Therapeutic effects of natural polyphenols on colorectal adenomas: Focus on preclinical studies (Review)
- Authors:
- Fuqi Ma
- Yuhua Lin
- Zhenhua Ni
- Teng Chen
- Xiongbiao Wang
-
Affiliations: Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China - Published online on: April 19, 2023 https://doi.org/10.3892/or.2023.8549
- Article Number: 112
-
Copyright: © Ma et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Versace VL, Forsyth AD, Vaughan R, Morrice MG and Morphett BJ: Evidence of elevated colorectal cancer and adenoma rates for regional National Bowel Cancer Screening Program participants. Aust J Rural Health. 26:63–64. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhiqiang F, Jie C, Yuqiang N, Chenghua G, Hong W, Zheng S, Wanglin L, Yongjian Z, Liping D, Lizhong Z and DeJian Z: Analysis of population-based colorectal cancer screening in Guangzhou, 2011–2015. Cancer Med. 8:2496–2502. 2019. View Article : Google Scholar : PubMed/NCBI | |
Conteduca V, Sansonno D, Russi S and Dammacco F: Precancerous colorectal lesions (Review). Int J Oncol. 43:973–984. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fearon ER and Vogelstein B: A genetic model for colorectal tumorigenesis. Cell. 61:759–767. 1990. View Article : Google Scholar : PubMed/NCBI | |
Brennan CA and Garrett WS: Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol. 70:395–411. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang B, Mao L, Li Y, Li Q, Li X, Zhang Y and Zhai Z: β-catenin, leucine-rich repeat-containing G protein-coupled receptor 5 and GATA-binding factor 6 are associated with the normal mucosa-adenoma-adenocarcinoma sequence of colorectal tumorigenesis. Oncol Lett. 15:2287–2295. 2018.PubMed/NCBI | |
Murakami T, Kurosawa T, Fukushima H, Shibuya T, Yao T and Nagahara A: Sessile serrated lesions: Clinicopathological characteristics, endoscopic diagnosis, and management. Dig Endosc. 34:1096–1109. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lazarus R, Junttila OE, Karttunen TJ and Makinen MJ: The risk of metachronous neoplasia in patients with serrated adenoma. Am J Clin Pathol. 123:349–359. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cirillo G, Curcio M, Vittorio O, Iemma F, Restuccia D, Spizzirri UG, Puoci F and Picci N: Polyphenol conjugates and human health: A perspective review. Crit Rev Food Sci Nutr. 56:326–337. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fantini M, Benvenuto M, Masuelli L, Frajese GV, Tresoldi I, Modesti A and Bei R: In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: Perspectives on cancer treatment. Int J Mol Sci. 16:9236–9282. 2015. View Article : Google Scholar : PubMed/NCBI | |
Marzocchella L, Fantini M, Benvenuto M, Masuelli L, Tresoldi I, Modesti A and Bei R: Dietary flavonoids: Molecular mechanisms of action as anti-inflammatory agents. Recent Pat Inflamm Allergy Drug Discov. 5:200–220. 2011. View Article : Google Scholar : PubMed/NCBI | |
Focaccetti C, Izzi V, Benvenuto M, Fazi S, Ciuffa S, Giganti MG, Potenza V, Manzari V, Modesti A and Bei R: Polyphenols as immunomodulatory compounds in the tumor microenvironment: Friends or Foes? Int J Mol Sci. 20:17142019. View Article : Google Scholar : PubMed/NCBI | |
Mattera R, Benvenuto M, Giganti MG, Tresoldi I, Pluchinotta FR, Bergante S, Tettamanti G, Masuelli L, Manzari V, Modesti A and Bei R: Effects of polyphenols on oxidative stress-mediated injury in cardiomyocytes. Nutrients. 9:5232017. View Article : Google Scholar : PubMed/NCBI | |
