Anticancer effects and mechanisms of astragaloside‑IV (Review)
- Authors:
- Liangxing Zhou
- Mengpeng Li
- Zhengbin Chai
- Junli Zhang
- Kuan Cao
- Lei Deng
- Yanming Liu
- Cun Jiao
- Gang-Ming Zou
- Jibiao Wu
- Fabin Han
-
Affiliations: Translational Research Laboratory for Stem Cell and Traditional Chinese Medicine, Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China, Laboratory for Stem Cell and Regenerative Medicine, Institute for Tissue Engineering and Regenerative Medicine, Liaocheng People's Hospital/Liaocheng University, Liaocheng, Shandong 252000, P.R. China, Department of Traditional Chinese Medicine, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China, Nancy Atmospera‑Walch School of Nursing University of Hawaii at Manoa, Honolulu, HI 96822, USA - Published online on: November 8, 2022 https://doi.org/10.3892/or.2022.8442
- Article Number: 5
-
Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Alexander M, Kim SY and Cheng H: Update 2020: Management of non-small cell lung cancer. Lung. 198:897–907. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ghaznavi H, Shirvaliloo M, Zarebkohan A, Shams Z, Radnia F, Bahmanpour Z, Sargazi S, Saravani R, Shirvalilou S, Shahraki O, et al: An updated review on implications of autophagy and apoptosis in tumorigenesis: Possible alterations in autophagy through engineered nanomaterials and their importance in cancer therapy. Mol Pharmacol. 100:119–143. 2021. View Article : Google Scholar : PubMed/NCBI | |
Brown JM and Attardi LD: The role of apoptosis in cancer development and treatment response. Nat Rev Cancer. 5:231–237. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Hu Y, Xiao W and Tian Z: Chimeric antigen receptor- and natural killer cell receptor-engineered innate killer cells in cancer immunotherapy. Cell Mol Immunol. 18:2083–2100. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ling CQ, Yue XQ and Ling C: Three advantages of using traditional Chinese medicine to prevent and treat tumor. J Integr Med. 12:331–335. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Lou Y, Wang J, Yu C and Shen W: Research status and molecular mechanism of the traditional Chinese medicine and antitumor therapy combined strategy based on tumor microenvironment. Front Immunol. 11:6097052021. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Chen Q, Shao Y, Yin S, Liu C, Liu Y, Wang R, Wang T, Qiu Y and Yu H: Anticancer activities of TCM and their active components against tumor metastasis. Biomed Pharmacother. 133:1110442021. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Zhong Z, Tan HY, Guo W, Zhang C, Tan CW, Li S, Wang N and Feng Y: Uncovering the anticancer mechanisms of Chinese herbal medicine formulas: Therapeutic alternatives for liver cancer. Front Pharmacol. 11:2932020. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Yang P and Jia Y: Molecular mechanisms of astragaloside-IV in cancer therapy (review). Int J Mol Med. 47:132021. View Article : Google Scholar : PubMed/NCBI | |
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, et al: Naturally occurring anti-cancer compounds: Shining from Chinese herbal medicine. Chin Med. 14:482019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang Q, Chen Y, Liang CL, Liu H, Qiu F and Dai Z: Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomed Pharmacother. 121:1095702020. View Article : Google Scholar : PubMed/NCBI | |
Royal Botanic Gardens, Kew. https://mpns.science.kew.org/mpns-portal/?_ga=1.111763972.1427522246.1459077346 | |
Chang X, Chen X, Guo Y, Gong P, Pei S, Wang D, Wang P, Wang M and Chen F: Advances in chemical composition, extraction techniques, analytical methods, and biological activity of astragali radix. Molecules. 27:10582022. View Article : Google Scholar : PubMed/NCBI | |
Guo Z, Lou Y, Kong M, Luo Q, Liu Z and Wu J: A systematic review of phytochemistry, pharmacology and pharmacokinetics on astragali radix: Implications for astragali radix as a personalized medicine. Int J Mol Sci. 20:14632019. View Article : Google Scholar : PubMed/NCBI | |
