1
|
Lagergren J, Smyth E, Cunningham D and
Lagergren P: Oesophageal cancer. Lancet. 390:2383–2396. 2017.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhou C, Fan N, Liu F, Fang N, Plum PS,
Thieme R, Gockel I, Gromnitza S, Hillmer AM, Chon SH, et al:
Linking cancer stem cell plasticity to therapeutic
resistance-mechanism and novel therapeutic strategies in esophageal
cancer. Cells. 9:14812020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chang JC: Cancer stem cells: Role in tumor
growth, recurrence, metastasis, and treatment resistance. Medicine
(Baltimore). 95 (1 Suppl 1):S20–S25. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Islam F, Qiao B, Smith RA, Gopalan V and
Lam AK: Cancer stem cell: Fundamental experimental pathological
concepts and updates. Exp Mol Pathol. 98:184–191. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Islam F, Gopalan V, Law S, Tang JC and Lam
AK: FAM134B promotes esophageal squamous cell carcinoma in vitro
and its correlations with clinicopathologic features. Hum Pathol.
87:1–10. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Islam F, Gopalan V and Lam AK: Detention
and identification of cancer stem cells in esophageal squamous cell
carcinoma. Methods Mol Biol. 2129:177–191. 2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
La Noce M, Paino F, Mele L, Papaccio G,
Regad T, Lombardi A, Papaccio F, Desiderio V and Tirino V: HDAC2
depletion promotes osteosarcoma's stemness both in vitro and in
vivo: A study on a putative new target for CSCs directed therapy. J
Exp Clin Cancer Res. 37:2962018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Xu Y, Yang Z, Horan LH, Zhang P, Liu L,
Zimdah B, Green S, Lu J, Morales JF, Barrett DM, et al: A novel
antibody-TCR (AbTCR) platform combines Fab-based antigen
recognition with gamma/delta-TCR signaling to facilitate T-cell
cytotoxicity with low cytokine release. Cell Discov. 4:622018.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Lee DW, Kochenderfer JN, Stetler-Stevenson
M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M,
Shah NN, et al: T cells expressing CD19 chimeric antigen receptors
for acute lymphoblastic leukaemia in children and young adults: A
phase 1 dose-escalation trial. Lancet. 385:517–528. 2015.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Li S, Tao Z, Xu Y, Liu J, An N, Wang Y,
Xing H, Tian Z, Tang K, Liao X, et al: CD33-specific chimeric
antigen receptor T cells with different co-stimulators showed
potent anti-leukemia efficacy and different phenotype. Hum Gene
Ther. 29:626–639. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang Z, Chen W, Zhang X, Cai Z and Huang
W: A long way to the battlefront: CAR T cell therapy against solid
cancers. J Cancer. 10:3112–3123. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Principe DR, Doll JA, Bauer J, Jung B,
Munshi HG, Bartholin L, Pasche B, Lee C and Grippo PJ: TGF-β:
Duality of function between tumor prevention and carcinogenesis. J
Natl Cancer Inst. 106:djt3692014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Jin L, Ge H, Long Y, Yang C, Chang YE, Mu
L, Sayour EJ, De Leon G, Wang QJ, Yang JC, et al: CD70, a novel
target of CAR T-cell therapy for gliomas. Neuro Oncol. 20:55–65.
2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pich C, Sarrabayrouse G, Teiti I, Mariamé
B, Rochaix P, Lamant L, Favre G, Maisongrosse V and Tilkin-Mariamé
AF: Melanoma-expressed CD70 is involved in invasion and metastasis.
Br J Cancer. 114:63–70. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Janova H, Böttcher C, Holtman IR, Regen T,
van Rossum D, Götz A, Ernst AS, Fritsche C, Gertig U, Saiepour N,
et al: CD14 is a key organizer of microglial responses to CNS
infection and injury. Glia. 64:635–649. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ciesielska A, Matyjek M and Kwiatkowska K:
TLR4 and CD14 trafficking and its influence on LPS-induced
pro-inflammatory signaling. Cell Mol Life Sci. 78:1233–1261. 2021.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhao D, Sun T, Zhang X, Guo Y, Yu D, Yang
M, Tan W, Wang G and Lin D: Role of CD14 promoter polymorphisms in
Helicobacter pylori infection-related gastric carcinoma. Clin
Cancer Res. 13:2362–2368. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Arihara F, Mizukoshi E, Kitahara M, Takata
Y, Arai K, Yamashita T, Nakamoto Y and Kaneko S: Increase in CD14 +
HLA-DR-/low myeloid-derived suppressor cells in hepatocellular
carcinoma patients and its impact on prognosis. Cancer Immunol
Immunother. 62:1421–1430. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Huang A, Zhang B, Wang B, Zhang F, Fan KX
and Guo YJ: Increased CD14(+)HLA-DR (−/low) myeloid-derived
suppressor cells correlate with extrathoracic metastasis and poor
response to chemotherapy in non-small cell lung cancer patients.
