
Research progress on the circRNA‑mediated regulation of tumor angiogenesis through ceRNA mechanisms (Review)
- Authors:
- Dandan Meng
- Ruixue Jia
- Shun Yuan
- Mengjuan Wei
- Xingxun Bao
- Chengfeng Zhu
- Wantao Wang
- Zongxin Li
-
Affiliations: Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China, First Clinical School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China, Institute of Integrative Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China, Second Department of Hematology, Jinan Hematology Hospital, Jinan, Shandong 250014, P.R. China - Published online on: November 22, 2022 https://doi.org/10.3892/or.2022.8449
- Article Number: 12
-
Copyright: © Meng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Folkman J: Tumor angiogenesis: Therapeutic implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI | |
Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D and Lawrie CH: CircRNAs and cancer: Biomarkers and master regulators. Semin Cancer Biol. 58:90–99. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Hansen TB, Venø MT and Kjems J: Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene. 37:555–565. 2018. View Article : Google Scholar : PubMed/NCBI | |
Flemming A: The enigma of circular RNA. Nat Rev Immunol. 19:3512019. View Article : Google Scholar : PubMed/NCBI | |
Croce CM: Genetics: Are circRNAs involved in cancer pathogenesis? Nat Rev Clin Oncol. 13:6582016. View Article : Google Scholar | |
Fischer JW and Leung AK: CircRNAs: A regulator of cellular stress. Crit Rev Biochem Mol Biol. 52:220–233. 2017. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P and Jain RK: Angiogenesis in cancer and other diseases. Nature. 407:249–257. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sun LL, Li WD, Lei FR and Li XQ: The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med. 22:4568–4587. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86:353–364. 1996. View Article : Google Scholar : PubMed/NCBI | |
Baeriswyl V and Christofori G: The angiogenic switch in carcinogenesis. Semin Cancer Biol. 19:329–337. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Miao S, Qiu T, Zhao Y, Wang H, Sun X, Wang Y, Xuan Y, Qin Y and Jiao W: Overexpression of S100A13 protein is associated with tumor angiogenesis and poor survival in patients with early-stage non-small cell lung cancer. Thorac Cancer. 9:1136–1144. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Cui H, Niu H, Wang L, Li X, Sun J, Wei Q, Dong J, Liu L and Xian CJ: Hydrocortisone suppresses early paraneoplastic inflammation and angiogenesis to attenuate early hepatocellular carcinoma progression in rats. Onco Targets Ther. 12:9481–9493. 2019. View Article : Google Scholar : PubMed/NCBI | |
Goussia A, Simou N, Zagouri F, Manousou K, Lazaridis G, Gogas H, Koutras A, Sotiropoulou M, Pentheroudakis G, Bafaloukos D, et al: Associations of angiogenesis-related proteins with specific prognostic factors, breast cancer subtypes and survival outcome in early-stage breast cancer patients. A hellenic cooperative oncology group (HeCOG) trial. PLoS One. 13:e2003022018. View Article : Google Scholar : PubMed/NCBI | |
Senger DR, Van de Water L, Brown LF, Nagy JA, Yeo KT, Yeo TK, Berse B, Jackman RW, Dvorak AM and Dvorak HF: Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev. 12:303–324. 1993. View Article : Google Scholar : PubMed/NCBI | |
Senger DR, Perruzzi CA, Feder J and Dvorak HF: A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res. 46:5629–5632. 1986.PubMed/NCBI | |
Fagiani E and Christofori G: Angiopoietins in angiogenesis. Cancer Lett. 328:18–26. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ebrahem Q, Chaurasia SS, Vasanji A, Qi JH, Klenotic PA, Cutler A, Asosingh K, Erzurum S and Anand-Apte B: Cross-talk between vascular endothelial growth factor and matrix metalloproteinases in the induction of neovascularization in vivo. Am J Pathol. 176:496–503. 2010. View Article : Google Scholar : PubMed/NCBI | |
