1
|
Hellevik AI, Asvold BO, Bjøro T,
Romundstad PR, Nilsen TI and Vatten LJ: Thyroid function and cancer
risk: A prospective population study. Cancer Epidemiol Biomarkers
Prev. 18:570–574. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wang T, Xia L, Ma S, Qi X, Li Q, Xia Y,
Tang X, Cui D, Wang Z, Chi J, et al: Hepatocellular carcinoma:
Thyroid hormone promotes tumorigenicity through inducing cancer
stem-like cell self-renewal. Sci Rep. 6:251832016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chung IH, Chen CY, Lin YH, Chi HC, Huang
YH, Tai PJ, Liao CJ, Tsai CY, Lin SL, Wu MH, et al: Thyroid
hormone-mediated regulation of lipocalin 2 through the Met/FAK
pathway in liver cancer. Oncotarget. 6:15050–15064. 2015.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Hercbergs A, Johnson RE, Ashur-Fabian O,
Garfield DH and Davis PJ: Medically induced euthyroid
hypothyroxinemia may extend survival in compassionate need cancer
patients: An observational study. Oncologist. 20:72–76. 2015.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Moeller LC and Führer D: Thyroid hormone,
thyroid hormone receptors, and cancer: A clinical perspective.
Endocr Relat Cancer. 20:R19–R29. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Conde SJ, Luvizotto Rde A, de Síbio MT and
Nogueira CR: Thyroid hormone status interferes with estrogen target
gene expression in breast cancer samples in menopausal women. ISRN
Endocrinol. 2014:3173982014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Szaryńska M, Olejniczak A and Kmieć Z: The
role of cancer stem cells in pathogenesis of colorectal cancer.
Postepy Hig Med Dosw (Online). 70:1469–1482. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Todaro M, Francipane MG, Medema JP and
Stassi G: Colon cancer stem cells: Promise of targeted therapy.
Gastroenterology. 138:2151–2162. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Szarynska M, Olejniczak A, Wierzbicki P,
Kobiela J, Laski D, Sledzinski Z, Adrych K, Guzek M and Kmiec Z:
FasR and FasL in colorectal cancer. Int J Oncol. 51:975–986. 2017.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Olejniczak A, Szarynska M and Kmiec Z:
In vitro characterization of spheres derived from colorectal
cancer cell lines. Int J Oncol. 52:599–612. 2018.PubMed/NCBI
|
11
|
van de Velde CJ, Boelens PG, Borras JM,
Coebergh JW, Cervantes A, Blomqvist L, Beets-Tan RG, van den Broek
CB, Brown G, Van Cutsem E, et al: EURECCA colorectal:
Multidisciplinary management: European consensus conference colon
& rectum. Eur J Cancer. 50:1.e1–1.e34. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Brierley DJ, Gospodarowicz M and Wittekind
C: Colon and Rectum: (ICD-O-3 C18-20). Classification of malignant
tumors digestive system tumours. TNM Online. 73–76. 2017.
View Article : Google Scholar
|
13
|
Shinderman-Maman E, Weingarten C,
Moskovich D, Werner H, Hercbergs A, Davis PJ, Ellis M and
Ashur-Fabian O: Molecular insights into the transcriptional
regulatory role of thyroid hormones in ovarian cancer. Mol
Carcinog. 57:97–105. 2018. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Weingarten C, Jenudi Y, Tshuva RY,
Moskovich D, Alfandari A, Hercbergs A, Davis PJ, Ellis M and
Ashur-Fabian O: The interplay between epithelial-mesenchymal
transition (EMT) and the thyroid hormones-αvβ3 axis in ovarian
cancer. Horm Cancer. 9:22–32. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Cohen K, Flint N, Shalev S, Erez D,
Baharal T, Davis PJ, Hercbergs A, Ellis M and Ashur-Fabian O:
Thyroid hormone regulates adhesion, migration and matrix
metalloproteinase 9 activity via αvβ3 integrin in myeloma cells.
Oncotarget. 5:6312–6322. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hsieh MT, Wang LM, Changou CA, Chin YT,
Yang YSH, Lai HY, Lee SY, Yang YN, Whang-Peng J, Liu LF, et al:
Crosstalk between integrin αvβ3 and ERα contributes to thyroid
hormone-induced proliferation of ovarian cancer cells. Oncotarget.
8:24237–24249. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Olejniczak-Kęder A, Szaryńska M, Wrońska
A, Siedlecka-Kroplewska K and Kmieć Z: Effects of 5-FU and
anti-EGFR antibody in combination with ASA on the spherical culture
system of HCT116 and HT29 colorectal cancer cell lines. Int J
Oncol. 55:223–242. 2019.PubMed/NCBI
|
18
|
Chi HC, Chen CY, Tsai MM, Tsai CY and Lin
KH: Molecular functions of thyroid hormones and their clinical
significance in liver-related diseases. Biomed Res Int.
2013:6013612013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Oppenheimer JH, Schwartz HL, Mariash CN,
Kinlaw WB, Wong NC and Freake HC: Advances in our understanding of
thyroid hormone action at the cellular level. Endocr Rev.
