HSP90 inhibitors and cancer: Prospects for use in targeted therapies (Review)
- Authors:
- Zi-Nan Li
- Ying Luo
-
Affiliations: Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China - Published online on: November 9, 2022 https://doi.org/10.3892/or.2022.8443
- Article Number: 6
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Condelli V, Crispo F, Pietrafesa M, Lettini G, Matassa DS, Esposito F, Landriscina M and Maddalena F: HSP90 molecular chaperones, metabolic rewiring, and epigenetics: Impact on tumor progression and perspective for anticancer therapy. Cells. 8:5322019. View Article : Google Scholar : PubMed/NCBI | |
Hoter A, El-Sabban ME and Naim HY: The HSP90 family: Structure, regulation, function, and implications in health and disease. Int J Mol Sci. 19:25602018. View Article : Google Scholar : PubMed/NCBI | |
Whitesell L and Lindquist SL: HSP90 and the chaperoning of cancer. Nat Rev Cancer. 5:761–772. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang H and Burrows F: Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med (Berl). 82:488–499. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chiosis G: Targeting chaperones in transformed systems-a focus on HSP90 and cancer. Expert Opin Ther Targets. 10:37–50. 2006. View Article : Google Scholar : PubMed/NCBI | |
Workman P: Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett. 206:149–157. 2004. View Article : Google Scholar : PubMed/NCBI | |
Csermely P, Schnaider T, Soti C, Prohaszka Z and Nardai G: The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review. Pharmacol Ther. 79:129–168. 1998. View Article : Google Scholar : PubMed/NCBI | |
Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW and Pearl LH: Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell. 90:65–75. 1997. View Article : Google Scholar : PubMed/NCBI | |
Meyer P, Prodromou C, Hu B, Vaughan C, Roe SM, Panaretou B, Piper PW and Pearl LH: Structural and functional analysis of the middle segment of hsp90: Implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell. 11:647–658. 2003. View Article : Google Scholar : PubMed/NCBI | |
Minami Y, Kimura Y, Kawasaki H, Suzuki K and Yahara I: The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function in vivo. Mol Cell Biol. 14:1459–1464. 1994. View Article : Google Scholar : PubMed/NCBI | |
Panaretou B, Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW and Pearl LH: ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J. 17:4829–4836. 1998. View Article : Google Scholar : PubMed/NCBI | |
Vorherr T, Knopfel L, Hofmann F, Mollner S, Pfeuffer T and Carafoli E: The calmodulin binding domain of nitric oxide synthase and adenylyl cyclase. Biochemistry. 32:6081–6088. 1993. View Article : Google Scholar : PubMed/NCBI | |
Jackson SE: Hsp90: Structure and function. Top Curr Chem. 328:155–240. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li J, Soroka J and Buchner J: The Hsp90 chaperone machinery: Conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta. 1823:624–635. 2012. View Article : Google Scholar : PubMed/NCBI | |
Marzec M, Eletto D and Argon Y: GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim Biophys Acta. 1823:774–787. 2012. View Article : Google Scholar : PubMed/NCBI | |
Amoroso MR, Matassa DS, Sisinni L, Lettini G, Landriscina M and Esposito F: TRAP1 revisited: Novel localizations and functions of a ‘next-generation’ biomarker (review). Int J Oncol. 45:969–977. 2014. View Article : Google Scholar : PubMed/NCBI | |
Soga S, Akinaga S and Shiotsu Y: Hsp90 inhibitors as anti-cancer agents, from basic discoveries to clinical development. Curr Pharm Des. 19:366–376. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sanchez J, Carter TR, Cohen MS and Blagg BSJ: Old and new approaches to target the Hsp90 chaperone. Curr Cancer Drug Targets. 20:253–270. 2020. View Article : Google Scholar : PubMed/NCBI | |
Koren J III and Blagg BSJ: The right tool for the job: An overview of Hsp90 inhibitors. Adv Exp Med Biol. 1243:135–146. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jhaveri K, Taldone T, Modi S and Chiosis G: Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta. 1823:742–755. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dutta R and Inouye M: GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci. 25:24–28. 2000. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Devin J, Sullivan WP, Toft D, Baulieu EE and Catelli MG: Mutational analysis of Hsp90 alpha dimerization and subcellular localization: Dimer disruption does not impede ‘in vivo’ interaction with estrogen receptor. J Cell Sci. 109:1677–1687. 1996. View Article : Google Scholar : PubMed/NCBI | |