Zhang CH, Yang X, Wei JR, Chen NM, Xu JP, Bi YQ, Yang M, Gong X, Li ZY, Ren K, et al: Ethnopharmacology, phytochemistry, pharmacology, toxicology and clinical applications of radix astragali. Chin J Integr Med. 27:229–240. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li X, Qu L, Dong Y, Han L, Liu E, Fang S, Zhang Y and Wang T: A review of recent research progress on the astragalus genus. Molecules. 19:18850–18880. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kong S, Ou S, Liu Y, Xie M, Mei T, Zhang Y, Zhang J, Wang Q and Yang B: Surface-enhanced raman spectroscopy analysis of astragalus saponins and identification of metabolites after oral administration in rats by ultrahigh-performance liquid chromatography/quadrupole time-of-flight mass spectrometry analysis. Front Pharmacol. 13:8284492022. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Tang D, Zang W, Yin G, Dai J, Sun YU, Yang Z, Hoffman RM and Guo X: Synergistic inhibitory effect of traditional Chinese medicine astragaloside IV and curcumin on tumor growth and angiogenesis in an orthotopic nude-mouse model of human hepatocellular carcinoma. Anticancer Res. 37:465–473. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Wu C, Gao L, Du G and Qin X: Astragaloside IV derived from Astragalus membranaceus: A research review on the pharmacological effects. Adv Pharmacol. 87:89–112. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gong AGW, Duan R, Wang HY, Kong XP, Dong TTX, Tsim KWK and Chan K: Evaluation of the pharmaceutical properties and value of astragali radix. Medicines (Basel). 5:462018. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhou J, Qin X, Huang H and Nie C: Astragaloside IV inhibits the invasion and metastasis of SiHa cervical cancer cells via the TGF-β1-mediated PI3K and MAPK pathways. Oncol Rep. 41:2975–2986. 2019.PubMed/NCBI | |
Sun P, Liu Y, Wang Q and Zhang B: Astragaloside IV inhibits human colorectal cancer cell growth. Front Biosci (Landmark Ed). 24:597–606. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mariño G, Niso-Santano M, Baehrecke EH and Kroemer G: Self-consumption: The interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 15:81–94. 2014. View Article : Google Scholar : PubMed/NCBI | |
D'Arcy MS: Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 43:582–592. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim C and Kim B: Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review. Nutrients. 10:10212018. View Article : Google Scholar : PubMed/NCBI | |
Hata AN, Engelman JA and Faber AC: The BCL2 family: Key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov. 5:475–487. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jia L, Lv D, Zhang S, Wang Z and Zhou B: Astragaloside IV inhibits the progression of non-small cell lung cancer through the Akt/GSK-3β/β-catenin pathway. Oncol Res. 27:503–508. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu T, Fei Z and Wei N: Chemosensitive effects of astragaloside IV in osteosarcoma cells via induction of apoptosis and regulation of caspase-dependent Fas/FasL signaling. Pharmacol Rep. 69:1159–1164. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Mou J, Cui L, Wang X and Zhang Z: Astragaloside IV inhibits cell proliferation of colorectal cancer cell lines through down-regulation of B7-H3. Biomed Pharmacother. 102:1037–1044. 2018. View Article : Google Scholar : PubMed/NCBI | |
Su CM, Wang HC, Hsu FT, Lu CH, Lai CK, Chung JG and Kuo YC: Astragaloside IV induces apoptosis, G1-phase arrest and inhibits anti-apoptotic signaling in hepatocellular carcinoma. In vivo. 34:631–638. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim MO, Lee HS, Chin YW, Moon DO and Ahn JS: Gartanin induces autophagy through JNK activation which extenuates caspase-dependent apoptosis. Oncol Rep. 34:139–146. 2015. View Article : Google Scholar : PubMed/NCBI | |
Amaravadi RK, Kimmelman AC and Debnath J: Targeting autophagy in cancer: Recent advances and future directions. Cancer Discov. 9:1167–1181. 2019. View Article : Google Scholar : PubMed/NCBI | |
Russell RC, Yuan HX and Guan KL: Autophagy regulation by nutrient signaling. Cell Res. 24:42–57. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu HL, Yang C and Liu HF: p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett. 21:292016. View Article : Google Scholar : PubMed/NCBI | |