8:288–308. 1987. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kamiya Y, Puzianowska-Kuznicka M, McPhie
P, Nauman J, Cheng SY and Nauman A: Expression of mutant thyroid
hormone nuclear receptors is associated with human renal clear cell
carcinoma. Carcinogenesis. 23:25–33. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Park JW, Zhao L and Cheng SY: Inhibition
of estrogen-dependent tumorigenesis by the thyroid hormone receptor
β in xenograft models. Am J Cancer Res. 3:302–311. 2013.PubMed/NCBI
|
22
|
Heublein S, Mayr D, Meindl A, Angele M,
Gallwas J, Jeschke U and Ditsch N: Thyroid hormone receptors
predict prognosis in BRCA1 associated breast cancer in opposing
ways. PLoS One. 10:e01270722015. View Article : Google Scholar : PubMed/NCBI
|
23
|
López-Mateo I, Alonso-Merino E,
Suarez-Cabrera C, Park JW, Cheng SY, Alemany S, Paramio JM and
Aranda A: Thyroid hormone receptor β inhibits self-renewal capacity
of breast cancer stem cells. Thyroid. 30:116–132. 2020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yen PM: Physiological and molecular basis
of thyroid hormone action. Physiol Rev. 81:1097–1142. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Drabkin H, Kao FT, Hartz J, Hart I, Gazdar
A, Weinberger C, Evans R and Gerber M: Localization of human ERBA2
to the 3p22-3p24.1 region of chromosome 3 and variable deletion in
small cell lung cancer. Proc Natl Acad Sci USA. 85:9258–9262. 1988.
View Article : Google Scholar : PubMed/NCBI
|
26
|
González-Sancho JM, García V, Bonilla F
and Muñoz A: Thyroid hormone receptors/THR genes in human cancer.
Cancer Lett. 192:121–132. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lin KH, Shieh HY, Chen SL and Hsu HC:
Expression of mutant thyroid hormone nuclear receptors in human
hepatocellular carcinoma cells. Mol Carcinog. 26:53–61. 1999.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Furuyama K, Kawaguchi Y, Akiyama H,
Horiguchi M, Kodama S, Kuhara T, Hosokawa S, Elbahrawy A, Soeda T,
Koizumi M, et al: Continuous cell supply from a Sox9-expressing
progenitor zone in adult liver, exocrine pancreas and intestine.
Nat Genet. 43:34–41. 2011. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Guigon CJ, Kim DW, Willingham MC and Cheng
SY: Mutation of thyroid hormone receptor-β in mice predisposes to
the development of mammary tumors. Oncogene. 30:3381–3390. 2011.
View Article : Google Scholar : PubMed/NCBI
|
30
|
González-Sancho JM, Figueroa A,
López-Barahona M, López E, Beug H and Muñoz A: Inhibition of
proliferation and expression of T1 and cyclin D1 genes by thyroid
hormone in mammary epithelial cells. Mol Carcinog. 34:25–34. 2002.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Chi HC, Liao CH, Huang YH, Wu SM, Tsai CY,
Liao CJ, Tseng YH, Lin YH, Chen CY, Chung IH, et al: Thyroid
hormone receptor inhibits hepatoma cell migration through
transcriptional activation of Dickkopf 4. Biochem Biophys Res
Commun. 439:60–65. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Furuya F, Lu C, Willingham MC and Cheng
SY: Inhibition of phosphatidylinositol 3-kinase delays tumor
progression and blocks metastatic spread in a mouse model of
thyroid cancer. Carcinogenesis. 28:2451–2458. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ahmed D, Eide PW, Eilertsen IA, Danielsen
SA, Eknæs M, Hektoen M, Lind GE and Lothe RA: Epigenetic and
genetic features of 24 colon cancer cell lines. Oncogenesis.
2:e712013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Pascual A and Aranda A: Thyroid hormone
receptors, cell growth and differentiation. Biochim Biophys Acta.
1830:3908–3916. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Martínez-Iglesias OA, Alonso-Merino E,
Gómez-Rey S, Velasco-Martín JP, Martín Orozco R, Luengo E, García
Martín R, Ibáñez de Cáceres I, Fernández AF, Fraga MF, et al:
Autoregulatory loop of nuclear corepressor 1 expression controls
invasion, tumor growth, and metastasis. Proc Natl Acad Sci USA.
113:E328–E337. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
García-Silva S and Aranda A: The thyroid
hormone receptor is a suppressor of ras-mediated transcription,
proliferation, and transformation. Mol Cell Biol. 24:7514–7523.
2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Park JW, Zhao L, Willingham MC and Cheng
SY: Loss of tyrosine phosphorylation at Y406 abrogates the tumor
suppressor functions of the thyroid hormone receptor β. Mol
Carcinog. 56:489–498. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Dentice M, Luongo C, Ambrosio R, Sibilio
A, Casillo A, Iaccarino A, Troncone G, Fenzi G, Larsen PR and
Salvatore D: β-Catenin regulates deiodinase levels and thyroid
hormone signaling in colon cancer cells. Gastroenterology.
143:1037–1047. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Miro C, Ambrosio R, De Stefano MA, Di
Girolamo D, Di Cicco E, Cicatiello AG, Mancino G, Porcelli T, Raia
M, Del Vecchio L, et al: The concerted action of type 2 and type 3
deiodinases regulates the cell cycle and survival of basal cell
carcinoma cells. Thyroid. 27:567–576. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kojima Y, Kondo Y, Fujishita T,
Mishiro-Sato E, Kajino-Sakamoto R, Taketo MM and Aoki M: Stromal
iodothyronine deiodinase 2 (DIO2) promotes the growth of intestinal
tumors in ApcΔ716 mutant mice. Cancer Sci.
110:2520–2528. 2019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sterle HA, Hildebrandt X, Valenzuela
Álvarez M, Paulazo MA, Gutierrez LM, Klecha AJ, Cayrol F, Díaz
Flaqué MC, Rosemblit C, Barreiro Arcos ML, et al: Thyroid status
regulates the tumor microenvironment delineating breast cancer
fate. Endocr Relat Cancer. 28:403–418. 2021. View Article : Google Scholar : PubMed/NCBI
|