Soti C, Vermes A, Haystead TA and Csermely P: Comparative analysis of the ATP-binding sites of Hsp90 by nucleotide affinity cleavage: A distinct nucleotide specificity of the C-terminal ATP-binding site. Eur J Biochem. 270:2421–2428. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sreedhar AS, Kalmar E, Csermely P and Shen YF: Hsp90 isoforms: Functions, expression and clinical importance. FEBS Lett. 562:11–15. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tsutsumi S, Mollapour M, Prodromou C, Lee CT, Panaretou B, Yoshida S, Mayer MP and Neckers LM: Charged linker sequence modulates eukaryotic heat shock protein 90 (Hsp90) chaperone activity. Proc Natl Acad Sci USA. 109:2937–2942. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rowlands M, McAndrew C, Prodromou C, Pearl L, Kalusa A, Jones K, Workman P and Aherne W: Detection of the ATPase activity of the molecular chaperones Hsp90 and Hsp72 using the TranscreenerTM ADP assay kit. J Biomol Screen. 15:279–286. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wandinger SK, Richter K and Buchner J: The Hsp90 chaperone machinery. J Biol Chem. 283:18473–18477. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ali MM, Roe SM, Vaughan CK, Meyer P, Panaretou B, Piper PW, Prodromou C and Pearl LH: Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature. 440:1013–1017. 2006. View Article : Google Scholar : PubMed/NCBI | |
Richter K, Soroka J, Skalniak L, Leskovar A, Hessling M, Reinstein J and Buchner J: Conserved conformational changes in the ATPase cycle of human Hsp90. J Biol Chem. 283:17757–17765. 2008. View Article : Google Scholar : PubMed/NCBI | |
Terasawa K, Minami M and Minami Y: Constantly updated knowledge of Hsp90. J Biochem. 137:443–447. 2005. View Article : Google Scholar : PubMed/NCBI | |
Meyer P, Prodromou C, Liao C, Hu B, Roe SM, Vaughan CK, Vlasic I, Panaretou B, Piper PW and Pearl LH: Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J. 23:1402–1410. 2004. View Article : Google Scholar : PubMed/NCBI | |
Langer T, Rosmus S and Fasold H: Intracellular localization of the 90 kDA heat shock protein (HSP90alpha) determined by expression of a EGFP-HSP90alpha-fusion protein in unstressed and heat stressed 3T3 cells. Cell Biol Int. 27:47–52. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Song X, Zhuo W, Fu Y, Shi H, Liang Y, Tong M, Chang G and Luo Y: The regulatory mechanism of Hsp90alpha secretion and its function in tumor malignancy. Proc Natl Acad Sci USA. 106:21288–21293. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sidera K, Samiotaki M, Yfanti E, Panayotou G and Patsavoudi E: Involvement of cell surface HSP90 in cell migration reveals a novel role in the developing nervous system. J Biol Chem. 279:45379–45388. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tsutsumi S and Neckers L: Extracellular heat shock protein 90: A role for a molecular chaperone in cell motility and cancer metastasis. Cancer Sci. 98:1536–1539. 2007. View Article : Google Scholar : PubMed/NCBI | |
Stellas D, Karameris A and Patsavoudi E: Monoclonal antibody 4C5 immunostains human melanomas and inhibits melanoma cell invasion and metastasis. Clin Cancer Res. 13:1831–1838. 2007. View Article : Google Scholar : PubMed/NCBI | |
Eletto D, Dersh D and Argon Y: GRP94 in ER quality control and stress responses. Semin Cell Dev Biol. 21:479–485. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hua G, Zhang Q and Fan Z: Heat shock protein 75 (TRAP1) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis. J Biol Chem. 282:20553–20560. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sciacovelli M, Guzzo G, Morello V, Frezza C, Zheng L, Nannini N, Calabrese F, Laudiero G, Esposito F, Landriscina M, et al: The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase. Cell Metab. 17:988–999. 2013. View Article : Google Scholar : PubMed/NCBI | |
Masgras I, Sanchez-Martin C, Colombo G and Rasola A: The chaperone TRAP1 as a modulator of the mitochondrial adaptations in cancer cells. Front Oncol. 7:582017. View Article : Google Scholar : PubMed/NCBI | |
Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, et al: Navigating the chaperone network: An integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell. 120:715–727. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pratt WB, Morishima Y and Osawa Y: The Hsp90 chaperone machinery regulates signaling by modulating ligand binding clefts. J Biol Chem. 283:22885–22889. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zuehlke A and Johnson JL: Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolymers. 93:211–217. 2010. View Article : Google Scholar : PubMed/NCBI | |
Diaz-Villanueva JF, Diaz-Molina R and Garcia-Gonzalez V: Protein folding and mechanisms of proteostasis. Int J Mol Sci. 16:17193–17230. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pearl LH, Prodromou C and Workman P: The Hsp90 molecular chaperone: An open and shut case for treatment. Biochem J. 410:439–453. 2008. View Article : Google Scholar : PubMed/NCBI | |
Trepel J, Mollapour M, Giaccone G and Neckers L: Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer. 10:537–549. 2010. View Article : Google Scholar : PubMed/NCBI | |
Neckers L and Workman P: Hsp90 molecular chaperone inhibitors: Are we there yet? Clin Cancer Res. 18:64–76. 2012. View Article : Google Scholar : PubMed/NCBI | |
Garg G, Khandelwal A and Blagg BS: Anticancer inhibitors of Hsp90 function: Beyond the usual suspects. Adv Cancer Res. 129:51–88. 2016. View Article : Google Scholar : PubMed/NCBI | |
Neckers L, Mimnaugh E and Schulte TW: Hsp90 as an anti-cancer target. Drug Resist Updat. 2:165–172. 1999. View Article : Google Scholar : PubMed/NCBI | |