Itoh Y: Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol. 44–46. 207–223. 2015.PubMed/NCBI | |
Cross MJ and Claesson-Welsh L: FGF and VEGF function in angiogenesis: Signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 22:201–207. 2001. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P: VEGF as a key mediator of angiogenesis in cancer. Oncology. 69 (Suppl 3):S4–S10. 2005. View Article : Google Scholar | |
Claffey KP and Robinson GS: Regulation of VEGF/VPF expression in tumor cells: Consequences for tumor growth and metastasis. Cancer Metastasis Rev. 15:165–176. 1996. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI | |
Barbagallo D, Caponnetto A, Cirnigliaro M, Brex D, Barbagallo C, D'Angeli F, Morrone A, Caltabiano R, Barbagallo GM, Ragusa M, et al: CircSMARCA5 inhibits migration of glioblastoma multiforme cells by regulating a molecular axis involving splicing factors SRSF1/SRSF3/PTB. Int J Mol Sci. 19:4802018. View Article : Google Scholar : PubMed/NCBI | |
Lu WY: Roles of the circular RNA circ-Foxo3 in breast cancer progression. Cell Cycle. 16:589–590. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y: Construction of a circRNA-miRNA-mRNA network to explore the pathogenesis and treatment of pancreatic ductal adenocarcinoma. J Cell Biochem. 121:394–406. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zang J, Lu D and Xu A: The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. J Neurosci Res. 98:87–97. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 110:304–315. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xia X, Li X, Li F, Wu X, Zhang M, Zhou H, Huang N, Yang X, Xiao F, Liu D, et al: A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent kinase-1. Mol Cancer. 18:1312019. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei P, Liu H, Xu J, Xiao F, Zhou H, et al: A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun. 9:44752018. View Article : Google Scholar : PubMed/NCBI | |
Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR and Lai EC: Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 9:1966–1980. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, Wong DT and Xiao X: The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem. 61:221–230. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Chen D, Bi J, Han J, Yang M, Dong W, Lin T and Huang J: Circular RNA circUBXN7 represses cell growth and invasion by sponging miR-1247-3p to enhance B4GALT3 expression in bladder cancer. Aging (Albany NY). 10:2606–2623. 2018. View Article : Google Scholar : PubMed/NCBI | |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
Taulli R, Loretelli C and Pandolfi PP: From pseudo-ceRNAs to circ-ceRNAs: A tale of cross-talk and competition. Nat Struct Mol Biol. 20:541–543. 2013. View Article : Google Scholar : PubMed/NCBI | |
Annese T, Tamma R, De Giorgis M and Ribatti D: microRNAs biogenesis, functions and role in tumor angiogenesis. Front Oncol. 10:5810072020. View Article : Google Scholar : PubMed/NCBI | |
Tay Y, Rinn J and Pandolfi PP: The multilayered complexity of ceRNA crosstalk and competition. Nature. 505:344–352. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Wang YH, Yoon C, Huang XY, Xu Y, Xie JW, Wang JB, Lin JX, Chen QY, Cao LL, et al: Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877-3p to facilitate gastric cancer invasion and metastasis. Cancer Lett. 471:38–48. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cao W, Zhao Y, Wang L and Huang X: Circ0001429 regulates progression of bladder cancer through binding miR-205-5p and promoting VEGFA expression. Cancer Biomark. 25:101–113. 2019. View Article : Google Scholar : PubMed/NCBI | |
