1
|
Huttner A: Overview of primary brain
tumors: Pathologic classification, epidemiology, molecular biology,
and prognostic markers. Hematol Oncol Clin North Am. 26:715–732.
2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Louis DN, Perry A, Wesseling P, Brat DJ,
Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM,
Reifenberger G, et al: The 2021 WHO classification of tumors of the
central nervous system: A summary. Neuro Oncol. 23:1231–1251. 2021.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Vredenburgh JJ, Desjardins A, Herndon JE
II, Dowell JM, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S,
Gururangan S, Wagner M, et al: Phase II trial of bevacizumab and
irinotecan in recurrent malignant glioma. Clin Cancer Res.
13:1253–1259. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Anjum K, Shagufta BI, Abbas SQ, Patel S,
Khan I, Shah SAA, Akhter N and Hassan SSU: Current status and
future therapeutic perspectives of glioblastoma multiforme (GBM)
therapy: A review. Biomed Pharmacother. 92:681–689. 2017.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Zong H, Parada LF and Baker SJ: Cell of
origin for malignant gliomas and its implication in therapeutic
development. Cold Spring Harb Perspect Biol. 7:a0206102015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Bao L, Kimzey A, Sauter G, Sowadski JM, Lu
KP and Wang DG: Prevalent overexpression of prolyl isomerase Pin1
in human cancers. Am J Pathol. 164:1727–1737. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chen Y, Wu YR, Yang HY, Li XZ, Jie MM, Hu
CJ, Wu YY, Yang SM and Yang YB: Prolyl isomerase Pin1: A promoter
of cancer and a target for therapy. Cell Death Dis. 9:8832018.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Atabay KD, Yildiz MT, Avsar T, Karabay A
and Kiliç T: Knockdown of Pin1 leads to reduced angiogenic
potential and tumorigenicity in glioblastoma cells. Oncol Lett.
10:2385–2389. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lu KP, Finn G, Lee TH and Nicholson LK:
Prolyl cis-trans isomerization as a molecular timer. Nat Chem Biol.
3:619–629. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Takahashi K, Uchida C, Shin RW, Shimazaki
K and Uchida T: Prolyl isomerase, Pin1: New findings of
post-translational modifications and physiological substrates in
cancer, asthma and Alzheimer's disease. Cell Mol Life Sci.
65:359–375. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Reichert M, Steinbach JP, Supra P and
Weller M: Modulation of growth and radiochemosensitivity of human
malignant glioma cells by acidosis. Cancer. 95:1113–1119. 2002.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhu Z, Zhang H, Lang F, Liu G, Gao D, Li B
and Liu Y: Pin1 promotes prostate cancer cell proliferation and
migration through activation of Wnt/β-catenin signaling. Clin
Transl Oncol. 18:792–797. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang Z, Yu W, Zheng M, Liao X, Wang J,
Yang D, Lu W, Wang L, Zhang S, Liu H, et al: Pin1 inhibition
potently suppresses gastric cancer growth and blocks PI3K/AKT and
Wnt/β-catenin oncogenic pathways. Mol Carcinog. 58:1450–1464. 2019.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Farrell AS, Pelz C, Wang X, Daniel CJ,
Wang Z, Su Y, Janghorban M, Zhang X, Morgan C, Impey S and Sears
RC: Pin1 regulates the dynamics of c-Myc DNA binding to facilitate
target gene regulation and oncogenesis. Mol Cell Biol.
33:2930–2949. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Atkinson GP, Nozell SE, Harrison DK,
Stonecypher MS, Chen D and Benveniste EN: The prolyl isomerase Pin1
regulates the NF-kappaB signaling pathway and interleukin-8
expression in glioblastoma. Oncogene. 28:3735–3745. 2009.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Raychaudhuri B, Han Y, Lu T and Vogelbaum
MA: Aberrant constitutive activation of nuclear factor kappaB in
glioblastoma multiforme drives invasive phenotype. J Neurooncol.