Cancer Immunol Immunother. 62:1439–1451. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
AjaniJ A, Wang X, Song S, Suzuki A, Taketa
T, Sudo K, Wadhwa R, Hofstetter WL, Komaki R, Maru DM, et al:
ALDH-1 expression levels predict response or resistance to
preoperative chemoradiation in resectable esophageal cancer
patients. Mol Oncol. 8:142–149. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yang L, Ren Y, Yu X, Qian F, Bian BSJ,
Xiao HL, Wang WG, Xu SL, Yang J, Cui W, et al: ALDH1A1 defines
invasive cancer stem-like cells and predicts poor prognosis in
patients with esophageal squamous cell carcinoma. Mod Pathol.
27:775–783. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen MF, Chen PT, Lu MS and Chen WC: Role
of ALDH1 in the prognosis of esophageal cancer and its relationship
with tumor microenvironment. Mol Carcinog. 57:78–88. 2018.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Plaks V, Kong N and Werb Z: The cancer
stem cell niche: How essential is the niche in regulating stemness
of tumor cells? Cell Stem Cell. 16:225–238. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sekino Y, Imaizumi A, Komune N, Ono M,
Sato K, Masuda S, Fujimura A, Koike K, Hongo T, Uchi R, et al:
Establishment and characterization of a primary cell culture
derived from external auditory canal squamous cell carcinoma. FEBS
Open Bio. 11:2211–2224. 2021.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
25
|
Ji Y, Li X, Li Y, Zhong Y, Cao J, Xu R,
Wang J, Zhou F, Li X, Yu D, et al: Aldehyde dehydrogenase-1
expression predicts unfavorable outcomes in patients with
esophageal squamous cell carcinoma. Anticancer Res. 36:343–349.
2016.PubMed/NCBI
|
26
|
Zeppernick F, Ahmadi R, Campos B, Dictus
C, Helmke BM, Becker N, Lichter P, Unterberg A, Radlwimmer B and
Herold-Mende CC: Stem cell marker CD133 affects clinical outcome in
glioma patients. Clin Cancer Res. 14:123–129. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Tanei T, Morimoto K, Shimazu K, Kim SJ,
Tanji Y, Taguchi T, Tamaki Y and Noguchi S: Association of breast
cancer stem cells identified by aldehyde dehydrogenase 1 expression
with resistance to sequential paclitaxel and epirubicin-based
chemotherapy for breast cancers. Clin Cancer Res. 15:4234–4241.
2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Jiang F, Qiu Q, Khanna A, Todd NW, Deepak
J, Xing L, Wang H, Liu Z, Su Y, Stass SA and Katz RL: Aldehyde
dehydrogenase 1 is a tumor stem cell-associated marker in lung
cancer. Mol Cancer Res. 7:330–338. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Grube S, Freitag D, Kalff R, Ewald C and
Walter J: Characterization of adherent primary cell lines from
fresh human glioblastoma tissue, defining glial fibrillary acidic
protein as a reliable marker in establishment of glioblastoma cell
culture. Cancer Rep (Hoboken). 4:e13242021.PubMed/NCBI
|
30
|
Akbarzadeh M, Maroufi NF, Tazehkand AP,
Akbarzadeh M, Bastani S, Safdari R, Farzane A, Fattahi A, Nejabati
HR, Nouri M and Samadi N: Current approaches in identification and
isolation of cancer stem cells. J Cell Physiol. Feb 11–2019.(Epub
ahead of print). View Article : Google Scholar : PubMed/NCBI
|
31
|
Han GD, Sun Y, Hui HX, Tao MY, Liu YQ and
Zhu J: MiR-1224 acts as a prognostic biomarker and inhibits the
progression of gastric cancer by targeting SATB1. Front Oncol.
