1
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Kaplan MA, Isikdogan A, Gumus M, Arslan
UY, Geredeli C, Ozdemir N, Koca D, Dane F, Suner A, Elkiran ET, et
al: Childhood, adolescents, and young adults (≤25 y) colorectal
cancer: Study of Anatolian society of medical oncology. J Pediatr
Hematol Oncol. 35:83–89. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Heervä E, Lavonius M, Jaakkola P, Minn H
and Ristamäki R: Overall survival and metastasis resections in
patients with metastatic colorectal cancer using electronic medical
records. J Gastrointest Cancer. 49:245–251. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang X, Ying W, Dunlap KA, Lin G,
Satterfield MC, Burghardt RC, Wu G and Bazer FW: Arginine
decarboxylase and agmatinase: An alternative pathway for de novo
biosynthesis of polyamines for development of mammalian
conceptuses. Biol Reprod. 90:842014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhu HE, Yin JY, Chen DX, He S and Chen H:
Agmatinase promotes the lung adenocarcinoma tumorigenesis by
activating the NO-MAPKs-PI3K/Akt pathway. Cell Death Dis.
10:8542019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang Y, Cao L, Xie Y, Wang C, Liu X,
Zhang X and Chen J: Agmatinase facilitates the tumorigenesis of
pancreatic adenocarcinoma through the TGFβ/Smad pathway. Exp Ther
Med. 24:4902022. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hosseini M, Khatamianfar S, Hassanian SM,
Nedaeinia R, Shafiee M, Maftouh M, Ghayour-Mobarhan M, ShahidSales
S and Avan A: Exosome-encapsulated microRNAs as potential
circulating biomarkers in colon cancer. Curr Pharm Des.
23:1705–1709. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pidíkova P, Reis R and Herichova I: miRNA
clusters with down-regulated expression in human colorectal cancer
and their regulation. Int J Mol Sci. 21:46332020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Slaby O, Svoboda M, Michalek J and Vyzula
R: MicroRNAs in colorectal cancer: Translation of molecular biology
into clinical application. Mol Cancer. 8:1022009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang H: MicroRNAs and apoptosis in
colorectal cancer. Int J Mol Sci. 21:53532020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liu G and Li B: Role of miRNA in
transformation from normal tissue to colorectal adenoma and cancer.
J Cancer Res Ther. 15:278–285. 2019.PubMed/NCBI
|
13
|
Huang S, Tan X, Huang Z, Chen Z, Lin P and
Fu SW: microRNA biomarkers in colorectal cancer liver metastasis. J
Cancer. 9:3867–3873. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang H, Zhu M, Shan X, Zhou X, Wang T,
Zhang J, Tao J, Cheng W, Chen G, Li J, et al: A panel of
seven-miRNA signature in plasma as potential biomarker for
colorectal cancer diagnosis. Gene. 687:246–254. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Daugaard I, Sanders KJ, Idica A,
Vittayarukskul K, Hamdorf M, Krog JD, Chow R, Jury D, Hansen LL,
Hager H, et al: miR-151a induces partial EMT by regulating
E-cadherin in NSCLC cells. Oncogenesis. 6:e3662017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Fredsøe J, Rasmussen AKI, Mouritzen P,
Borre M, Ørntoft T and Sørensen KD: A five-microRNA model (pCaP)
for predicting prostate cancer aggressiveness using cell-free
urine. Int J Cancer. 145:2558–2567. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Almeida RS, Costa E, Silva M, Coutinho LL,
Garcia Gomes R, Pedrosa F, Massaro JD, Donadi EA and Lucena-Silva
N: MicroRNA expression profiles discriminate childhood T-from
B-acute lymphoblastic leukemia. Hematol Oncol. 37:103–112. 2019.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhou R, Wang R, Qin Y, Ji J, Xu M, Wu W,
Chen M, Wu D, Song L, Shen H, et al: Mitochondria-related
miR-151a-5p reduces cellular ATP production by targeting CYTB in
asthenozoospermia. Sci Rep. 5:177432015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Link F, Krohn K and Schumann J: Author
correction: Identification of stably expressed housekeeping miRNAs
in endothelial cells and macrophages in an inflammatory setting.
Sci Rep. 9:144662019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Guo S, Zhang J, Zhao YY, Zhou LY, Xie Y,
Wu XY, Bian X and Yu XY: The expressions of miR-151a-5p and miR-23b
in lung cancer tissues and their effects on the biological
functions of lung cancer A549 cells. Eur Rev Med Pharmacol Sci.
24:6779–6785. 2020.PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Baj J, Korona-Glowniak I, Forma A, Maani
A, Sitarz E, Rahnama-Hezavah M, Radzikowska E and Portincasa P:
Mechanisms of the epithelial-mesenchymal transition and tumor
microenvironment in Helicobacter pylori-induced gastric cancer.
Cells. 9:10552020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Adnan M, Siddiqui AJ, Hamadou WS, Snoussi
M, Badraoui R, Ashraf SA, Jamal A, Awadelkareem AM, Sachidanandan
M, Hadi S, et al: Deciphering the molecular mechanism responsible
for efficiently inhibiting metastasis of human non-small cell lung
and colorectal cancer cells targeting the matrix metalloproteinases
by selaginella repanda. Plants (Basel). 10:9792021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Arruabarrena-Aristorena A, Zabala-Letona A
and Carracedo A: Oil for the cancer engine: The cross-talk between
oncogenic signaling and polyamine metabolism. Sci Adv.