Modi S, Stopeck A, Linden H, Solit D, Chandarlapaty S, Rosen N, D'Andrea G, Dickler M, Moynahan ME, Sugarman S, et al: HSP90 inhibition is effective in breast cancer: A phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res. 17:5132–5139. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ishikawa Y, Kozakai T, Morita H, Saida K, Oka S and Masuo Y: Rapid detection of mycoplasma contamination in cell cultures using SYBR Green-based real-time polymerase chain reaction. In Vitro Cell Dev Biol Anim. 42:63–69. 2006. View Article : Google Scholar : PubMed/NCBI | |
Miyata Y, Nakamoto H and Neckers L: The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des. 19:347–365. 2013. View Article : Google Scholar : PubMed/NCBI | |
Barrott JJ and Haystead TA: Hsp90, an unlikely ally in the war on cancer. FEBS J. 280:1381–1396. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mori M, Hitora T, Nakamura O, Yamagami Y, Horie R, Nishimura H and Yamamoto T: Hsp90 inhibitor induces autophagy and apoptosis in osteosarcoma cells. Int J Oncol. 46:47–54. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ciocca DR and Calderwood SK: Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 10:86–103. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Taranejoo S and Zali H: HSP90 and Co-chaperones: Impact on tumor progression and prospects for molecular-targeted cancer therapy. Cancer Invest. 38:310–328. 2020. View Article : Google Scholar : PubMed/NCBI | |
Birbo B, Madu EE, Madu CO, Jain A and Lu Y: Role of HSP90 in cancer. Int J Mol Sci. 22:103172021. View Article : Google Scholar : PubMed/NCBI | |
Pick E, Kluger Y, Giltnane JM, Moeder C, Camp RL, Rimm DL and Kluger HM: High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res. 67:2932–2937. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cheng Q, Chang JT, Geradts J, Neckers LM, Haystead T, Spector NL and Lyerly HK: Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer. Breast Cancer Res. 14:R622012. View Article : Google Scholar : PubMed/NCBI | |
Moran Luengo T, Mayer MP and Rudiger SGD: The Hsp70-Hsp90 chaperone cascade in protein folding. Trends Cell Biol. 29:164–177. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC and Burrows FJ: A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature. 425:407–410. 2003. View Article : Google Scholar : PubMed/NCBI | |
Moulick K, Ahn JH, Zong H, Rodina A, Cerchietti L, Gomes DaGama EM, Caldas-Lopes E, Beebe K, Perna F, Hatzi K, et al: Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol. 7:818–826. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ferrarini M, Heltai S, Zocchi MR and Rugarli C: Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer. 51:613–619. 1992. View Article : Google Scholar : PubMed/NCBI | |
Sims JD, McCready J and Jay DG: Extracellular heat shock protein (Hsp)70 and Hsp90alpha assist in matrix metalloproteinase-2 activation and breast cancer cell migration and invasion. PLoS One. 6:e188482011. View Article : Google Scholar : PubMed/NCBI | |
Cheng CF, Fan J, Fedesco M, Guan S, Li Y, Bandyopadhyay B, Bright AM, Yerushalmi D, Liang M, Chen M, et al: Transforming growth factor alpha (TGFalpha)-stimulated secretion of HSP90alpha: Using the receptor LRP-1/CD91 to promote human skin cell migration against a TGFbeta-rich environment during wound healing. Mol Cell Biol. 28:3344–3358. 2008. View Article : Google Scholar : PubMed/NCBI | |
Eustace BK, Sakurai T, Stewart JK, Yimlamai D, Unger C, Zehetmeier C, Lain B, Torella C, Henning SW, Beste G, et al: Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol. 6:507–514. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gorska M, Popowska U, Sielicka-Dudzin A, Kuban-Jankowska A, Sawczuk W, Knap N, Cicero G and Wozniak F: Geldanamycin and its derivatives as Hsp90 inhibitors. Front Biosci (Landmark Ed). 17:2269–2277. 2012. View Article : Google Scholar : PubMed/NCBI | |
Samuni Y, Ishii H, Hyodo F, Samuni U, Krishna MC, Goldstein S and Mitchell JB: Reactive oxygen species mediate hepatotoxicity induced by the Hsp90 inhibitor geldanamycin and its analogs. Free Radic Biol Med. 48:1559–1563. 2010. View Article : Google Scholar : PubMed/NCBI | |
Biamonte MA, Van de Water R, Arndt JW, Scannevin RH, Perret D and Lee WC: Heat shock protein 90: Inhibitors in clinical trials. J Med Chem. 53:3–17. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ronnen EA, Kondagunta GV, Ishill N, Sweeney SM, Deluca JK, Schwartz L, Bacik J and Motzer RJ: A phase II trial of 17-(Allylamino)-17-demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma. Invest New Drugs. 24:543–546. 2006. View Article : Google Scholar : PubMed/NCBI | |
Solit DB, Osman I, Polsky D, Panageas KS, Daud A, Goydos JS, Teitcher J, Wolchok JD, Germino FJ, Krown SE, et al: Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin Cancer Res. 14:8302–8307. 2008. View Article : Google Scholar : PubMed/NCBI | |
Heath EI, Hillman DW, Vaishampayan U, Sheng S, Sarkar F, Harper F, Gaskins M, Pitot HC, Tan W, Ivy SP, et al: A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin Cancer Res. 14:7940–7946. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hanson BE and Vesole DH: Retaspimycin hydrochloride (IPI-504): A novel heat shock protein inhibitor as an anticancer agent. Expert Opin Investig Drugs. 18:1375–1383. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim YS, Alarcon SV, Lee S, Lee MJ, Giaccone G, Neckers L and Trepel JB: Update on Hsp90 inhibitors in clinical trial. Curr Top Med Chem. 9:1479–1492. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wagner AJ, Chugh R, Rosen LS, Morgan JA, George S, Gordon M, Dunbar J, Normant E, Grayzel D and Demetri GD: A phase I study of the HSP90 inhibitor retaspimycin hydrochloride (IPI-504) in patients with gastrointestinal stromal tumors or soft-tissue sarcomas. Clin Cancer Res. 19:6020–6029. 2013. View Article : Google Scholar : PubMed/NCBI | |
