1
|
Warburg O: The metabolism of carcinoma
cells. J Cancer Res. 9:148–163. 1925. View Article : Google Scholar
|
2
|
Tarrado-Castellarnau M, de Atauri P and
Cascante M: Oncogenic regulation of tumor metabolic reprogramming.
Oncotarget. 7:62726–62753. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Liberti MV and Locasale JW: The Warburg
effect: How does it benefit cancer cells? Trends Biochem Sci.
41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Eales KL, Hollinshead KER and Tennantm DA:
Hypoxia and metabolic adaptation of cancer cells. Oncogenesis.
5:e1902016. View Article : Google Scholar : PubMed/NCBI
|
5
|
de la Cruz-López KG, Castro-Muñoz LJ,
Reyes-Hernández DO, García-Carrancá A and Manzo-Merino J: Lactate
in the regulation of tumor microenvironment and therapeutic
approaches. Front Oncol. 9:11432019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Engelman JA, Luo J and Cantley LC: The
evolution of phosphatidylinositol 3-kinases as regulators of growth
and metabolism. Nat Rev Genet. 7:606–619. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Courtnay R, Ngo DC, Malik N, Ververis K,
Tortorella SM and Karagiannis TC: Cancer metabolism and the Warburg
effect: The role of HIF-1 and PI3K. Mol Biol Rep. 42:841–851. 2015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Wu Z, Wu J, Zhao Q, Fu S and Jin J:
Emerging roles of aerobic glycolysis in breast cancer. Clin Transl
Oncol. 22:631–646. 2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Elstrom RL, Bauer DE, Buzzai M, Karnauskas
R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM and
Thompson CB: Akt stimulates aerobic glycolysis in cancer cells.
Cancer Res. 64:3892–3899. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Urso L, Cavallari I, Sharova E, Ciccarese
F, Pasello G and Ciminale V: Metabolic rewiring and redox
alterations in malignant pleural mesothelioma. Br J Cancer.
122:52–61. 2020. View Article : Google Scholar : PubMed/NCBI
|
11
|
Abraham AG and O'Neill E:
PI3K/Akt-mediated regulation of p53 in cancer. Biochem Soc Trans.
42:798–803. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Naderali E, Valipour B, Khaki AA, Rad JS,
Alihemmati A, Rahmati M and Charoudeh HN: Positive effects of
PI3K/Akt signaling inhibition on PTEN and p53 in prevention of
acute lymphoblastic leukemia tumor cells. Adv Pharm Bull.
9:470–480. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Song M, Bode AM, Dong Z and Lee MH: AKT as
a therapeutic target for cancer. Cancer Res. 79:1019–1031. 2019.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Ahmed SA, Parama D, Daimari E, Girisa S,
Banik K, Harsha C, Dutta U and Kunnumakkara AB: Rationalizing the
therapeutic potential of apigenin against cancer. Life Sci.
267:1188142021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Madunić J, Madunić IV, Gajski G, Popić J
and Garaj-Vrhovac V: Apigenin: A dietary flavonoid with diverse
anticancer properties. Cancer Lett. 413:11–22. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tong X and Pelling JC: Targeting the
PI3K/Akt/mTOR axis by apigenin for cancer prevention. Anticancer
Agents Med Chem. 13:971–978. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Masuelli L, Benvenuto M, Mattera R, Di
Stefano E, Zago E, Taffera G, Tresoldi I, Giganti MG, Frajese GV,
Berardi G, et al: In vitro and in vivo anti-tumoral effects of the
flavonoid apigenin in malignant mesothelioma. Front Pharmacol.
8:3732017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lee YJ, Park KS, Nam HS, Cho MK and Lee
SH: Apigenin causes necroptosis by inducing ROS accumulation,
mitochondrial dysfunction, and ATP depletion in malignant
mesothelioma cells. Korean J Physiol Pharmacol. 24:493–502. 2020.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Xu RH, Pelicano H, Zhou Y, Carew JS, Feng
L, Bhalla KN, Keating MJ and Huang P: Inhibition of glycolysis in
cancer cells: A novel strategy to overcome drug-resistance
associated with mitochondrial respiratory defect and hypoxia.
Cancer Res. 65:613–621. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Geschwind JF, Ko YH, Torbenson MS, Magee C
and Pedersen PL: Novel therapy for liver cancer: Direct
intraarterial injection of a potent inhibitor of ATP production.