Kaltenbach T, Anderson JC, Burke CA, Dominitz JA, Gupta S, Lieberman D, Robertson DJ, Shaukat A, Syngal S and Rex DK: Endoscopic removal of colorectal lesions: Recommendations by the US multi-society task force on colorectal cancer. Am J Gastroenterol. 115:435–464. 2020. View Article : Google Scholar : PubMed/NCBI | |
Veettil SK, Nathisuwan S, Ching SM, Jinatongthai P, Lim KG, Kew ST and Chaiyakunapruk N: Efficacy and safety of celecoxib on the incidence of recurrent colorectal adenomas: A systematic review and meta-analysis. Cancer Manag Res. 11:561–571. 2019. View Article : Google Scholar : PubMed/NCBI | |
Brennan CA, Nakatsu G, Gallini Comeau CA, Drew DA, Glickman JN, Schoen RE, Chan AT and Garrett WS: Aspirin modulation of the colorectal cancer-associated microbe fusobacterium nucleatum. mBio. 12:e00547–21. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tu H, Flanders WD, Ahearn TU, Daniel CR, Gonzalez-Feliciano AG, Long Q, Rutherford RE and Bostick RM: Effects of calcium and vitamin D3 on transforming growth factors in rectal mucosa of sporadic colorectal adenoma patients: A randomized controlled trial. Mol Carcinog. 54:270–280. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bonelli L, Puntoni M, Gatteschi B, Massa P, Missale G, Munizzi F, Turbino L, Villanacci V, De Censi A and Bruzzi P: Antioxidant supplement and long-term reduction of recurrent adenomas of the large bowel. A double-blind randomized trial. J Gastroenterol. 48:698–705. 2013. View Article : Google Scholar : PubMed/NCBI | |
West NJ, Clark SK, Phillips RK, Hutchinson JM, Leicester RJ, Belluzzi A and Hull MA: Eicosapentaenoic acid reduces rectal polyp number and size in familial adenomatous polyposis. Gut. 59:918–925. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sui H, Zhang L, Gu K, Chai N, Ji Q, Zhou L, Wang Y, Ren J, Yang L, Zhang B, et al: YYFZBJS ameliorates colorectal cancer progression in ApcMin/+ mice by remodeling gut microbiota and inhibiting regulatory T-cell generation. Cell Commun Signal. 18:1132020. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Huang Y, Yang L, Su K, Tian S, Chen X, Li S and Liu W: Effects of Jianpi Lishi Jiedu granules on colorectal adenoma patients after endoscopic treatment: Study protocol for a randomized, double-blinded, placebo-controlled clinical trial. Trials. 23:3452022. View Article : Google Scholar : PubMed/NCBI | |
Cruz-Correa M, Hylind LM, Marrero JH, Zahurak ML, Murray-Stewart T, Casero RA Jr, Montgomery EA, Iacobuzio-Donahue C, Brosens LA, Offerhaus GJ, et al: Efficacy and safety of curcumin in treatment of intestinal adenomas in patients with familial adenomatous polyposis. Gastroenterology. 155:668–673. 2018. View Article : Google Scholar : PubMed/NCBI | |
Briata IM, Paleari L, Rutigliani M, Petrera M, Caviglia S, Romagnoli P, Libera MD, Oppezzi M, Puntoni M, Siri G, et al: A presurgical study of curcumin combined with anthocyanin supplements in patients with colorectal adenomatous polyps. Int J Mol Sci. 22:2021. View Article : Google Scholar : PubMed/NCBI | |
Dulai PS, Singh S, Marquez E, Khera R, Prokop LJ, Limburg PJ, Gupta S and Murad MH: Chemoprevention of colorectal cancer in individuals with previous colorectal neoplasia: Systematic review and network meta-analysis. BMJ. 355:i61882016. View Article : Google Scholar : PubMed/NCBI | |