Li L, Li G, Chen M and Cai R: Astragaloside IV enhances the sensibility of lung adenocarcinoma cells to bevacizumab by inhibiting autophagy. Drug Dev Res. 83:461–469. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li QW, Zhang GL, Hao CX, Ma YF, Sun X, Zhang Y, Cao KX, Li BX, Yang GW and Wang XM: SANT, a novel Chinese herbal monomer combination, decreasing tumor growth and angiogenesis via modulating autophagy in heparanase overexpressed triple-negative breast cancer. J Ethnopharmacol. 266:1134302021. View Article : Google Scholar : PubMed/NCBI | |
Lai ST, Wang Y and Peng F: Astragaloside IV sensitizes non-small cell lung cancer cells to cisplatin by suppressing endoplasmic reticulum stress and autophagy. J Thorac Dis. 12:3715–3724. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang B, Yang N, Chen Y, Zhu M, Lian Y, Xiong Z, Wang B, Feng L and Jia X: An integrated strategy for effective-component discovery of astragali radix in the treatment of lung cancer. Front Pharmacol. 11:5809782021. View Article : Google Scholar : PubMed/NCBI | |
Qu X, Gao H, Zhai J, Sun J, Tao L, Zhang Y, Song Y and Hu T: Astragaloside IV enhances cisplatin chemosensitivity in hepatocellular carcinoma by suppressing MRP2. Eur J Pharm Sci. 148:1053252020. View Article : Google Scholar : PubMed/NCBI | |
Xia C, He Z and Cai Y: Quantitative proteomics analysis of differentially expressed proteins induced by astragaloside IV in cervical cancer cell invasion. Cell Mol Biol Lett. 25:252020. View Article : Google Scholar : PubMed/NCBI | |
Liang X: EMT: New signals from the invasive front. Oral Oncol. 47:686–687. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez DM and Medici D: Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 7:re82014. View Article : Google Scholar : PubMed/NCBI | |
Ribatti D: Epithelial-mesenchymal transition in morphogenesis, cancer progression and angiogenesis. Exp Cell Res. 353:1–5. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kozak J, Forma A, Czeczelewski M, Kozyra P, Sitarz E, Radzikowska-Büchner E, Sitarz M and Baj J: Inhibition or reversal of the epithelial-mesenchymal transition in gastric cancer: Pharmacological approaches. Int J Mol Sci. 22:2772020. View Article : Google Scholar : PubMed/NCBI | |
Zhu J and Wen K: Astragaloside IV inhibits TGF-β1-induced epithelial-mesenchymal transition through inhibition of the PI3K/Akt/NF-κB pathway in gastric cancer cells. Phytother Res. 32:1289–1296. 2018. View Article : Google Scholar : PubMed/NCBI | |
Han J, Shen X, Zhang Y, Wang S and Zhou L: Astragaloside IV suppresses transforming growth factor-β1-induced epithelial-mesenchymal transition through inhibition of Wnt/β-catenin pathway in glioma U251 cells. Biosci Biotechnol Biochem. 84:1345–1352. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Gao S, Song L, Liu M, Sun Z and Liu J: Astragaloside IV antagonizes M2 phenotype macrophage polarization-evoked ovarian cancer cell malignant progression by suppressing the HMGB1-TLR4 axis. Mol Immunol. 130:113–121. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang ZF, Ma DG, Zhu Z, Mu YP, Yang YY, Feng L, Yang H, Liang JQ, Liu YY, Liu L and Lu HW: Astragaloside IV inhibits pathological functions of gastric cancer-associated fibroblasts. World J Gastroenterol. 23:8512–8525. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mei J, Xiao Z, Guo C, Pu Q, Ma L, Liu C, Lin F, Liao H, You Z and Liu L: Prognostic impact of tumor-associated macrophage infiltration in non-small cell lung cancer: A systemic review and meta-analysis. Oncotarget. 7:34217–34228. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cuccarese MF, Dubach JM, Pfirschke C, Engblom C, Garris C, Miller MA, Pittet MJ and Weissleder R: Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nat Commun. 8:142932017. View Article : Google Scholar : PubMed/NCBI | |
Sawa-Wejksza K, Dudek A, Lemieszek M, Kaławaj K and Kandefer-Szerszeń M: Colon cancer-derived conditioned medium induces differentiation of THP-1 monocytes into a mixed population of M1/M2 cells. Tumour Biol. 40:10104283187978802018. View Article : Google Scholar : PubMed/NCBI | |