11:7488962021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Vargo-Gogola T and Rosen JM: Modelling
breast cancer: One size does not fit all. Nat Rev Cancer.
7:659–672. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Tsai RYL: Balancing self-renewal against
genome preservation in stem cells: How do they manage to have the
cake and eat it too? Cell Mol Life Sci. 73:1803–1823. 2016.
View Article : Google Scholar : PubMed/NCBI
|
34
|
LaBarge MA: The difficulty of targeting
cancer stem cell niches. Clin Cancer Res. 16:3121–3129. 2010.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Quintana E, Shackleton M, Sabel MS, Fullen
DR, Johnson TM and Morrison SJ: Efficient tumour formation by
single human melanoma cells. Nature. 456:593–598. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Quintana E, Piskounova E, Shackleton M,
Weinberg D, Eskiocak U, Fullen DR, Johnson TM and Morrison SJ:
Human melanoma metastasis in NSG mice correlates with clinical
outcome in patients. Sci Transl Med. 4:159ra1492012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kreso A and Dick JE: Evolution of the
cancer stem cell model. Cell Stem Cell. 14:275–291. 2014.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Liu Q, Cui X, Yu X, Bian BS, Qian F, Hu
XG, Ji CD, Yang L, Ren Y, Cui W, et al: Cripto-1 acts as a
functional marker of cancer stem-like cells and predicts prognosis
of the patients in esophageal squamous cell carcinoma. Mol Cancer.
16:812017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Perry C, Soomro I, Kaye P, Hardy E,
Parsons SL, Ragunath K, Lobo DN, Martin SG and Madhusudan S:
Analysis of lymphatic and blood vessel invasion biomarkers in T1
esophagogastric adenocarcinomas for improved patient
prognostication. Dis Esophagus. 28:262–268. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Schizas D, Moris D, Kanavidis P,
Michalinos A, Sioulas A, Pavlakis K, Machairas A and Liakakos T:
The prognostic value of CD44 expression in epithelial-mesenchymal
transition: Preliminary data from patients with gastric and
esophageal cancer. In Vivo. 30:939–944. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wang Y, Zhang C, Zhu H, Tang J, Zhang S,
Luo J and Sun X: CD90 positive cells exhibit aggressive
radioresistance in esophageal squamous cell carcinoma. J Thorac
Dis. 9:610–620. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Okamoto K, Ninomiya I, Ohbatake Y, Hirose
A, Tsukada T, Nakanuma S, Sakai S, Kinoshita J, Makino I, Nakamura
K, et al: Expression status of CD44 and CD133 as a prognostic
marker in esophageal squamous cell carcinoma treated with
neoadjuvant chemotherapy followed by radical esophagectomy. Oncol
Rep. 36:3333–3342. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Li S, Yue D, Chen X, Wang L, Li J, Ping Y,
Gao Q, Wang D, Zhang T, Li F, et al: Epigenetic regulation of
CD271, a potential cancer stem cell marker associated with
chemoresistance and metastatic capacity. Oncol Rep. 33:425–432.
2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Matsuda T, Takeuchi H, Matsuda S, Hiraiwa
K, Miyasho T, Okamoto M, Kawasako K, Nakamura R, Takahashi T, Wada
N, et al: EpCAM, a potential therapeutic target for esophageal
squamous cell carcinoma. Ann Surg Oncol. 21 (Suppl 3):S356–S364.