Szeto CC, Sugano K, Wang JG, Fujimoto K, Whittle S, Modi GK, Chen CH, Park JB, Tam LS, Vareesangthip K, et al: Non-steroidal anti-inflammatory drug (NSAID) therapy in patients with hypertension, cardiovascular, renal or gastrointestinal comorbidities: Joint APAGE/APLAR/APSDE/APSH/APSN/PoA recommendations. Gut. 69:617–629. 2020. View Article : Google Scholar : PubMed/NCBI | |
Scalbert A, Manach C, Morand C, Remesy C and Jimenez L: Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr. 45:287–306. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jin H, Leng Q and Li C: Dietary flavonoid for preventing colorectal neoplasms. Cochrane Database Syst. Rev: CD009350. 2012.doi: 10.1002/14651858.CD009350.pub2. View Article : Google Scholar | |
Beecher GR: Overview of dietary flavonoids: Nomenclature, occurrence and intake. J Nutr. 133:3248S–3254S. 2003. View Article : Google Scholar : PubMed/NCBI | |
Manach C, Williamson G, Morand C, Scalbert A and Remesy C: Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 81:230S–242S. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wicinski M, Gebalski J, Mazurek E, Podhorecka M, Sniegocki M, Szychta P, Sawicka E and Malinowski B: The influence of polyphenol compounds on human gastrointestinal tract microbiota. Nutrients. 12:3502020. View Article : Google Scholar : PubMed/NCBI | |
Monagas M, Urpi-Sarda M, Sanchez-Patan F, Llorach R, Garrido I, Gomez-Cordoves C, Andres-Lacueva C and Bartolome B: Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct. 1:233–253. 2010. View Article : Google Scholar : PubMed/NCBI | |
Manach C, Scalbert A, Morand C, Remesy C and Jimenez L: Polyphenols: Food sources and bioavailability. Am J Clin Nutr. 79:727–747. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tuli HS, Aggarwal V, Kaur J, Aggarwal D, Parashar G, Parashar NC, Tuorkey M, Kaur G, Savla R, Sak K and Kumar M: Baicalein: A metabolite with promising antineoplastic activity. Life Sci. 259:1181832020. View Article : Google Scholar : PubMed/NCBI | |
Wang CZ, Zhang CF, Chen L, Anderson S, Lu F and Yuan CS: Colon cancer chemopreventive effects of baicalein, an active enteric microbiome metabolite from baicalin. Int J Oncol. 47:1749–1758. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang CZ, Zhang CF, Luo Y, Yao H, Yu C, Chen L, Yuan J, Huang WH, Wan JY, Zeng J, et al: Baicalein, an enteric microbial metabolite, suppresses gut inflammation and cancer progression in ApcMin/+ mice. Clin Transl Oncol. 22:1013–1022. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim DH, Hossain MA, Kang YJ, Jang JY, Lee YJ, Im E, Yoon JH, Kim HS, Chung HY and Kim ND: Baicalein, an active component of Scutellaria baicalensis Georgi, induces apoptosis in human colon cancer cells and prevents AOM/DSS-induced colon cancer in mice. Int J Oncol. 43:1652–1658. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fidelis QC, Faraone I, Russo D, Aragao Catunda-Jr FE, Vignola L, de Carvalho MG, de Tommasi N and Milella L: Chemical and Biological insights of Ouratea hexasperma (A. St.-Hil.) Baill.: A source of bioactive compounds with multifunctional properties. Nat Prod Res. 33:1500–1503. 2019. View Article : Google Scholar : PubMed/NCBI | |
Imran M, Aslam Gondal T, Atif M, Shahbaz M, Batool Qaisarani T, Hanif Mughal M, Salehi B, Martorell M and Sharifi-Rad J: Apigenin as an anticancer agent. Phytother Res. 34:1812–1828. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Krisanapun C, Lee SH, Nualsanit T, Sams C, Peungvicha P and Baek SJ: Molecular targets of apigenin in colorectal cancer cells: Involvement of p21, NAG-1 and p53. Eur J Cancer. 46:3365–3374. 2010. View Article : Google Scholar : PubMed/NCBI | |