Cancer Res. 62:3909–3913. 2002.PubMed/NCBI
|
21
|
Leist M, Single B, Castoldi AF, Kühnle S
and Nicotera P: Intracellular adenosine triphosphate (ATP)
concentration: A switch in the decision between apoptosis and
necrosis. J Exp Med. 185:1481–1486. 1997. View Article : Google Scholar : PubMed/NCBI
|
22
|
Singhal S, Wiewrodt R, Malden LD, Amin KM,
Matzie K, Friedberg J, Kucharczuk JC, Litzky LA, Johnson SW, Kaiser
LR and Albelda SM: Gene expression profiling of malignant
mesothelioma. Clin Cancer Res. 9:3080–3097. 2003.PubMed/NCBI
|
23
|
Bonelli M, Terenziani R, Zoppi S, Fumarola
C, La Monica S, Cretella D, Alfieri R, Cavazzoni A, Digiacomo G,
Galetti M and Petronini PG: Dual inhibition of CDK4/6 and
PI3K/AKT/mTOR signaling impairs energy metabolism in MPM cancer
cells. Int J Mol Sci. 21:51652020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lee YJ and Lee SH: Pro-oxidant activity of
sulforaphane and cisplatin potentiates apoptosis and simultaneously
promotes autophagy in malignant mesothelioma cells. Mol Med Rep.
16:2133–2141. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kozlov AM, Lone A, Betts DH and Cumming
RC: Lactate preconditioning promotes a HIF-1α-mediated metabolic
shift from OXPHOS to glycolysis in normal human diploid
fibroblasts. Sci Rep. 10:83882020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ma L and Zong X: Metabolic symbiosis in
chemoresistance: Refocusing the role of aerobic glycolysis. Front
Oncol. 10:52020. View Article : Google Scholar : PubMed/NCBI
|
27
|
He J, Xie G, Tong J, Peng Y, Huang H, Li
J, Wang N and Liang H: Overexpression of microRNA-122 re-sensitizes
5-FU-resistant colon cancer cells to 5-FU through the inhibition of
PKM2 in vitro and in vivo. Cell Biochem Biophys. 70:1343–1350.
2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Pérez-Tomás R and Pérez-Guillén I: Lactate
in the tumor microenvironment: An essential molecule in cancer
progression and treatment. Cancers (Basel). 12:32442020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ruan GX and Kazlauskas A: Lactate engages
receptor tyrosine kinases Axl, Tie2, and vascular endothelial
growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt
and promote angiogenesis. J Biol Chem. 288:21161–21172. 2013.
View Article : Google Scholar : PubMed/NCBI
|
30
|
De Saedeleer CJ, Copetti T, Porporato PE,
Verrax J, Feron O and Sonveaux P: Lactate activates HIF-1 in
oxidative but not in Warburg-phenotype human tumor cells. PLoS One.
7:e465712012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Fukumura D, Xu L, Chen Y, Gohongi T, Seed
B and Jain RK: Hypoxia and acidosis independently up-regulate
vascular endothelial growth factor transcription in brain tumors in
vivo. Cancer Res. 61:6020–6024. 2001.PubMed/NCBI
|
32
|
Zhuo B, Li Y, Li Z, Qin H, Sun Q, Zhang F,
Shen Y, Shi Y and Wang R: PI3K/Akt signaling mediated hexokinase-2
expression inhibits cell apoptosis and promotes tumor growth in
pediatric osteosarcoma. Biochem Biophys Res Commun. 464:401–406.
2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Simabuco FM, Morale MG, Pavan ICB, Morelli
AP, Silva FR and Tamura RE: p53 and metabolism: From mechanism to
therapeutics. Oncotarget. 9:23780–23823. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ma W, Sung HJ, Park JY, Matoba S and Hwang
PM: A pivotal role for p53: Balancing aerobic respiration and
glycolysis. J Bioenerg Biomembr. 39:243–246. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Xue C, Gu X, Li G, Bao Z and Li L:
Mitochondrial mechanisms of necroptosis in liver diseases. Int J
Mol Sci. 22:662020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Edmondson R, Broglie JJ, Adcock AF and
Yang L: Three-dimensional cell culture systems and their
applications in drug discovery and cell-based biosensors. Assay
Drug Dev Technol. 12:207–218. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chitcholtan K, Sykes P and Evans J: The
resistance of intracellular mediators to doxorubicin and cisplatin
are distinct in 3D and 2D endometrial cancer. J Transl Med.
10:382012. View Article : Google Scholar : PubMed/NCBI
|