incidence. Biochim Biophys Acta. 1849:774–780. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Zhang B, Xia L, Zhang J, Chen Y, Hu Q and Zhu C: Knockdown of eukaryotic translation initiation factor 4E suppresses cell growth and invasion, and induces apoptosis and cell cycle arrest in a human lung adenocarcinoma cell line. Mol Med Rep. 12:7971–7978. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sanli T, Rashid A, Liu C, Harding S, Bristow RG, Cutz JC, Singh G, Wright J and Tsakiridis T: Ionizing radiation activates AMP-activated kinase (AMPK): A target for radiosensitization of human cancer cells. Int J Radiat Oncol Biol Phys. 78:221–229. 2010. View Article : Google Scholar : PubMed/NCBI | |
Muaddi H, Chowdhury S, Vellanki R, Zamiara P and Koritzinsky M: Contributions of AMPK and p53 dependent signaling to radiation response in the presence of metformin. Radiother Oncol. 108:446–450. 2013. View Article : Google Scholar : PubMed/NCBI | |
Barker HE, Paget JT, Khan AA and Harrington KJ: The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat Rev Cancer. 15:409–425. 2015. View Article : Google Scholar : PubMed/NCBI | |
Levy A, Nigro G, Sansonetti PJ and Deutsch E: Candidate immune biomarkers for radioimmunotherapy. Biochim Biophys Acta Rev Cancer. 1868:58–68. 2017. View Article : Google Scholar : PubMed/NCBI | |
Levy A, Bardet E, Lacas B, Pignon JP, Adam J, Lacroix L, Artignan X, Verrelle P and Le Péchoux C: A phase II Open-label multicenter study of gefitinib in combination with irradiation followed by chemotherapy in patients with inoperable stage III non-small cell lung cancer. Oncotarget. 8:15924–15933. 2017. View Article : Google Scholar : PubMed/NCBI | |
Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM, et al: Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 520:373–377. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tokito T, Azuma K, Kawahara A, Ishii H, Yamada K, Matsuo N, Kinoshita T, Mizukami N, Ono H, Kage M, et al: Predictive relevance of PD-L1 expression combined with CD8+ TIL density in stage III non-small cell lung cancer patients receiving concurrent chemoradiotherapy. Eur J Cancer. 55:7–14. 2016. View Article : Google Scholar : PubMed/NCBI | |
Song CW, Lee H, Dings RP, Williams B, Powers J, Santos TD, Choi BH and Park HJ: Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Sci Rep. 2:3622012. View Article : Google Scholar : PubMed/NCBI | |
Moncharmont C, Levy A, Gilormini M, Bertrand G, Chargari C, Alphonse G, Ardail D, Rodriguez-Lafrasse C and Magné N: Targeting a cornerstone of radiation resistance: Cancer stem cell. Cancer Lett. 322:139–147. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wink KC, Belderbos JS, Dieleman EM, Rossi M, Rasch CR, Damhuis RA, Houben RM and Troost EG: Improved progression free survival for patients with diabetes and locally advanced non-small cell lung cancer (NSCLC) using metformin during concurrent chemoradiotherapy. Radiother Oncol. 118:453–459. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ko JC, Chiu HC, Wo TY, Huang YJ, Tseng SC, Huang YC, Chen HJ, Syu JJ, Chen CY, Jian YT, et al: Inhibition of p38 MAPK-dependent MutS homologue-2 (MSH2) expression by metformin enhances gefitinib-induced cytotoxicity in human squamous lung cancer cells. Lung Cancer. 82:397–406. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Yao W, Chu Q, Han R, Wang Y, Sun J, Wang D, Wang Y, Cao M and He Y: Synergistic effects of metformin in combination with EGFR-TKI in the treatment of patients with advanced non-small cell lung cancer and type 2 diabetes. Cancer Lett. 369:97–102. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li KL, Li L, Zhang P, Kang J, Wang YB, Chen HY and He Y: A multicenter Double-blind Phase II study of metformin with gefitinib as First-Line therapy of locally advanced non-small-cell lung cancer. Clin Lung Cancer. 18:340–343. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nguyen GH, Murph MM and Chang JY: Cancer stem cell radioresistance and enrichment: Where frontline radiation therapy may fail in lung and esophageal cancers. Cancers (Basel). 3:1232–1252. 2011. View Article : Google Scholar : PubMed/NCBI | |