Meng Q, Li S, Liu Y, Zhang S, Jin J, Zhang Y, Guo C, Liu B and Sun Y: Circular RNA circSCAF11 accelerates the glioma tumorigenesis through the miR-421/SP1/VEGFA axis. Mol Ther Nucleic Acids. 17:669–677. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Lin Y, Jiang DH, Yang X and He XG: CircRNA ZNF609 promotes angiogenesis in nasopharyngeal carcinoma by regulating miR-145/STMN1 axis. Kaohsiung J Med Sci. 37:686–698. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Yang M, Zhou B, Luo J, Zhang Z, Zhang W and Yan Z: CircRNA-104718 acts as competing endogenous RNA and promotes hepatocellular carcinoma progression through microRNA-218-5p/TXNDC5 signaling pathway. Clin Sci (Lond). 133:1487–1503. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Yu Z, Wu B and Sun F: Circular RNA circFOXP1 promotes angiogenesis by regulating microRNA-127-5p/CDKN2AIP signaling pathway in osteosarcoma. Bioengineered. 12:9991–9999. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cassiday LA and Maher LR III: Having it both ways: Transcription factors that bind DNA and RNA. Nucleic Acids Res. 30:4118–4126. 2002. View Article : Google Scholar : PubMed/NCBI | |
He Z, Ruan X, Liu X, Zheng J, Liu Y, Liu L, Ma J, Shao L, Wang D, Shen S, et al: FUS/circ_002136/miR-138-5p/SOX13 feedback loop regulates angiogenesis in glioma. J Exp Clin Cancer Res. 38:652019. View Article : Google Scholar : PubMed/NCBI | |
Ferrara N: Vascular endothelial growth factor: Basic science and clinical progress. Endocr Rev. 25:581–611. 2004. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Chen M, Ai G, Mao W, Li H and Zhou J: Hsa_circ_0023404 enhances cervical cancer metastasis and chemoresistance through VEGFA and autophagy signaling by sponging miR-5047. Biomed Pharmacother. 115:1089572019. View Article : Google Scholar : PubMed/NCBI | |
Garikipati VNS, Verma SK, Cheng Z, Liang D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, et al: Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun. 10:43172019. View Article : Google Scholar : PubMed/NCBI | |
Zhong Z, Huang M, Lv M, He Y, Duan C, Zhang L and Chen J: Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett. 403:305–317. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li P, Chen H, Chen S, Mo X, Li T, Xiao B, Yu R and Guo J: Circular RNA 0000096 affects cell growth and migration in gastric cancer. Br J Cancer. 116:626–633. 2017. View Article : Google Scholar : PubMed/NCBI | |
Barbagallo D, Caponnetto A, Brex D, Mirabella F, Barbagallo C, Lauretta G, Morrone A, Certo F, Broggi G, Caltabiano R, et al: CircSMARCA5 regulates VEGFA mRNA splicing and angiogenesis in glioblastoma multiforme through the binding of SRSF1. Cancers (Basel). 11:1942019. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P and Jain RK: Molecular mechanisms and clinical applications of angiogenesis. Nature. 473:298–307. 2011. View Article : Google Scholar : PubMed/NCBI | |
Costa PM, Cardoso AL, Pereira de Almeida LF, Bruce JN, Canoll P and Pedroso de Lima MC: PDGF-B-mediated downregulation of miR-21: New insights into PDGF signaling in glioblastoma. Hum Mol Genet. 21:5118–5130. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zehetner C, Kirchmair R, Neururer SB, Kralinger MT, Bechrakis NE and Kieselbach GF: Systemic upregulation of PDGF-B in patients with neovascular AMD. Invest Ophthalmol Vis Sci. 55:337–344. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Zhang H, Xie F, Tao D, Xiao X, Huang C, Wang M, Gu C, Zhang X and Jiang G: Hsa_circ_0001361 promotes bladder cancer invasion and metastasis through miR-491-5p/MMP9 axis. Oncogene. 39:1696–1709. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Lan T, Li H, Xu L, Chen X, Liao H, Chen X, Du J, Cai Y, Wang J, et al: Circular RNA circDLC1 inhibits MMP1-mediated liver cancer progression via interaction with HuR. Theranostics. 11:1396–1411. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hou JP, Men XB, Yang LY, Han EK, Han CQ and Liu LB: CircCCT3 acts as a sponge of miR-613 to promote tumor growth of pancreatic cancer through regulating VEGFA/VEGFR2 signaling. Balkan Med J. 38:229–238. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Luo Y, Zhao Y, Kong Y, Zheng H, Li Y, Gao B, Ai L, Huang H, Huang J, et al: circEHBP1 promotes lymphangiogenesis and lymphatic metastasis of bladder cancer via miR-130a-3p/TGFβR1/VEGF-D signaling. Mol Ther. 29:1838–1852. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qi L, Wang W, Zhao G, Jiang H, Zhang Y, Zhao D, Jin H, Yu H and Xu H: Circular RNA circitga7 accelerates glioma progression via miR-34a-5p/VEGFA axis. Aging (Albany NY). 13:13138–13152. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ji X, Shan L, Shen P and He M: Circular RNA circ_001621 promotes osteosarcoma cells proliferation and migration by sponging miR-578 and regulating VEGF expression. Cell Death Dis. 11:182020. View Article : Google Scholar : PubMed/NCBI | |
