1
|
Ishihara S, Horiguchi A, Miyakawa S, Endo
I, Miyazaki M and Takada T: Biliary tract cancer registry in Japan
from 2008 to 2013. J Hepatobiliary Pancreat Sci. 23:149–157. 2016.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Yamada T, Nakanishi Y, Okamura K,
Tsuchikawa T, Nakamura T, Noji T, Asano T, Tanaka K, Kurashima Y,
Ebihara Y, et al: Impact of serum carbohydrate antigen 19-9 level
on prognosis and prediction of lymph node metastasis in patients
with intrahepatic cholangiocarcinoma. J Gastroenterol Hepatol.
33:1626–1633. 2018. View Article : Google Scholar
|
3
|
Blechacz BG and Feldman GJ: Sleisenger and
Fordtran's gastrointestinal and liver disease. 9. Vol 1 Tumors of
the Bile Ducts, Gallbladder, and Ampulla. Saunders. 1171–1176.
2010.
|
4
|
Shimada H, Ochiai T and Nomura F; Japan
p53 Antibody Research Group, : Titration of serum p53 antibodies in
1,085 patients with various types of malignant tumors: A
multiinstitutional analysis by the Japan p53 antibody research
group. Cancer. 97:682–689. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhang J, Xu Z, Yu L, Chen M and Li K:
Assessment of the potential diagnostic value of serum p53 antibody
for cancer: A meta-analysis. PLoS One. 9:e992552014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Okada R, Shimada H, Otsuka Y, Tsuchiya M,
Ishii J, Katagiri T, Maeda T, Kubota Y, Nemoto T and Kaneko H:
Serum p53 antibody as a potential tumor marker in extrahepatic
cholangiocarcinoma. Surg Today. 47:1492–1499. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sahin U, Türeci O, Schmitt H, Cochlovius
B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I and
Pfreundschuh M: Human neoplasms elicit multiple specific immune
responses in the autologous host. Proc Natl Acad Sci USA.
92:11810–11813. 1995. View Article : Google Scholar : PubMed/NCBI
|
8
|
Nakashima K, Shimada H, Ochiai T,
Kuboshima M, Kuroiwa N, Okazumi S, Matsubara H, Nomura F, Takiguchi
M and Hiwasa T: Serological identification of TROP2 by recombinant
cDNA expression cloning using sera of patients with esophageal
squamous cell carcinoma. Int J Cancer. 112:1029–1035. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Shimada H, Shiratori T, Yasuraoka M,
Kagaya A, Kuboshima M, Nomura F, Takiguchi M, Ochiai T, Matsubara H
and Hiwasa T: Identification of Makorin 1 as a novel SEREX antigen
of esophageal squamous cell carcinoma. BMC Cancer. 9:2322009.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Obata Y, Takahashi T, Sakamoto J, Tamaki
H, Tominaga S, Hamajima N, Chen YT and Old LJ: SEREX analysis of
gastric cancer antigens. Cancer Chemother Pharmacol. 46
(Suppl):S37–S42. 2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Linē A, Stengrēvics A, Slucka Z, Li G,
Jankevics E and Rees RC: Serological identification and expression
analysis of gastric cancer-associated genes. Br J Cancer.
86:1824–1830. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Song MH, Ha JC, Lee SM, Park YM and Lee
SY: Identification of BCP-20 (FBXO39) as a cancer/testis antigen
from colon cancer patients by SEREX. Biochem Biophys Res Commun.
408:195–201. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Garifulin OM, Kykot VO, Gridina NY,
Kiyamova RG, Gout IT and Filonenko VV: Application of
serex-analysis for identification of human colon cancer antigens.
Exp Oncol. 37:173–180. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nakatsura T, Senju S, Yamada K, Jotsuka T,
Ogawa M and Nishimura Y: Gene cloning of immunogenic antigens
overexpressed in pancreatic cancer. Biochem Biophys Res Commun.