85:39–47. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wakabayashi K, Kambe F, Cao X, Murakami R,
Mitsuyama H, Nagaya T, Saito K, Yoshida J and Seo H: Inhibitory
effects of cyclosporin A on calcium mobilization-dependent
interleukin-8 expression and invasive potential of human
glioblastoma U251MG cells. Oncogene. 23:6924–6932. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Turner KJ, Vasu V and Griffin DK: Telomere
biology and human phenotype. Cells. 8:732019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Armando RG, Mengual Gomez DL, Maggio J,
Sanmartin MC and Gomez DE: Telomeropathies: Etiology, diagnosis,
treatment and follow-up. Ethical and legal considerations. Clin
Genet. 96:3–16. 2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Akincilar SC, Unal B and Tergaonkar V:
Reactivation of telomerase in cancer. Cell Mol Life Sci.
73:1659–1670. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lee TH, Tun-Kyi A, Shi R, Lim J, Soohoo C,
Finn G, Balastik M, Pastorino L, Wulf G, Zhou XZ and Lu KP:
Essential role of Pin1 in the regulation of TRF1 stability and
telomere maintenance. Nat Cell Biol. 11:97–105. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ghaffari SH, Momeny M, Bashash D, Mirzaei
R, Ghavamzadeh A and Alimoghaddam K: Cytotoxic effect of arsenic
trioxide on acute promyelocytic leukemia cells through suppression
of NFkβ-dependent induction of hTERT due to down-regulation of Pin1
transcription. Hematology. 17:198–206. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Naderlinger E and Holzmann K: Epigenetic
regulation of telomere maintenance for therapeutic interventions in
gliomas. Genes (Basel). 8:1452017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Nasser MM and Mehdipour P: Exploration of
involved key genes and signaling diversity in brain tumors. Cell
Mol Neurobiol. 38:393–419. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Xiang X, Corsi GI, Anthon C, Qu K, Pan X,
Liang X, Han P, Dong Z, Liu L, Zhong J, et al: Enhancing
CRISPR-Cas9 gRNA efficiency prediction by data integration and deep
learning. Nat Commun. 12:32382021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Armando RG, Gomez DM and Gomez DE: AZT
exerts its antitumoral effect by telomeric and non-telomeric
effects in a mammary adenocarcinoma model. Oncol Rep. 36:2731–2736.
2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cawthon RM: Telomere measurement by
quantitative PCR. Nucleic Acids Res. 30:e472002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tomayko MM and Reynolds CP: Determination
of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother
Pharmacol. 24:148–154. 1989. View Article : Google Scholar : PubMed/NCBI
|
30
|
Schneider CA, Rasband WS and Eliceiri KW:
NIH image to ImageJ: 25 Years of image analysis. Nat Methods.
9:671–675. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Nakashima M, Meirmanov S, Naruke Y, Kondo
H, Saenko V, Rogounovitch T, Shimizu-Yoshida Y, Takamura N, Namba
H, Ito M, et al: Cyclin D1 overexpression in thyroid tumours from a
radio-contaminated area and its correlation with Pin1 and aberrant
beta-catenin expression. J Pathol. 202:446–455. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wulf GM, Ryo A, Wulf GG, Lee SW, Niu T,
Petkova V and Lu KP: Pin1 is overexpressed in breast cancer and
cooperates with Ras signaling in increasing the transcriptional
activity of c-Jun towards cyclin D1. EMBO J. 20:3459–3472. 2001.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang J, Liu K, Wang XF and Sun DJ: Juglone
reduces growth and migration of U251 glioblastoma cells and
disrupts angiogenesis. Oncol Rep. 38:1959–1966. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhou XZ and Lu KP: The isomerase PIN1
controls numerous cancer-driving pathways and is a unique drug
target. Nat Rev Cancer. 16:463–478. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chuang HH, Zhen YY, Tsai YC, Chuang CH,
Huang MS, Hsiao M and Yang CJ: Targeting Pin1 for modulation of
cell motility and cancer therapy. Biomedicines. 9:3592021.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Pu W, Zheng Y and Peng Y: Prolyl isomerase