Li S, Li J, Zhang H, Zhang Y, Wang X, Yang H, Zhou Z, Hao X, Ying G and Ba Y: Gastric cancer derived exosomes mediate the delivery of circRNA to promote angiogenesis by targeting miR-29a/VEGF axis in endothelial cells. Biochem Biophys Res Commun. 560:37–44. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kong Y, Li Y, Luo Y, Zhu J, Zheng H, Gao B, Guo X, Li Z, Chen R and Chen C: circNFIB1 inhibits lymphangiogenesis and lymphatic metastasis via the miR-486-5p/PIK3R1/VEGF-C axis in pancreatic cancer. Mol Cancer. 19:822020. View Article : Google Scholar : PubMed/NCBI | |
Xing C, Ye H, Wang W, Sun M, Zhang J, Zhao Z and Jiang G: Circular RNA ADAM9 facilitates the malignant behaviours of pancreatic cancer by sponging miR-217 and upregulating PRSS3 expression. Artif Cells Nanomed Biotechnol. 47:3920–3928. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Ma YF, Zhang XR, Li Y, Zhao HH and Han SG: Circ_0056618 promoted cell proliferation, migration and angiogenesis through sponging with miR-206 and upregulating CXCR4 and VEGF-A in colorectal cancer. Eur Rev Med Pharmacol Sci. 24:4190–4202. 2020.PubMed/NCBI | |
Dai J, Zhuang Y, Tang M, Qian Q and Chen JP: CircRNA UBAP2 facilitates the progression of colorectal cancer by regulating miR-199a/VEGFA pathway. Eur Rev Med Pharmacol Sci. 24:7963–7971. 2020.PubMed/NCBI | |
Chen MS, Lin CH, Huang LY and Qiu XM: CircRNA SMARCC1 sponges MiR-140-3p to regulate cell progression in colorectal cancer. Cancer Manag Res. 12:4899–4910. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Huang Z, Mo X, Song Y, Li X, Li X and Zhang M: The circular RNA 001971/miR-29c-3p axis modulates colorectal cancer growth, metastasis, and angiogenesis through VEGFA. J Exp Clin Cancer Res. 39:912020. View Article : Google Scholar : PubMed/NCBI | |
Li W, Xu Y, Wang X, Cao G, Bu W, Wang X, Fang Z, Xu Y, Dong M and Tao Q: circCCT3 modulates vascular endothelial growth factor A and Wnt signaling to enhance colorectal cancer metastasis through sponging miR-613. DNA Cell Biol. 39:118–125. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fang N, Shi Y, Fan Y, Long T, Shu Y and Zhou J: Circ_0072088 promotes proliferation, migration, and invasion of esophageal squamous cell cancer by absorbing miR-377. J Oncol. 2020:89671262020. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Hu W, Huang X, Huang X, Chen W, Hao L, Chen Z, Wang J and Wei H: Circ_0001178 regulates miR-382/VEGFA axis to facilitate hepatocellular carcinoma progression. Cell Signal. 72:1096212020. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Li X, Yang L, Li M, Zhang Y and Zhang J: CircASH2L promotes ovarian cancer tumorigenesis, angiogenesis, and lymphangiogenesis by regulating the miR-665/VEGFA axis as a competing endogenous RNA. Front Cell Dev Biol. 8:5955852020. View Article : Google Scholar : PubMed/NCBI | |
Wang LL, Zong ZH, Liu Y, Guan X, Chen S and Zhao Y: CircRhoC promotes tumorigenicity and progression in ovarian cancer by functioning as a miR-302e sponge to positively regulate VEGFA. J Cell Mol Med. 23:8472–8481. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li QH, Liu Y, Chen S, Zong ZH, Du YP, Sheng XJ and Zhao Y: circ-CSPP1 promotes proliferation, invasion and migration of ovarian cancer cells by acting as a miR-1236-3p sponge. Biomed Pharmacother. 114:1088322019. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Qin T, Li J, Wang L, Zhang Q, Jiang Z and Mao J: MicroRNA-140-5p inhibits invasion and angiogenesis through targeting VEGF-A in breast cancer. Cancer Gene Ther. 24:386–392. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Duan R, Li ZB and Wang L: Circ-RPL15/miR-146b-3p/VEGFA feedback loop is responsible for triggering proliferation and migration in glioma. Eur Rev Med Pharmacol Sci. 24:6204–6210. 2020.PubMed/NCBI | |