281:936–944. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Heller A, Zörnig I, Müller T, Giorgadze K,
Frei C, Giese T, Bergmann F, Schmidt J, Werner J, Buchler MW, et
al: Immunogenicity of SEREX-identified antigens and disease outcome
in pancreatic cancer. Cancer Immunol Immunother. 59:1389–1400.
2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang K, Xu X, Nie Y, Dai L, Wang P and
Zhang J: Identification of tumor-associated antigens by using SEREX
in hepatocellular carcinoma. Cancer Lett. 281:144–150. 2009.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Song MH, Choi KU, Shin DH, Lee CH and Lee
SY: Identification of the cancer/testis antigens AKAP3 and CTp11 by
SEREX in hepatocellular carcinoma. Oncol Rep. 28:1792–1798. 2012.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Kagaya A, Shimada H, Shiratori T,
Kuboshima M, Nakashima-Fujita K, Yasuraoka M, Nishimori T, Kurei S,
Hachiya T, Murakami A, et al: Identification of a novel SEREX
antigen family, ECSA, in esophageal squamous cell carcinoma.
Proteome Sci. 9:312011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Machida TT, Kubota M, Kobayashi E, Iwadate
Y, Saeki N, Yamaura A, Nomura F, Takiguchi M and Hiwasa T:
Identification of stroke-associated-antigens via screening of
recombinant proteins from the human expression cDNA library
(SEREX). J Transl Med. 13:712015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hiwasa T, Wang H, Goto KI, Mine S, Machida
T, Kobayashi E, Yoshida Y, Adachi A, Matsutani T, Sata M, et al:
Serum anti-DIDO1, anti-CPSF2, and anti-FOXJ2 antibodies as
predictive risk markers for acute ischemic stroke. BMC Med.
19:1312021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yang J, Yan R, Roy A, Xu D, Poisson J and
Zhang Y: The I-TASSER Suite: Protein structure and function
prediction. Nat Methods. 12:7–8. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Kobayashi S, Hiwasa T, Arasawa T, Kagaya
A, Ishii S, Shimada H, Ito M, Suzuki M, Kano M, Rahmutulla B, et
al: Identification of specific and common diagnostic antibody
markers for gastrointestinal cancers by SEREX screening using
testis cDNA phage library. Oncotarget. 9:18559–18569. 2018.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Gorin MA and Pan Q: Protein kinase C
epsilon: An oncogene and emerging tumor biomarker. Mol Cancer.
8:92009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Cacace AM, Guadagno SN, Krauss RS, Fabbro
D and Weinstein IB: The epsilon isoform of protein kinase C is an
oncogene when overexpressed in rat fibroblasts. Oncogene.
8:2095–2104. 1993.PubMed/NCBI
|
26
|
Nusse R and Varmus HE: Many tumors induced
by the mouse mammary tumor virus contain a provirus integrated in
the same region of the host genome. Cell. 31:99–109. 1982.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Kikuchi A and Yamamoto H: Tumor formation
due to abnormalities in the beta-catenin-independent pathway of Wnt
signaling. Cancer Sci. 99:202–208. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kikuchi A: Tumor formation by genetic
mutations in the components of the Wnt signaling pathway. Cancer
Sci. 94:225–229. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ghosh M, Sakhuja P, Singh S and Agarwal
AK: p53 and beta-catenin expression in gallbladder tissues and
correlation with tumor progression in gallbladder cancer. Saudi J
Gastroenterol. 19:34–39. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tetsu O and McCormick F: Beta-catenin
regulates expression of cyclin D1 in colon carcinoma cells. Nature.
398:422–426. 1999. View
Article : Google Scholar : PubMed/NCBI
|
31
|
Kikuchi A: Roles of Axin in the Wnt
signalling pathway. Cell Signal. 11:777–788. 1999. View Article : Google Scholar : PubMed/NCBI
|
32
|
Loilome W, Bungkanjana P, Techasen A,
Namwat N, Yongvanit P, Puapairoj A, Khuntikeo N and Riggins GJ:
Activated macrophages promote Wnt/β-catenin signaling in
cholangiocarcinoma cells. Tumour Biol. 35:5357–5367. 2014.
View Article : Google Scholar : PubMed/NCBI
|