Morgillo F, Sasso FC, Della Corte CM, Vitagliano D, D'Aiuto E, Troiani T, Martinelli E, De Vita F, Orditura M, De Palma R, et al: Synergistic effects of metformin treatment in combination with gefitinib, a selective EGFR tyrosine kinase inhibitor, in LKB1 wild-type NSCLC cell lines. Clin Cancer Res. 19:3508–3519. 2013. View Article : Google Scholar : PubMed/NCBI | |
Arrieta O, Barrón F, Padilla MS, Avilés-Salas A, Ramírez-Tirado LA, Arguelles Jiménez MJ, Vergara E, Zatarain-Barrón ZL, Hernández-Pedro N, Cardona AF, et al: Effect of metformin plus tyrosine kinase inhibitors compared with tyrosine kinase inhibitors alone in patients with epidermal growth factor receptor-mutated lung adenocarcinoma: A phase 2 randomized clinical trial. JAMA Oncol. 5:e1925532019. View Article : Google Scholar : PubMed/NCBI | |
Chung C: Tyrosine kinase inhibitors for epidermal growth factor receptor gene mutation-positive non-small cell lung cancers: An update for recent advances in therapeutics. J Oncol Pharm Pract. 22:461–476. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bidkhori G, Moeini A and Masoudi-Nejad A: Modeling of tumor progression in NSCLC and intrinsic resistance to TKI in loss of PTEN expression. PLoS One. 7:e480042012. View Article : Google Scholar : PubMed/NCBI | |
Li L, Han R, Xiao H, Lin C, Wang Y, Liu H, Li K, Chen H, Sun F, Yang Z, et al: Metformin sensitizes EGFR-TKI-resistant human lung cancer cells in vitro and in vivo through inhibition of IL-6 signaling and EMT reversal. Clin Cancer Res. 20:2714–2726. 2014. View Article : Google Scholar : PubMed/NCBI | |
Momcilovic M, McMickle R, Abt E, Seki A, Simko SA, Magyar C, Stout DB, Fishbein MC, Walser TC, Dubinett SM, et al: Heightening energetic stress selectively targets LKB1-deficient non-small cell lung cancers. Cancer Res. 75:4910–4922. 2015. View Article : Google Scholar : PubMed/NCBI | |
Della Corte CM, Ciaramella V, Di Mauro C, Castellone MD, Papaccio F, Fasano M, Sasso FC, Martinelli E, Troiani T, De Vita F, et al: Metformin increases antitumor activity of MEK inhibitors through GLI1 downregulation in LKB1 positive human NSCLC cancer cells. Oncotarget. 7:4265–4278. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yeh HH, Lai WW, Chen HH, Liu HS and Su WC: Autocrine IL-6-induced Stat3 activation contributes to the pathogenesis of lung adenocarcinoma and malignant pleural effusion. Oncogene. 25:4300–4309. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pan YH, Jiao L, Lin CY, Lu CH, Li L, Chen HY, Wang YB and He Y: Combined treatment with metformin and gefitinib overcomes primary resistance to EGFR-TKIs with EGFR mutation via targeting IGF-1R signaling pathway. Biologics. 12:75–86. 2018.PubMed/NCBI | |
Li L, Wang Y, Peng T, Zhang K, Lin C, Han R, Lu C and He Y: Metformin restores crizotinib sensitivity in crizotinib-resistant human lung cancer cells through inhibition of IGF1-R signaling pathway. Oncotarget. 7:34442–34452. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bland AR, Shrestha N, Bower RL, Rosengren RJ and Ashton JC: The effect of metformin in EML(4)-ALK+ lung cancer alone and in combination with crizotinib in cell and rodent models. Biochem Pharmacol. 183:1143452021. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Lin C, Peng T, Hu C, Lu C, Li L, Wang Y, Han R, Feng M, Sun F, et al: Metformin reduces HGF-induced resistance to alectinib via the inhibition of Gab1. Cell Death Dis. 11:1112020. View Article : Google Scholar : PubMed/NCBI | |
