Key role of PIN1 in telomere maintenance and oncogenic behavior in a human glioblastoma model

  • Authors:
    • Julián Maggio
    • Georgina A. Cardama
    • Romina G. Armando
    • Lara Balcone
    • Natasha T. Sobol
    • Daniel E. Gomez
    • Diego L. Mengual Gómez
  • View Affiliations

  • Published online on: March 20, 2023     https://doi.org/10.3892/or.2023.8528
  • Article Number: 91
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

PIN1 is the only known enzyme capable of recognizing and isomerizing the phosphorylated Serine/Threonine‑Proline motif. Through this mechanism, PIN1 controls diverse cellular functions, including telomere maintenance. Both PIN1 overexpression and its involvement in oncogenic pathways are involved in several cancer types, including glioblastoma (GBM), a lethal disease with poor therapeutic resources. However, knowledge of the role of PIN1 in GBM is limited. Thus, the present work aimed to study the role of PIN1 as a telomere/telomerase regulator and its contribution to tumor biology. PIN1 knockout (KO) LN‑229 cell variant using CRISPR/Cas9 was developed and compared with PIN1 LN‑229 expressing cells. To study the effect of PIN1 absence, status of NF‑κB pathway was evaluated by luciferase reporter gene assay and quantitative PCR. Results revealed that PIN1 deletion in GBM cells diminished the active levels of NF‑κB and decrease the transcription of il‑8 and htert genes. Then, telomere/telomerase related processes were studied by RQ‑TRAP assay and telomere length determination by qPCR, obtaining a reduction both in telomerase activity as in telomere length in PIN1 KO cells. In addition, measurement of SA β‑galactosidase and caspase‑3 activities revealed that loss of PIN1 triggers senescence and apoptosis. Finally, migration, cell cycle progression and tumorigenicity were studied by flow cytometry/western blot, Transwell assay and in vivo experiments, respectively. PIN1 deletion decreased migration as well as cell cycle progression by increasing doubling time and also resulted in the loss of LN‑229 cell ability to form tumors in mice. These results highlight the role of PIN1 in telomere homeostasis and GBM progression, which supports PIN1 as a potential molecular target for the development of novel therapeutic agents for GBM treatment.
View Figures
View References

Related Articles

Journal Cover

May-2023
Volume 49 Issue 5

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Maggio J, Cardama GA, Armando RG, Balcone L, Sobol NT, Gomez DE and Mengual Gómez DL: Key role of PIN1 in telomere maintenance and oncogenic behavior in a human glioblastoma model. Oncol Rep 49: 91, 2023.
APA
Maggio, J., Cardama, G.A., Armando, R.G., Balcone, L., Sobol, N.T., Gomez, D.E., & Mengual Gómez, D.L. (2023). Key role of PIN1 in telomere maintenance and oncogenic behavior in a human glioblastoma model. Oncology Reports, 49, 91. https://doi.org/10.3892/or.2023.8528
MLA
Maggio, J., Cardama, G. A., Armando, R. G., Balcone, L., Sobol, N. T., Gomez, D. E., Mengual Gómez, D. L."Key role of PIN1 in telomere maintenance and oncogenic behavior in a human glioblastoma model". Oncology Reports 49.5 (2023): 91.
Chicago
Maggio, J., Cardama, G. A., Armando, R. G., Balcone, L., Sobol, N. T., Gomez, D. E., Mengual Gómez, D. L."Key role of PIN1 in telomere maintenance and oncogenic behavior in a human glioblastoma model". Oncology Reports 49, no. 5 (2023): 91. https://doi.org/10.3892/or.2023.8528