Li N, Qin J, Lan L, Zhang H, Liu F, Wu Z, Ni H and Wang Y: PTEN inhibits macrophage polarization from M1 to M2 through CCL2 and VEGF-A reduction and NHERF-1 synergism. Cancer Biol Ther. 16:297–306. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Cui WQ, Wei Y, Cui J, Qiu J, Hu LL, Gong WY, Dong JC and Liu BJ: Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling. J Exp Clin Cancer Res. 37:2072018. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Ran F, He H and Chen L: Astragaloside IV exerts anti-tumor effect on murine colorectal cancer by re-educating tumor-associated macrophage. Arch Immunol Ther Exp (Warsz). 68:332020. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Ye X, Pitmon E, Lu M, Wan J, Jellison ER, Adler AJ, Vella AT and Wang K: IL-17 inhibits CXCL9/10-mediated recruitment of CD8+ cytotoxic T cells and regulatory T cells to colorectal tumors. J Immunother Cancer. 7:3242019. View Article : Google Scholar : PubMed/NCBI | |
Huang LF, Yao YM, Li JF, Zhang SW, Li WX, Dong N, Yu Y and Sheng ZY: The effect of astragaloside IV on immune function of regulatory T cell mediated by high mobility group box 1 protein in vitro. Fitoterapia. 83:1514–1522. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang A, Zheng Y, Que Z, Zhang L, Lin S, Le V, Liu J and Tian J: Astragaloside IV inhibits progression of lung cancer by mediating immune function of Tregs and CTLs by interfering with IDO. J Cancer Res Clin Oncol. 140:1883–1890. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Chen H and Wang D: Protective role of astragaloside IV in gastric cancer through regulation of microRNA-195-5p-mediated PD-L1. Immunopharmacol Immunotoxicol. 43:443–451. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang PP, Luan JJ, Xu WK, Wang L, Xu DJ, Yang CY, Zhu YH and Wang YQ: Astragaloside IV downregulates the expression of MDR1 in Bel-7402/FU human hepatic cancer cells by inhibiting the JNK/c-Jun/AP-1 signaling pathway. Mol Med Rep. 16:2761–2766. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xie T, Li Y, Li SL and Luo HF: Astragaloside IV enhances cisplatin chemosensitivity in human colorectal cancer via regulating NOTCH3. Oncol Res. 24:447–453. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dulloo I, Phang BH, Othman R, Tan SY, Vijayaraghavan A, Goh LK, Martin-Lopez M, Marques MM, Li CW, Wang de Y, et al: Hypoxia-inducible TAp73 supports tumorigenesis by regulating the angiogenic transcriptome. Nat Cell Biol. 17:511–523. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jain RK: Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science. 307:58–62. 2005. View Article : Google Scholar : PubMed/NCBI | |
MacDonald BT, Tamai K and He X: Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Zhou XM, Yang FF, Miao Y, Yin Y, Hu XJ, Hou G, Wang QY and Kang J: TRIM22 confers poor prognosis and promotes epithelial-mesenchymal transition through regulation of AKT/GSK3β/β-catenin signaling in non-small cell lung cancer. Oncotarget. 8:62069–62080. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qin CD, Ma DN, Ren ZG, Zhu XD, Wang CH, Wang YC, Ye BG, Cao MQ, Gao DM and Tang ZY: Astragaloside IV inhibits metastasis in hepatoma cells through the suppression of epithelial-mesenchymal transition via the Akt/GSK-3β/β-catenin pathway. Oncol Rep. 37:1725–1735. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu C, Xie Z and Lu H: Knockdown of TRIM47 inhibits breast cancer tumorigenesis and progression through the inactivation of PI3K/Akt pathway. Chem Biol Interact. 317:1089602020. View Article : Google Scholar : PubMed/NCBI | |
Li R, Song Y, Zhou L, Li W and Zhu X: Downregulation of RAGE inhibits cell proliferation and induces apoptosis via regulation of PI3K/AKT pathway in cervical squamous cell carcinoma. Onco Targets Ther. 13:2385–2397. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Wang L, Wang Y, Dong S, Yang S, Guan Y and Wu X: Astragaloside IV inhibits cell proliferation in vulvar squamous cell carcinoma through the TGF-β/Smad signaling pathway. Dermatol Ther. 32:e128022019.PubMed/NCBI | |