Isozaki H, Ichihara E, Takigawa N, Ohashi K, Ochi N, Yasugi M, Ninomiya T, Yamane H, Hotta K, Sakai K, et al: Non-small cell lung cancer cells acquire resistance to the ALK inhibitor alectinib by activating alternative receptor tyrosine kinases. Cancer Res. 76:1506–1516. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pan YH, Lin CY, Lu CH, Li L, Wang YB, Chen HY and He Y: Metformin synergistically enhances the antitumor activity of the third-generation EGFR-TKI CO-1686 in lung cancer cells through suppressing NF-κB signaling. Clin Respir J. 12:2642–2652. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mu CY, Huang JA, Chen Y, Chen C and Zhang XG: High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol. 28:682–688. 2011. View Article : Google Scholar : PubMed/NCBI | |
Miyazawa T, Marushima H, Saji H, Kojima K, Hoshikawa M, Takagi M and Nakamura H: PD-L1 expression in non-small-cell lung cancer including various adenocarcinoma subtypes. Ann Thorac Cardiovasc Surg. 25:1–9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shen X, Zhao Y, Liu G, Zhou HL, Fan J, Zhang L, Li YL, Wang Y, Liang J and Xu ZX: Upregulation of programmed death ligand 1 by liver kinase B1 and its implication in programmed death 1 blockade therapy in non-small cell lung cancer. Life Sci. 256:1179232020. View Article : Google Scholar : PubMed/NCBI | |
Xia W, Qi X, Li M, Wu Y, Sun L, Fan X, Yuan Y and Li J: Metformin promotes anticancer activity of NK cells in a p38 MAPK dependent manner. Oncoimmunology. 10:19959992021. View Article : Google Scholar : PubMed/NCBI | |
Lee CK, Man J, Lord S, Cooper W, Links M, Gebski V, Herbst RS, Gralla RJ, Mok T and Yang JC: Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced Non-small cell lung carcinoma: A systematic review and Meta-analysis. JAMA Oncol. 4:210–216. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kauffmann-Guerrero D, Tufman A, Kahnert K, Bollmann BA, Reu S, Syunyaeva Z, Schneider C, Manapov F, Huber RM and Golpon H: Response to checkpoint inhibition in Non-small cell lung cancer with molecular driver alterations. Oncol Res Treat. 43:289–298. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cinausero M, Laprovitera N, De Maglio G, Gerratana L, Riefolo M, Macerelli M, Fiorentino M, Porcellini E, Buoro V, Gelsomino F, et al: KRAS and ERBB-family genetic alterations affect response to PD-1 inhibitors in metastatic nonsquamous NSCLC. Ther Adv Med Oncol. 11:17588359198855402019. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Zheng S, Jin R, Wang X, Wang F, Zang R, Xu H, Lu Z, Huang J, Lei Y, et al: The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Cancer Lett. 470:95–105. 2020. View Article : Google Scholar : PubMed/NCBI | |
Calles A, Sholl LM, Rodig SJ, Pelton AK, Hornick JL, Butaney M, Lydon C, Dahlberg SE, Oxnard GR, Jackman DM, et al: Immunohistochemical Loss of LKB1 is a biomarker for more aggressive biology in KRAS-mutant lung adenocarcinoma. Clin Cancer Res. 21:2851–2860. 2015. View Article : Google Scholar : PubMed/NCBI | |
Biton J, Mansuet-Lupo A, Pécuchet N, Alifano M, Ouakrim H, Arrondeau J, Boudou-Rouquette P, Goldwasser F, Leroy K, Goc J, et al: TP53, STK11, and EGFR mutations predict tumor immune profile and the response to Anti-PD-1 in lung adenocarcinoma. Clin Cancer Res. 24:5710–5723. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, Plodkowski A, Long N, Sauter JL, Rekhtman N, et al: Molecular determinants of response to anti-programmed cell death (PD)-1 and Anti-programmed Death-ligand 1 (PD-L1) blockade in patients with Non-small-cell lung cancer profiled with targeted Next-generation sequencing. J Clin Oncol. 36:633–641. 2018. View Article : Google Scholar : PubMed/NCBI | |
Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, Gainor JF, Schrock AB, Hartmaier RJ, Trabucco SE, Gay L, et al: STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 8:822–835. 2018. View Article : Google Scholar : PubMed/NCBI | |
Afzal MZ, Dragnev K, Sarwar T and Shirai K: Clinical outcomes in Non-small-cell lung cancer patients receiving concurrent metformin and immune checkpoint inhibitors. Lung Cancer Manag. 8:LMT112019. View Article : Google Scholar : PubMed/NCBI | |
Kim Y, Vagia E, Viveiros P, Kang CY, Lee JY, Gim G, Cho S, Choi H, Kim L, Park I, et al: Overcoming acquired resistance to PD-1 inhibitor with the addition of metformin in small cell lung cancer (SCLC). Cancer Immunol Immunother. 70:961–965. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yendamuri S, Barbi J, Pabla S, Petrucci C, Punnanitinont A, Nesline M, Glenn ST, Depietro P, Papanicalou-Sengos A, Morrison C, et al: Body mass index influences the salutary effects of metformin on survival after lobectomy for stage I NSCLC. J Thorac Oncol. 14:2181–2187. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tsakiridis T, Pond GR, Wright J, Ellis PM, Ahmed N, Abdulkarim B, Roa W, Robinson A, Swaminath A, Okawara G, et al: Metformin in combination with chemoradiotherapy in locally advanced Non-small cell lung cancer: The OCOG-ALMERA randomized clinical trial. JAMA Oncol. 7:1333–1341. 2021. View Article : Google Scholar : PubMed/NCBI | |
Syngelaki A, Nicolaides KH, Balani J, Hyer S, Akolekar R, Kotecha R, Pastides A and Shehata H: Metformin versus placebo in obese pregnant women without diabetes mellitus. N Engl J Med. 374:434–443. 2016. View Article : Google Scholar : PubMed/NCBI | |
Okayasu S, Kitaichi K, Hori A, Suwa T, Horikawa Y, Yamamoto M, Takeda J and Itoh Y: The evaluation of risk factors associated with adverse drug reactions by metformin in type 2 diabetes mellitus. Biol Pharm Bull. 35:933–937. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang HH and Guo XL: Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol. 78:13–26. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mallik R and Chowdhury TA: Metformin in cancer. Diabetes Res Clin Pract. 143:409–419. 2018. View Article : Google Scholar : PubMed/NCBI | |
Skuli SJ, Alomari S, Gaitsch H, Bakayoko A, Skuli N and Tyler BM: Metformin and cancer, an ambiguanidous relationship. Pharmaceuticals (Basel). 15:6262022. View Article : Google Scholar : PubMed/NCBI | |
Osama H, Sayed OM, Hussein RRS, Abdelrahim M and A Elberry A: Design, optimization, characterization, and in vivo evaluation of sterosomes as a carrier of metformin for treatment of lung cancer. J Liposome Res. 30:150–162. 2020. View Article : Google Scholar : PubMed/NCBI | |
Goodwin J, Neugent ML, Lee SY, Choe JH, Choi H, Jenkins DMR, Ruthenborg RJ, Robinson MW, Jeong JY, Wake M, et al: The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition. Nat Commun. 8:155032017. View Article : Google Scholar : PubMed/NCBI | |
Li C, Xue Y, Xi YR and Xie K: Progress in the application and mechanism of metformin in treating Non-small cell lung cancer. Oncol Lett. 13:2873–2880. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Zhou YS, Wang LC and Huang JB: Advances in metformin-based metabolic therapy for non-small cell lung cancer (Review). Oncol Rep. 47:552022. View Article : Google Scholar : PubMed/NCBI | |
Arrieta O, Zatarain-Barrón ZL, Turcott JG, Barrón F, Yendamuri S, Cardona AF and Rosell R: Association of BMI with benefit of metformin plus epidermal growth factor Receptor-tyrosine kinase inhibitors in patients with advanced lung adenocarcinoma: A secondary analysis of a phase 2 randomized clinical trial. JAMA Oncol. 8:477–479. 2022. View Article : Google Scholar : PubMed/NCBI |