Pin1 in human cancer: Function, mechanism, and significance. Front
Cell Dev Biol. 8:1682020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Cheng CW and Tse E: PIN1 in cell cycle
control and cancer. Front Pharmacol. 9:13672018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sang Y, Li Y, Zhang Y, Alvarez AA, Yu B,
Zhang W, Hu B, Cheng SY and Feng H: CDK5-dependent phosphorylation
and nuclear translocation of TRIM59 promotes macroH2A1
ubiquitination and tumorigenicity. Nat Commun. 10:40132019.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Yang W and Lu Z: Nuclear PKM2 regulates
the Warburg effect. Cell Cycle. 12:3154–3158. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang A, Tao W, Zhai K, Fang X, Huang Z,
Yu JS, Sloan AE, Rich JN, Zhou W and Bao S: Protein sumoylation
with SUMO1 promoted by Pin1 in glioma stem cells augments
glioblastoma malignancy. Neuro Oncol. 22:1809–1821. 2020.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Mesalam AA, El-Sheikh M, Joo MD, Khalil
AAK, Mesalam A, Ahn MJ and Kong IK: Induction of oxidative stress
and mitochondrial dysfunction by juglone affects the development of
bovine oocytes. Int J Mol Sci. 22:1682020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Paulsen MT and Ljungman M: The natural
toxin juglone causes degradation of p53 and induces rapid H2AX
phosphorylation and cell death in human fibroblasts. Toxicol Appl
Pharmacol. 209:1–9. 2005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Uchida T, Takamiya M, Takahashi M,
Miyashita H, Ikeda H, Terada T, Matsuo Y, Shirouzu M, Yokoyama S,
Fujimori F and Hunter T: Pin1 and Par14 peptidyl prolyl isomerase
inhibitors block cell proliferation. Chem Biol. 10:15–24. 2003.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Campaner E, Rustighi A, Zannini A,
Cristiani A, Piazza S, Ciani Y, Kalid O, Golan G, Baloglu E,
Shacham S, et al: A covalent PIN1 inhibitor selectively targets
cancer cells by a dual mechanism of action. Nat Commun.
8:157722017. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wei S, Kozono S, Kats L, Nechama M, Li W,
Guarnerio J, Luo M, You MH, Yao Y, Kondo A, et al: Active Pin1 is a
key target of all-trans retinoic acid in acute promyelocytic
leukemia and breast cancer. Nat Med. 21:457–466. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kozono S, Lin YM, Seo HS, Pinch B, Lian X,
Qiu C, Herbert MK, Chen CH, Tan L, Gao ZJ, et al: Arsenic targets
Pin1 and cooperates with retinoic acid to inhibit cancer-driving
pathways and tumor-initiating cells. Nat Commun. 9:30692018.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Chen S, Sun H, Miao K and Deng CX:
CRISPR-Cas9: From genome editing to cancer research. Int J Biol
Sci. 12:1427–1436. 2016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sánchez-Rivera FJ and Jacks T:
Applications of the CRISPR-Cas9 system in cancer biology. Nat Rev
Cancer. 15:387–395. 2015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Lu Q, Livi GP, Modha S, Yusa K, Macarrón R
and Dow DJ: Applications of CRISPR genome editing technology in
drug target identification and validation. Expert Opin Drug Discov.
12:541–552. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Shalem-Cohavi N, Beery E, Nordenberg J,
Rozovski U, Raanani P, Lahav M and Uziel O: The effects of
proteasome inhibitors on telomerase activity and regulation in
multiple myeloma cells. Int J Mol Sci. 20:25092019. View Article : Google Scholar : PubMed/NCBI
|
51
|
Nagai S, Washiyama K, Kurimoto M, Takaku
A, Endo S and Kumanishi T: Aberrant nuclear factor-kappaB activity
and its participation in the growth of human malignant astrocytoma.
J Neurosurg. 96:909–917. 2002. View Article : Google Scholar : PubMed/NCBI
|
52
|
Lian X, Lin YM, Kozono S, Herbert MK, Li
X, Yuan X, Guo J, Guo Y, Tang M, Lin J, et al: Pin1 inhibition
exerts potent activity against acute myeloid leukemia through
blocking multiple cancer-driving pathways. J Hematol Oncol.
11:732018. View Article : Google Scholar : PubMed/NCBI
|