Floris G, Sciot R, Wozniak A, Van Looy T, Wellens J, Faa G, Normant E, Debiec-Rychter M and Schoffski P: The Novel HSP90 inhibitor, IPI-493, is highly effective in human gastrostrointestinal stromal tumor xenografts carrying heterogeneous KIT mutations. Clin Cancer Res. 17:5604–5614. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mellatyar H, Talaei S, Pilehvar-Soltanahmadi Y, Barzegar A, Akbarzadeh A, Shahabi A, Barekati-Mowahed M and Zarghami N: Targeted cancer therapy through 17-DMAG as an Hsp90 inhibitor: Overview and current state of the art. Biomed Pharmacother. 102:608–617. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wright L, Barril X, Dymock B, Sheridan L, Surgenor A, Beswick M, Drysdale M, Collier A, Massey A, Davies N, et al: Structure-activity relationships in purine-based inhibitor binding to HSP90 isoforms. Chem Biol. 11:775–785. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lundgren K, Zhang H, Brekken J, Huser N, Powell RE, Timple N, Busch DJ, Neely L, Sensintaffar JL, Yang YC, et al: BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Mol Cancer Ther. 8:921–929. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dickson MA, Okuno SH, Keohan ML, Maki RG, D'Adamo DR, Akhurst TJ, Antonescu CR and Schwartz GK: Phase II study of the HSP90-inhibitor BIIB021 in gastrointestinal stromal tumors. Ann Oncol. 24:252–257. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yan L, Zhang W, Zhang B, Xuan C and Wang D: BIIB021: A novel inhibitor to heat shock protein 90-addicted oncology. Tumour Biol. 39:10104283176983552017. View Article : Google Scholar : PubMed/NCBI | |
Hong D, Said R, Falchook G, Naing A, Moulder S, Tsimberidou AM, Galluppi G, Dakappagari N, Storgard C, Kurzrock R and Rosen LS: Phase I study of BIIB028, a selective heat shock protein 90 inhibitor, in patients with refractory metastatic or locally advanced solid tumors. Clin Cancer Res. 19:4824–4831. 2013. View Article : Google Scholar : PubMed/NCBI | |
Caldas-Lopes E, Cerchietti L, Ahn JH, Clement CC, Robles AI, Rodina A, Moulick K, Taldone T, Gozman A, Guo Y, et al: Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci USA. 106:8368–8373. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cerchietti LC, Lopes EC, Yang SN, Hatzi K, Bunting KL, Tsikitas LA, Mallik A, Robles AI, Walling J, Varticovski L, et al: A purine scaffold Hsp90 inhibitor destabilizes BCL-6 and has specific antitumor activity in BCL-6-dependent B cell lymphomas. Nat Med. 15:1369–1376. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ambati SR, Lopes EC, Kosugi K, Mony U, Zehir A, Shah SK, Taldone T, Moreira AL, Meyers PA, Chiosis G, et al: Pre-clinical efficacy of PU-H71, a novel HSP90 inhibitor, alone and in combination with bortezomib in Ewing sarcoma. Mol Oncol. 8:323–336. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fadden P, Huang KH, Veal JM, Steed PM, Barabasz AF, Foley B, Hu M, Partridge JM, Rice J, Scott A, et al: Application of chemoproteomics to drug discovery: Identification of a clinical candidate targeting hsp90. Chem Biol. 17:686–694. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang KH, Veal JM, Fadden RP, Rice JW, Eaves J, Strachan JP, Barabasz AF, Foley BE, Barta TE, Ma W, et al: Discovery of novel 2-aminobenzamide inhibitors of heat shock protein 90 as potent, selective and orally active antitumor agents. J Med Chem. 52:4288–4305. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cheung KM, Matthews TP, James K, Rowlands MG, Boxall KJ, Sharp SY, Maloney A, Roe SM, Prodromou C, Pearl LH, et al: The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3,4-diarylpyrazole class of Hsp90 inhibitors. Bioorg Med Chem Lett. 15:3338–3343. 2005. View Article : Google Scholar : PubMed/NCBI | |
Brough PA, Aherne W, Barril X, Borgognoni J, Boxall K, Cansfield JE, Cheung KM, Collins I, Davies NG, Drysdale MJ, et al: 4,5-diarylisoxazole Hsp90 chaperone inhibitors: Potential therapeutic agents for the treatment of cancer. J Med Chem. 51:196–218. 2008. View Article : Google Scholar : PubMed/NCBI | |
Eccles SA, Massey A, Raynaud FI, Sharp SY, Box G, Valenti M, Patterson L, de Haven Brandon A, Gowan S, Boxall F, et al: NVP-AUY922: A novel heat shock protein 90 inhibitor active against xenograft tumor growth angiogenesis, and metastasis. Cancer Res. 68:2850–2860. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jensen MR, Schoepfer J, Radimerski T, Massey A, Guy CT, Brueggen J, Quadt C, Buckler A, Cozens R, Drysdale MJ, et al: NVP-AUY922: A small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res. 10:R332008. View Article : Google Scholar : PubMed/NCBI | |
Murray CW, Carr MG, Callaghan O, Chessari G, Congreve M, Cowan S, Coyle JE, Downham R, Figueroa E, Frederickson M, et al: Fragment-based drug discovery applied to Hsp90. Discovery of two lead series with high ligand efficiency. J Med Chem. 53:5942–5955. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Trepel JB, Neckers LM and Giaccone G: STA-9090, a small-molecule Hsp90 inhibitor for the potential treatment of cancer. Curr Opin Investig Drugs. 11:1466–1476. 2010.PubMed/NCBI | |