4:eaar26062018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yan L, Yao J and Qiu J: miRNA-495
suppresses proliferation and migration of colorectal cancer cells
by targeting FAM83D. Biomed Pharmacother. 96:974–981. 2017.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Kang X, Kong B, Chen Q and Zhao S: Low
expression of miR-138 inhibit the proliferation, migration and
invasion of colorectal cancer and affect patient survival by
targeting SIRT1. Transl Cancer Res. 10:3548–3559. 2021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang D, Qiu C, Zhang H, Wang J, Cui Q and
Yin Y: Human microRNA oncogenes and tumor suppressors show
significantly different biological patterns: From functions to
targets. PLoS One. 5:e130672010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Xiao M, Li J, Li W, Wang Y, Wu F, Xi Y,
Zhang L, Ding C, Luo H, Li Y, et al: MicroRNAs activate gene
transcription epigenetically as an enhancer trigger. RNA Biol.
14:1326–1334. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Suzuki HI, Young RA and Sharp PA:
Super-enhancer-mediated RNA processing revealed by integrative
MicroRNA network analysis. Cell. 168:1000–1014.e15. 2017.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen E, Li Q, Wang H, Yang F, Min L and
Yang J: MiR-92a promotes tumorigenesis of colorectal cancer, a
transcriptomic and functional based study. Biomed Pharmacother.
106:1370–1377. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Guo S, Zhu KX, Yu WH, Wang T, Li S, Wang
YX, Zhang CC and Guo JQ: SH3PXD2A-AS1/miR-330-5p/UBA2 ceRNA network
mediates the progression of colorectal cancer through regulating
the activity of the Wnt/β-catenin signaling pathway. Environ
Toxicol. 36:1969–1980. 2021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Jafarzadeh M and Soltani BM: MiRNA-Wnt
signaling regulatory network in colorectal cancer. J Biochem Mol
Toxicol. 35:e228832021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang N, Hu X, Du Y and Du J: The role of
miRNAs in colorectal cancer progression and chemoradiotherapy.
Biomed Pharmacother. 134:1110992021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zuo Z, Jiang Y, Zeng S, Li Y, Fan J, Guo Y
and Tao H: The value of microRNAs as the novel biomarkers for
colorectal cancer diagnosis: A meta-analysis. Pathol Res Pract.
216:1531302020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lopez-Camarillo C, Marchat LA,
Arechaga-Ocampo E, Perez-Plasencia C, Del Moral-Hernandez O,
Castaneda-Ortiz EJ and Rodriguez-Cuevas S: MetastamiRs: Non-coding
MicroRNAs driving cancer invasion and metastasis. Int J Mol Sci.
13:1347–1379. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kunej T, Godnic I, Horvat S, Zorc M and
Calin GA: Cross talk between microRNA and coding cancer genes.
Cancer J. 18:223–231. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Fan X, Cao M, Liu C, Zhang C, Li C, Cheng
W, Zhang S, Zhang H and Zhu W: Three plasma-based microRNAs as
potent diagnostic biomarkers for endometrial cancer. Cancer
Biomark. 31:127–138. 2021. View Article : Google Scholar : PubMed/NCBI
|
38
|
Pellikainen JM, Ropponen KM, Kataja VV,
Kellokoski JK, Eskelinen MJ and Kosma VM: Expression of matrix
metalloproteinase (MMP)-2 and MMP-9 in breast cancer with a special
reference to activator protein-2, HER2, and prognosis. Clin Cancer
Res. 10:7621–7628. 2004. View Article : Google Scholar : PubMed/NCBI
|
39
|
Fabian MR, Sonenberg N and Filipowicz W:
Regulation of mRNA translation and stability by microRNAs. Annu Rev
Biochem. 79:351–379. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bracken CP, Scott HS and Goodall GJ: A
network-biology perspective of microRNA function and dysfunction in
cancer. Nat Rev Genet. 17:719–732. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Uribe E, Reyes MB, Martinez I, Mella K,
Salas M, Tarifeño-Saldivia E, López V, Garcia-Robles M,
Martinez-Oyanedel J, Figueroa M, et al: Functional analysis of the
Mn2+ requirement in the catalysis of ureohydrolases
arginase and agmatinase-a historical perspective. J Inorg Biochem.
202:1108122020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Chai J, Luo L, Hou F, Fan X, Yu J, Ma W,
Tang W, Yang X, Zhu J, Kang W, et al: Agmatine reduces
lipopolysaccharide-mediated oxidant response via activating
PI3K/Akt pathway and up-regulating Nrf2 and HO-1 expression in
macrophages. PLoS One. 11:e01636342016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yılmaz E, Şekeroğlu MR, Yılmaz E and
Çokluk E: Evaluation of plasma agmatine level and its metabolic
pathway in patients with bipolar disorder during manic episode and
remission period. Int J Psychiatry Clin Pract. 23:128–133. 2019.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Dallmann K, Junker H, Balabanov S,
Zimmermann U, Giebel J and Walther R: Human agmatinase is
diminished in the clear cell type of renal cell carcinoma. Int J
Cancer. 108:342–347. 2004. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bernstein HG, Stich C, Jäger K, Dobrowolny
H, Wick M, Steiner J, Veh R, Bogerts B and Laube G: Agmatinase, an
inactivator of the putative endogenous antidepressant agmatine, is
strongly upregulated in hippocampal interneurons of subjects with
mood disorders. Neuropharmacology. 62:237–246. 2012. View Article : Google Scholar : PubMed/NCBI
|