2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Lv Z, Yu JJ, Zhang WJ, Xiong L, Wang F, Li
LF, Zhou XL, Gao XY, Ding XF, Han L, et al: Expression and
functional regulation of stemness gene Lgr5 in esophageal squamous
cell carcinoma. Oncotarget. 8:26492–26504. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ming XY, Fu L, Zhang LY, Qin YR, Cao TT,
Chan KW, Ma S, Xie D and Guan XY: Integrin α7 is a functional
cancer stem cell surface marker in oesophageal squamous cell
carcinoma. Nat Commun. 7:135682016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Li JC, Li Y, Ai JY, Chen K, Zhu YH, Fu L,
Qin YR, Wang LJ and Guan XY: Podoplanin-positive cancer cells at
the edge of esophageal squamous cell carcinomas are involved in
invasion. Mol Med Rep. 10:1513–1518. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kim WT and Ryu CJ: Cancer stem cell
surface markers on normal stem cells. BMB Rep. 50:285–298. 2017.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Díaz-Flores L, Gutiérrez R, García MP,
González-Gómez M, Carrasco JL, Alvarez-Argüelles H and Díaz-Flores
L Jr: Telocytes/CD34+ stromal cells in pathologically affected
white adipose tissue. Mol Sci. 21:96942020. View Article : Google Scholar
|
50
|
Lin HD, Fong CY, Biswas A and Bongso A:
Allogeneic human umbilical cord Wharton's jelly stem cells increase
several-fold the expansion of human cord blood CD34+ cells both in
vitro and in vivo. Stem Cell Res Ther. 11:5272020. View Article : Google Scholar : PubMed/NCBI
|
51
|
Chen C, Wei Y, Hummel M, Hoffmann TK,
Gross M, Kaufmann AM and Albers AE: Evidence for
epithelial-mesenchymal transition in cancer stem cells of head and
neck squamous cell carcinoma. PLoS One. 6:e164662011. View Article : Google Scholar : PubMed/NCBI
|
52
|
Mack B and Gires O: CD44s and CD44v6
expression in head and neck epithelia. PLoS One. 3:e33602008.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Glumac PM and LeBeau AM: The role of CD133
in cancer: A concise review. Clin Transl Med. 7:182018. View Article : Google Scholar : PubMed/NCBI
|
54
|
Smith RJP, Faroni A, Barrow JR, Soul J and
Reid AJ: The angiogenic potential of CD271+ human adipose
tissue-derived mesenchymal stem cells. Stem Cell Res Ther.
12:1602021. View Article : Google Scholar : PubMed/NCBI
|
55
|
Chen Y, Zeng J, Cen L, Chen Y, Wang X, Yao
G, Wang W, Qi W and Kong K: Multiple roles of the p75 neurotrophin
receptor in the nervous system. J Int Med Res. 37:281–288. 2009.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Balzar M, Winter MJ, de Boer CJ and
Litvinov SV: The biology of the 17-1A antigen (Ep-CAM). J Mol Med
(Berl). 77:699–712. 1999. View Article : Google Scholar : PubMed/NCBI
|
57
|
Schmelzer E, Zhang L, Bruce A, Wauthier E,
Ludlow J, Yao H, Moss N, Melhem A, McClelland R, Turner W, et al:
Human hepatic stem cells from fetal and postnatal donors. J Exp
Med. 204:1973–1987. 2007. View Article : Google Scholar : PubMed/NCBI
|
58
|
Kamimoto K, Kaneko K, Kok CYY, Okada H,
Miyajima A and Itoh T: Heterogeneity and stochastic growth
regulation of biliary epithelial cells dictate dynamic epithelial
tissue remodeling. Elife. 5:e150342016. View Article : Google Scholar : PubMed/NCBI
|
59
|
Barker N and Clevers H: Leucine-rich
repeat-containing G-protein-coupled receptors as markers of adult
stem cells. Gastroenterology. 138:1681–1696. 2010. View Article : Google Scholar : PubMed/NCBI
|
60
|
Haegebarth A and Clevers H: Wnt signaling,
lgr5, and stem cells in the intestine and skin. Am J Pathol.
174:715–721. 2009. View Article : Google Scholar : PubMed/NCBI
|
61
|
Welser JV, Lange ND, Flintoff-Dye N,
Burkin HR and Burkin DJ: Placental defects in alpha7 integrin null
mice. Placenta. 28:1219–1228. 2007. View Article : Google Scholar : PubMed/NCBI
|
62
|
Nunes AM, Barraza-Flores P, Smith CH and
Burkin DJ: Integrin α7: A major driver and therapeutic target for
glioblastoma malignancy. Stem Cell Investig. 4:972017. View Article : Google Scholar : PubMed/NCBI
|
63
|
Wang X, Wang X, Carvalho V, Wang Q, Li T,
Wang J, Chen Y, Ni C, Liu S and Zhang J: Prognostic value of
podoplanin in various tumors. Technol Cancer Res Treat.
20:153303382110381422021. View Article : Google Scholar : PubMed/NCBI
|