Nakashima T, Ishii T, Tagaya H, Seike T, Nakagawa H, Kanda Y, Akinaga S, Soga S and Shiotsu Y: New molecular and biological mechanism of antitumor activities of KW-2478, a novel nonansamycin heat shock protein 90 inhibitor, in multiple myeloma cells. Clin Cancer Res. 16:2792–2802. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cavenagh J, Oakervee H, Baetiong-Caguioa P, Davies F, Gharibo M, Rabin N, Kurman M, Novak B, Shiraishi N, Nakashima D, et al: A phase I/II study of KW-2478, an Hsp90 inhibitor, in combination with bortezomib in patients with relapsed/refractory multiple myeloma. Br J Cancer. 117:1295–1302. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chang X, Zhao X, Wang J, Ding S, Xiao L, Zhao E and Zheng X: Effect of Hsp90 inhibitor KW-2478 on HepG2 cells. Anticancer Agents Med Chem. 19:2231–2242. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yong K, Cavet J, Johnson P, Morgan G, Williams C, Nakashima D, Akinaga S, Oakervee H and Cavenagh J: Phase I study of KW-2478, a novel Hsp90 inhibitor, in patients with B-cell malignancies. Br J Cancer. 114:7–13. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Ye M, Zhang LR, Wu QD, Zhang M, Xu JH and Zheng W: FW-04-806 inhibits proliferation and induces apoptosis in human breast cancer cells by binding to N-terminus of Hsp90 and disrupting Hsp90-Cdc37 complex formation. Mol Cancer. 13:1502014. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Wu QD, Zhang M, Kong YL, Cao PR, Zheng W, Xu JH and Ye M: Novel Hsp90 inhibitor FW-04-806 displays potent antitumor effects in HER2-positive breast cancer cells as a single agent or in combination with lapatinib. Cancer Lett. 356:862–871. 2015. View Article : Google Scholar : PubMed/NCBI | |
Suda A, Koyano H, Hayase T, Hada K, Kawasaki K, Komiyama S, Hasegawa K, Fukami TA, Sato S, Miura T, et al: Design and synthesis of novel macrocyclic 2-amino-6-arylpyrimidine Hsp90 inhibitors. Bioorg Med Chem Lett. 22:1136–1141. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bussenius J, Blazey CM, Aay N, Anand NK, Arcalas A, Baik T, Bowles OJ, Buhr CA, Costanzo S, Curtis JK, et al: Discovery of XL888: A novel tropane-derived small molecule inhibitor of HSP90. Bioorg Med Chem Lett. 22:5396–5404. 2012. View Article : Google Scholar : PubMed/NCBI | |
Samarasinghe B, Wales CT, Taylor FR and Jacobs AT: Heat shock factor 1 confers resistance to Hsp90 inhibitors through p62/SQSTM1 expression and promotion of autophagic flux. Biochem Pharmacol. 87:445–455. 2014. View Article : Google Scholar : PubMed/NCBI | |
Soti C, Racz A and Csermely P: A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket. J Biol Chem. 277:7066–7075. 2002. View Article : Google Scholar : PubMed/NCBI | |
Schulte TW, Akinaga S, Soga S, Sullivan W, Stensgard B, Toft D and Neckers LM: Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones. 3:100–108. 1998. View Article : Google Scholar : PubMed/NCBI | |
Donnelly A and Blagg BS: Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr Med Chem. 15:2702–2717. 2008. View Article : Google Scholar : PubMed/NCBI | |
Buchner J: Bacterial Hsp90-desperately seeking clients. Mol Microbiol. 76:540–544. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yun BG, Huang W, Leach N, Hartson SD and Matts RL: Novobiocin induces a distinct conformation of Hsp90 and alters Hsp90-cochaperone-client interactions. Biochemistry. 43:8217–8229. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Zhao H, Hall JA, Brown D, Brandes E, Bazzill J, Grogan PT, Subramanian C, Vielhauer G, Cohen MS and Blagg BS: Triazole containing novobiocin and biphenyl amides as Hsp90 C-Terminal inhibitors. Medchemcomm. 5:1317–1323. 2014. View Article : Google Scholar : PubMed/NCBI | |
Astl L, Stetz G and Verkhivker GM: Dissecting molecular principles of the Hsp90 chaperone regulation by allosteric modulators using a hierarchical simulation approach and network modeling of allosteric interactions: Conformational selection dictates the diversity of protein responses and ligand-specific functional mechanisms. J Chem Theory Comput. 16:6656–6677. 2020. View Article : Google Scholar : PubMed/NCBI | |
Marcu MG, Chadli A, Bouhouche I, Catelli M and Neckers LM: The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem. 275:37181–37186. 2000. View Article : Google Scholar : PubMed/NCBI | |
Forsberg LK, Anyika M, You Z, Emery S, McMullen M, Dobrowsky RT and Blagg BSJ: Development of noviomimetics that modulate molecular chaperones and manifest neuroprotective effects. Eur J Med Chem. 143:1428–1435. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kumar Mv V, Ebna Noor R, Davis RE, Zhang Z, Sipavicius E, Keramisanou D, Blagg BSJ and Gelis I: Molecular insights into the interaction of Hsp90 with allosteric inhibitors targeting the C-terminal domain. Medchemcomm. 9:1323–1331. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rahimi MN and McAlpine SR: Protein-protein inhibitor designed de novo to target the MEEVD region on the C-terminus of Hsp90 and block co-chaperone activity. Chem Commun (Camb). 55:846–849. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huo Y, Buckton LK, Bennett JL, Smith EC, Byrne FL, Hoehn KL, Rahimi MN and McAlpine SR: Delivering bioactive cyclic peptides that target Hsp90 as prodrugs. J Enzyme Inhib Med Chem. 34:728–739. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rahimi MN, Foster HG, Farazi SN, Chapman R and McAlpine SR: Polymer mediated transport of the Hsp90 inhibitor LB76, a polar cyclic peptide, produces an Hsp90 cellular phenotype. Chem Commun (Camb). 55:4515–4518. 2019. View Article : Google Scholar : PubMed/NCBI | |