Barbagallo D, Caponnetto A, Barbagallo C, Battaglia R, Mirabella F, Brex D, Stella M, Broggi G, Altieri R, Certo F, et al: The GAUGAA motif is responsible for the binding between circSMARCA5 and SRSF1 and related downstream effects on glioblastoma multiforme cell migration and angiogenic potential. Int J Mol Sci. 22:16782021. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Zhang J, Zou C, Xie X, Wang Y, Wang B, Zhao Z, Tu J, Wang X, Li H, et al: Microarray expression profile and functional analysis of circular RNAs in osteosarcoma. Cell Physiol Biochem. 43:969–985. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zeng L, Yuan S, Zhou P, Gong J, Kong X and Wu M: Circular RNA Pvt1 oncogene (CircPVT1) promotes the progression of papillary thyroid carcinoma by activating the Wnt/β-catenin signaling pathway and modulating the ratio of microRNA-195 (miR-195) to vascular endothelial growth factor A (VEGFA) expression. Bioengineered. 12:11795–11810. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ren M, Song X, Niu J, Tang G, Sun Z, Li Y and Kong F: The malignant property of circHIPK2 for angiogenesis and chemoresistance in non-small cell lung cancer. Exp Cell Res. 419:1132762022. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Zhang Q, Lv B, Shang Y, Li J, Yang L, Yu Z, Luo K, Deng X, Min L and Zhu T: CircFOXP1: A novel serum diagnostic biomarker for non-small cell lung cancer. Int J Biol Markers. 37:58–65. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yuan X, Xu Y, Wei Z and Ding Q: CircAP2A2 acts as a ceRNA to participate in infantile hemangiomas progression by sponging miR-382-5p via regulating the expression of VEGFA. J Clin Lab Anal. 34:e232582020. View Article : Google Scholar : PubMed/NCBI | |
Chen B and Huang S: Circular RNA: An emerging non-coding RNA as a regulator and biomarker in cancer. Cancer Lett. 418:41–50. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bai H, Lei K, Huang F, Jiang Z and Zhou X: Exo-circRNAs: A new paradigm for anticancer therapy. Mol Cancer. 18:562019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Gao Y, Li D, He L, Iw L, Hao B, Chen X and Cao Y: LASP1 promotes glioma cell proliferation and migration and is negatively regulated by miR-377-3p. Biomed Pharmacother. 108:845–851. 2018. View Article : Google Scholar : PubMed/NCBI | |
Montes M, Sanford BL, Comiskey DF and Chandler DS: RNA splicing and disease: Animal models to therapies. Trends Genet. 35:68–87. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mody K, Baldeo C and Bekaii-Saab T: Antiangiogenic therapy in colorectal cancer. Cancer J. 24:165–170. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ferrara N and Adamis AP: Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 15:385–403. 2016. View Article : Google Scholar : PubMed/NCBI | |
Altesha MA, Ni T, Khan A, Liu K and Zheng X: Circular RNA in cardiovascular disease. J Cell Physiol. 234:5588–5600. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jia P, Cai H, Liu X, Chen J, Ma J, Wang P, Liu Y, Zheng J and Xue Y: Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a. Cancer Lett. 381:359–369. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Bai M, Deng T, Liu R, Wang X, Qu Y, Duan J, Zhang L, Ning T, Ge S, et al: Cell-derived microvesicles mediate the delivery of miR-29a/c to suppress angiogenesis in gastric carcinoma. Cancer Lett. 375:331–339. 2016. View Article : Google Scholar : PubMed/NCBI | |
He Q, Zhao L, Liu X, Zheng J, Liu Y, Liu L, Ma J, Cai H, Li Z and Xue Y: MOV10 binding circ-DICER1 regulates the angiogenesis of glioma via miR-103a-3p/miR-382-5p mediated ZIC4 expression change. J Exp Clin Cancer Res. 38:92019. View Article : Google Scholar : PubMed/NCBI |