Zhang XQ, Yao C, Bian WH, Chen X, Xue JX, Zhu ZY, Ying Y, Xu YL and Wang C: Effects of astragaloside IV on treatment of breast cancer cells execute possibly through regulation of Nrf2 via PI3K/AKT/mTOR signaling pathway. Food Sci Nutr. 7:3403–3413. 2019. View Article : Google Scholar : PubMed/NCBI | |
He Y, Zhang Q, Chen H, Guo Q, Zhang L, Zhang Z and Li Y: Astragaloside IV enhanced carboplatin sensitivity in prostate cancer by suppressing AKT/NF-κB signaling pathway. Biochem Cell Biol. 99:214–222. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tanaka Y, Kobayashi H, Suzuki M, Kanayama N and Terao T: Transforming growth factor-beta1-dependent urokinase up-regulation and promotion of invasion are involved in Src-MAPK-dependent signaling in human ovarian cancer cells. J Biol Chem. 279:8567–8576. 2004. View Article : Google Scholar : PubMed/NCBI | |
Anfuso CD, Motta C, Giurdanella G, Arena V, Alberghina M and Lupo G: Endothelial PKCα-MAPK/ERK-phospholipase A2 pathway activation as a response of glioma in a triple culture model. A new role for pericytes? Biochimie. 99:77–87. 2014.PubMed/NCBI | |
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 19:1997–2007. 2020.PubMed/NCBI | |
Li B, Wang F, Liu N, Shen W and Huang T: Astragaloside IV inhibits progression of glioma via blocking MAPK/ERK signaling pathway. Biochem Biophys Res Commun. 491:98–103. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang K, Lu Q, Li Q, Ji Y, Chen W and Xue X: Astragaloside IV inhibits breast cancer cell invasion by suppressing Vav3 mediated Rac1/MAPK signaling. Int Immunopharmacol. 42:195–202. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, Gu J, Zhang M, Yuan J, Zhao B, Jiang J and Jia X: Astragaloside IV inhibits migration and invasion in human lung cancer A549 cells via regulating PKC-α-ERK1/2-NF-κB pathway. Int Immunopharmacol. 23:304–313. 2014. View Article : Google Scholar : PubMed/NCBI | |
Komohara Y, Fujiwara Y, Ohnishi K and Takeya M: Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev. 99:180–185. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xie C, Liu D, Chen Q, Yang C, Wang B and Wu H: Soluble B7-H3 promotes the invasion and metastasis of pancreatic carcinoma cells through the TLR4/NF-κB pathway. Sci Rep. 6:275282016. View Article : Google Scholar : PubMed/NCBI | |
Hong F, Xiao W, Ragupathi G, Lau CB, Leung PC, Yeung KS, George C, Cassileth B, Kennelly E and Livingston PO: The known immunologically active components of astragalus account for only a small proportion of the immunological adjuvant activity when combined with conjugate vaccines. Planta Med. 77:817–824. 2011. View Article : Google Scholar : PubMed/NCBI | |
Min L, Wang H and Qi H: Astragaloside IV inhibits the progression of liver cancer by modulating macrophage polarization through the TLR4/NF-κB/STAT3 signaling pathway. Am J Transl Res. 14:1551–1566. 2022.PubMed/NCBI | |
Zhang C, Li L, Hou S, Shi Z, Xu W, Wang Q, He Y, Gong Y, Fang Z and Yang Y: Astragaloside IV inhibits hepatocellular carcinoma by continually suppressing the development of fibrosis and regulating pSmad3C/3L and Nrf2/HO-1 pathways. J Ethnopharmacol. 279:1143502021. View Article : Google Scholar : PubMed/NCBI | |
Li F, Cao K, Wang M, Liu Y and Zhang Y: Astragaloside IV exhibits anti-tumor function in gastric cancer via targeting circRNA dihydrolipoamide S-succinyltransferase (circDLST)/miR-489-3p/eukaryotic translation initiation factor 4A1(EIF4A1) pathway. Bioengineered. 13:10111–10122. 2022.PubMed/NCBI | |
Zhang J, Hou L, Liang R, Chen X, Zhang R, Chen W and Zhu J: CircDLST promotes the tumorigenesis and metastasis of gastric cancer by sponging miR-502-5p and activating the NRAS/MEK1/ERK1/2 signaling. Mol Cancer. 18:802019. View Article : Google Scholar : PubMed/NCBI | |
Cui X, Jiang X, Wei C, Xing Y and Tong G: Astragaloside IV suppresses development of hepatocellular carcinoma by regulating miR-150-5p/β-catenin axis. Environ Toxicol Pharmacol. 78:1033972020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Botchway BOA and Liu X: The repression of the HMGB1-TLR4-NF-κB signaling pathway by safflower yellow may improve spinal cord injury. Front Neurosci. 15:8038852021. View Article : Google Scholar : PubMed/NCBI |