Subramanian C, Grogan PT, Wang T, Bazzill J, Zuo A, White PT, Kalidindi A, Kuszynski D, Wang G, Blagg BSJ and Cohen MS: Novel C-terminal heat shock protein 90 inhibitors target breast cancer stem cells and block migration, self-renewal, and epithelial-mesenchymal transition. Mol Oncol. 14:2058–2068. 2020. View Article : Google Scholar : PubMed/NCBI | |
Subramanian C, Kovatch KJ, Sim MW, Wang G, Prince ME, Carey TE, Davis R, Blagg BSJ and Cohen MS: Novel C-Terminal heat shock protein 90 inhibitors (KU711 and Ku757) are effective in targeting head and neck squamous cell carcinoma cancer stem cells. Neoplasia. 19:1003–1011. 2017. View Article : Google Scholar : PubMed/NCBI | |
White PT, Subramanian C, Zhu Q, Zhang H, Zhao H, Gallagher R, Timmermann BN, Blagg BS and Cohen MS: Novel HSP90 inhibitors effectively target functions of thyroid cancer stem cell preventing migration and invasion. Surgery. 159:142–151. 2016. View Article : Google Scholar : PubMed/NCBI | |
Samadi AK, Zhang X, Mukerji R, Donnelly AC, Blagg BS and Cohen MS: A novel C-terminal HSP90 inhibitor KU135 induces apoptosis and cell cycle arrest in melanoma cells. Cancer Lett. 312:158–167. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shelton SN, Shawgo ME, Matthews SB, Lu Y, Donnelly AC, Szabla K, Tanol M, Vielhauer GA, Rajewski RA, Matts RL, et al: KU135, a novel novobiocin-derived C-terminal inhibitor of the 90-kDa heat shock protein, exerts potent antiproliferative effects in human leukemic cells. Mol Pharmacol. 76:1314–1322. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nirmalanandhan VS, Duren A, Hendricks P, Vielhauer G and Sittampalam GS: Activity of anticancer agents in a three-dimensional cell culture model. Assay Drug Dev Technol. 8:581–590. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cohen SM, Mukerji R, Samadi AK, Zhang X, Zhao H, Blagg BS and Cohen MS: Novel C-terminal Hsp90 inhibitor for head and neck squamous cell cancer (HNSCC) with in vivo efficacy and improved toxicity profiles compared with standard agents. Ann Surg Oncol. 19 (Suppl 3):S483–S490. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hyun SY, Le HT, Nguyen CT, Yong YS, Boo HJ, Lee HJ, Lee JS, Min HY, Ann J, Chen J, et al: Development of a novel Hsp90 inhibitor NCT-50 as a potential anticancer agent for the treatment of non-small cell lung cancer. Sci Rep. 8:139242018. View Article : Google Scholar : PubMed/NCBI | |
Li W, Sahu D and Tsen F: Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochim Biophys Acta. 1823:730–741. 2012. View Article : Google Scholar : PubMed/NCBI | |
Biswas C, Ostrovsky O, Makarewich CA, Wanderling S, Gidalevitz T and Argon Y: The peptide-binding activity of GRP94 is regulated by calcium. Biochem J. 405:233–241. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ernst JT, Liu M, Zuccola H, Neubert T, Beaumont K, Turnbull A, Kallel A, Vought B and Stamos D: Correlation between chemotype-dependent binding conformations of HSP90α/β and isoform selectivity-Implications for the structure-based design of HSP90α/β selective inhibitors for treating neurodegenerative diseases. Bioorg Med Chem Lett. 24:204–208. 2014. View Article : Google Scholar : PubMed/NCBI | |
Putcha P, Danzer KM, Kranich LR, Scott A, Silinski M, Mabbett S, Hicks CD, Veal JM, Steed PM, Hyman BT and McLean PJ: Brain-permeable small-molecule inhibitors of Hsp90 prevent alpha-synuclein oligomer formation and rescue alpha-synuclein-induced toxicity. J Pharmacol Exp Ther. 332:849–857. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ernst JT, Neubert T, Liu M, Sperry S, Zuccola H, Turnbull A, Fleck B, Kargo W, Woody L, Chiang P, et al: Identification of novel HSP90α/β isoform selective inhibitors using structure-based drug design. demonstration of potential utility in treating CNS disorders such as Huntington's disease. J Med Chem. 57:3382–3400. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ohkubo S, Kodama Y, Muraoka H, Hitotsumachi H, Yoshimura C, Kitade M, Hashimoto A, Ito K, Gomori A, Takahashi K, et al: TAS-116, a highly selective inhibitor of heat shock protein 90α and β, demonstrates potent antitumor activity and minimal ocular toxicity in preclinical models. Mol Cancer Ther. 14:14–22. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shimomura A, Yamamoto N, Kondo S, Fujiwara Y, Suzuki S, Yanagitani N, Horiike A, Kitazono S, Ohyanagi F, Doi T, et al: First-in-human phase I study of an oral HSP90 inhibitor, TAS-116, in patients with advanced solid tumors. Mol Cancer Ther. 18:531–540. 2019. View Article : Google Scholar : PubMed/NCBI | |
Doi T, Kurokawa Y, Sawaki A, Komatsu Y, Ozaka M, Takahashi T, Naito Y, Ohkubo S and Nishida T: Efficacy and safety of TAS-116, an oral inhibitor of heat shock protein 90, in patients with metastatic or unresectable gastrointestinal stromal tumour refractory to imatinib, sunitinib and regorafenib: A phase II, single-arm trial. Eur J Cancer. 121:29–39. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rosser MF and Nicchitta CV: Ligand interactions in the adenosine nucleotide-binding domain of the Hsp90 chaperone, GRP94. I. Evidence for allosteric regulation of ligand binding. J Biol Chem. 275:22798–22805. 2000. View Article : Google Scholar : PubMed/NCBI | |
Duerfeldt AS, Peterson LB, Maynard JC, Ng CL, Eletto D, Ostrovsky O, Shinogle HE, Moore DS, Argon Y, Nicchitta CV and Blagg BS: Development of a Grp94 inhibitor. J Am Chem Soc. 134:9796–9804. 2012. View Article : Google Scholar : PubMed/NCBI | |
Patel PD, Yan P, Seidler PM, Patel HJ, Sun W, Yang C, Que NS, Taldone T, Finotti P, Stephani RA, et al: Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2. Nat Chem Biol. 9:677–684. 2013. View Article : Google Scholar : PubMed/NCBI | |
Crowley VM, Khandelwal A, Mishra S, Stothert AR, Huard DJ, Zhao J, Muth A, Duerfeldt AS, Kizziah JL, Liebermann RL, et al: Development of glucose regulated protein 94-selective inhibitors based on the bnim and radamide scaffold. J Med Chem. 59:3471–3488. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiang F, Guo AP, Xu JC, You QD and Xu XL: Discovery of a Potent Grp94 selective inhibitor with anti-inflammatory efficacy in a mouse model of ulcerative colitis. J Med Chem. 61:9513–9533. 2018. View Article : Google Scholar : PubMed/NCBI | |
Plescia J, Salz W, Xia F, Pennati M, Zaffaroni N, Daidone MG, Meli M, Dohi T, Fortugno P, Nefedova Y, et al: Rational design of shepherdin, a novel anticancer agent. Cancer Cell. 7:457–468. 2005. View Article : Google Scholar : PubMed/NCBI | |
Altieri DC, Stein GS, Lian JB and Languino LR: TRAP-1, the mitochondrial Hsp90. Biochim Biophys Acta. 1823:767–773. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee C, Park HK, Jeong H, Lim J, Lee AJ, Cheon KY, Kim CS, Thomas AP, Bae B, Kim ND, et al: Development of a mitochondria-targeted Hsp90 inhibitor based on the crystal structures of human TRAP1. J Am Chem Soc. 137:4358–4367. 2015. View Article : Google Scholar : PubMed/NCBI | |
Park HK, Jeong H, Ko E, Lee G, Lee JE, Lee SK, Lee AJ, Im JY, Hu S, Kim SH, et al: Paralog specificity determines subcellular distribution, action mechanism, and anticancer activity of TRAP1 inhibitors. J Med Chem. 60:7569–7578. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sveen A, Bruun J, Eide PW, Eilertsen IA, Ramirez L, Murumagi A, Arjama M, Danielsen SA, Kryeziu K, Elez E, et al: Colorectal cancer consensus molecular subtypes translated to preclinical models uncover potentially targetable cancer cell dependencies. Clin Cancer Res. 24:794–806. 2018. View Article : Google Scholar : PubMed/NCBI | |
Piper PW and Millson SH: Mechanisms of resistance to Hsp90 inhibitor drugs: A complex mosaic emerges. Pharmaceuticals (Basel). 4:1400–1422. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bendell JC, Jones SF, Hart L, Pant S, Moyhuddin A, Lane CM, Earwood C, Murphy P, Patton J, Penley WC, et al: A Phase I Study of the Hsp90 inhibitor AUY922 plus capecitabine for the treatment of patients with advanced solid tumors. Cancer Invest. 33:477–482. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Koay YC and McAlpine SR: How selective are Hsp90 inhibitors for cancer cells over normal cells? Chem Med Chem. 12:353–357. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mohammadian M, Feizollahzadeh S, Mahmoudi R, Toofani Milani A, Rezapour-Firouzi S and Karimi Douna B: Hsp90 Inhibitor; NVP-AUY922 in combination with doxorubicin induces apoptosis and downregulates VEGF in MCF-7 breast cancer cell line. Asian Pac J Cancer Prev. 21:1773–1778. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tse AN, Klimstra DS, Gonen M, Shah M, Sheikh T, Sikorski R, Carvajal R, Mui J, Tipian C, O'Reilly E, et al: A phase 1 dose-escalation study of irinotecan in combination with 17-allylamino-17-demethoxygeldanamycin in patients with solid tumors. Clin Cancer Res. 14:6704–6711. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sulthana S, Banerjee T, Kallu J, Vuppala SR, Heckert B, Naz S, Shelby T, Yambem O and Santra S: Combination therapy of NSCLC using Hsp90 inhibitor and doxorubicin carrying functional nanoceria. Mol Pharm. 14:875–884. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ono N, Yamazaki T, Tsukaguchi T, Fujii T, Sakata K, Suda A, Tsukuda T, Mio T, Ishii N, Kondoh O and Aoki Y: Enhanced antitumor activity of erlotinib in combination with the Hsp90 inhibitor CH5164840 against non-small-cell lung cancer. Cancer Sci. 104:1346–1352. 2013. View Article : Google Scholar : PubMed/NCBI | |
Feng Q, Zhang C, Lum D, Druso JE, Blank B, Wilson KF, Welm A, Antonyak MA and Cerione RA: A class of extracellular vesicles from breast cancer cells activates VEGF receptors and tumour angiogenesis. Nat Commun. 8:144502017. View Article : Google Scholar : PubMed/NCBI | |
Johnson ML, Yu HA, Hart EM, Weitner BB, Rademaker AW, Patel JD, Kris MG and Riely GJ: Phase I/II study of HSP90 inhibitor AUY922 and erlotinib for EGFR-Mutant lung cancer with acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors. J Clin Oncol. 33:1666–1673. 2015. View Article : Google Scholar : PubMed/NCBI | |
Meehan R, Kummar S, Do K, O'Sullivan Coyne G, Juwara L, Zlott J, Rubinstein L, Doroshow JH and Chen AP: A Phase I Study of ganetespib and Ziv-Aflibercept in patients with advanced carcinomas and sarcomas. Oncologist. 23:1269–e1125. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee HJ, Shin S, Kang J, Han KC, Kim YH, Bae JW and Park KH: HSP90 Inhibitor, 17-DMAG, alone and in combination with lapatinib attenuates acquired lapatinib-resistance in ER-positive, HER2-overexpressing breast cancer cell line. Cancers (Basel). 12:26302020. View Article : Google Scholar : PubMed/NCBI | |
Jhaveri K and Modi S: HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol. 65:471–517. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Xie H, Bao H, Violetta L and Zheng S: Combination of HSP90 and autophagy inhibitors promotes hepatocellular carcinoma apoptosis following incomplete thermal ablation. Mol Med Rep. 22:337–343. 2020.PubMed/NCBI | |
Vaishampayan UN, Burger AM, Sausville EA, Heilbrun LK, Li J, Horiba MN, Egorin MJ, Ivy P, Pacey S and Lorusso PM: Safety, efficacy, pharmacokinetics, and pharmacodynamics of the combination of sorafenib and tanespimycin. Clin Cancer Res. 16:3795–3804. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kawazoe A, Itahashi K, Yamamoto N, Kotani D, Kuboki Y, Taniguchi H, Harano K, Naito Y, Suzuki M, Fukutani M, et al: TAS-116 (Pimitespib), an Oral HSP90 inhibitor, in combination with nivolumab in patients with colorectal cancer and other solid tumors: An open-label, dose-finding, and expansion Phase Ib trial (EPOC1704). Clin Cancer Res. 27:6709–6715. 2021. View Article : Google Scholar : PubMed/NCBI | |
Roué G, Pérez-Galán P, Mozos A, López-Guerra M, Xargay-Torrent S, Rosich L, Saborit-Villarroya I, Normant E, Campo E and Colomer D: The Hsp90 inhibitor IPI-504 overcomes bortezomib resistance in mantle cell lymphoma in vitro and in vivo by down-regulation of the prosurvival ER chaperone BiP/Grp78. Blood. 117:1270–1279. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ishii T, Seike T, Nakashima T, Juliger S, Maharaj L, Soga S, Akinaga S, Cavenagh J, Joel S and Shiotsu Y: Anti-tumor activity against multiple myeloma by combination of KW-2478, an Hsp90 inhibitor, with bortezomib. Blood Cancer J. 2:e682012. View Article : Google Scholar : PubMed/NCBI | |
Mbofung RM, McKenzie JA, Malu S, Zhang M, Peng W, Liu C, Kuiatse I, Tieu T, Williams L, Devi S, et al: HSP90 inhibition enhances cancer immunotherapy by upregulating interferon response genes. Nat Commun. 8:4512017. View Article : Google Scholar : PubMed/NCBI | |
Proia DA and Kaufmann GF: Targeting heat-shock protein 90 (HSP90) as a complementary strategy to immune checkpoint blockade for cancer therapy. Cancer Immunol Res. 3:583–589. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rao A, Taylor JL, Chi-Sabins N, Kawabe M, Gooding WE and Storkus WJ: Combination therapy with HSP90 inhibitor 17-DMAG reconditions the tumor microenvironment to improve recruitment of therapeutic T cells. Cancer Res. 72:3196–3206. 2012. View Article : Google Scholar : PubMed/NCBI | |
Spiegelberg D, Dascalu A, Mortensen AC, Abramenkovs A, Kuku G, Nestor M and Stenerlow B: The novel HSP90 inhibitor AT13387 potentiates radiation effects in squamous cell carcinoma and adenocarcinoma cells. Oncotarget. 6:35652–35666. 2015. View Article : Google Scholar : PubMed/NCBI | |
Spiegelberg D, Abramenkovs A, Mortensen ACL, Lundsten S, Nestor M and Stenerlow B: The HSP90 inhibitor Onalespib exerts synergistic anti-cancer effects when combined with radiotherapy: An in vitro and in vivo approach. Sci Rep. 10:59232020. View Article : Google Scholar : PubMed/NCBI | |
Naz S, Banerjee T, Totsingan F, Woody K, Gross RA and Santra S: Therapeutic efficacy of lactonic sophorolipids: Nanoceria-assisted combination therapy of NSCLC using HDAC and Hsp90 inhibitors. Nanotheranostics. 5:391–404. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lin TY, Guo W, Long Q, Ma A, Liu Q, Zhang H, Huang Y, Chandrasekaran S, Pan C, Lam KS, et al: HSP90 inhibitor encapsulated photo-theranostic nanoparticles for synergistic combination cancer therapy. Theranostics. 6:1324–1335. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bradbury AR and Marks JD: Antibodies from phage antibody libraries. J Immunol Methods. 290:29–49. 2004. View Article : Google Scholar : PubMed/NCBI | |
Saw PE and Song EW: Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell. 10:787–807. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Masehi-Lano JJ and Chung EJ: Peptide and antibody ligands for renal targeting: Nanomedicine strategies for kidney disease. Biomater Sci. 5:1450–1459. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fosgerau K and Hoffmann T: Peptide therapeutics: Current status and future directions. Drug Discov Today. 20:122–128. 2015. View Article : Google Scholar : PubMed/NCBI | |
Petters E, Sokolowska-Wedzina A and Otlewski J: Selection and characterization of single chain antibody fragments specific for Hsp90 as a potential cancer targeting molecule. Int J Mol Sci. 16:19920–19935. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mochizuki K, Matsukura L, Ito Y, Miyashita N and Taki M: A medium-firm drug-candidate library of cryptand-like structures on T7 phage: Design and selection of a strong binder for Hsp90. Org Biomol Chem. 19:146–150. 2021. View Article : Google Scholar : PubMed/NCBI |