Agarwal ML, Taylor WR, Chernov MV, Chernova OB and Stark GR: The p53 network. J Biol Chem. 273:1–4. 1998. View Article : Google Scholar : PubMed/NCBI | |
Harborne JB and Williams CA: Advances in flavonoid research since 1992. Phytochemistry. 55:481–504. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Cai X, Yang J, Sun X, Hu C, Yan Z, Xu X, Lu W, Wang X and Cao P: Chemoprevention of dietary digitoflavone on colitis-associated colon tumorigenesis through inducing Nrf2 signaling pathway and inhibition of inflammation. Mol Cancer. 13:482014. View Article : Google Scholar : PubMed/NCBI | |
Nasr-Bouzaiene N, Sassi A, Bedoui A, Krifa M, Chekir-Ghedira L and Ghedira K: Immunomodulatory and cellular antioxidant activities of pure compounds from Teucrium ramosissimum Desf. Tumour Biol. 37:7703–7712. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lucarini R, Tozatti MG, Silva ML, Gimenez VM, Pauletti PM, Groppo M, Turatti IC, Cunha WR and Martins CH: Antibacterial and anti-inflammatory activities of an extract, fractions, and compounds isolated from Gochnatia pulchra aerial parts. Braz J Med Biol Res. 48:822–830. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Liu F, Fang L, Cai R, Zong C and Qi Y: Genkwanin inhibits proinflammatory mediators mainly through the regulation of miR-101/MKP-1/MAPK pathway in LPS-activated macrophages. PLoS One. 9:e967412014. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Song ZJ, He X, Zhang RQ, Zhang CF, Li F, Wang CZ and Yuan CS: Antitumor and immunomodulatory activity of genkwanin on colorectal cancer in the APC(Min/+) mice. Int Immunopharmacol. 29:701–707. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yin HF, Yin CM, Ouyang T, Sun SD, Chen WG, Yang XL, He X and Zhang CF: Self-Nanoemulsifying drug delivery system of genkwanin: A novel approach for anti-colitis-associated colorectal cancer. Drug Des Devel Ther. 15:557–576. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cai X, Lu W, Ye T, Lu M, Wang J, Huo J, Qian S, Wang X and Cao P: The molecular mechanism of luteolin-induced apoptosis is potentially related to inhibition of angiogenesis in human pancreatic carcinoma cells. Oncol Rep. 28:1353–1361. 2012. View Article : Google Scholar : PubMed/NCBI | |
Murphy EA, Davis JM, McClellan JL and Carmichael MD: Quercetin's effects on intestinal polyp multiplicity and macrophage number in the Apc(Min/+) mouse. Nutr Cancer. 63:421–426. 2011. View Article : Google Scholar : PubMed/NCBI | |
Velazquez KT, Enos RT, Narsale AA, Puppa MJ, Davis JM, Murphy EA and Carson JA: Quercetin supplementation attenuates the progression of cancer cachexia in ApcMin/+ mice. J Nutr. 144:868–875. 2014. View Article : Google Scholar : PubMed/NCBI | |
Calderon-Montano JM, Burgos-Moron E, Perez-Guerrero C and Lopez-Lazaro M: A review on the dietary flavonoid kaempferol. Mini Rev Med Chem. 11:298–344. 2011. View Article : Google Scholar : PubMed/NCBI | |
Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, Shahbaz M, Tsouh Fokou PV, Umair Arshad M, Khan H, et al: Kaempferol: A key emphasis to its anticancer potential. Molecules. 24:22772019. View Article : Google Scholar : PubMed/NCBI | |
Lu L, Wang Y, Ou R, Feng Q, Ji L, Zheng H, Guo Y, Qi X, Kong AN and Liu Z: DACT2 Epigenetic stimulator exerts dual efficacy for colorectal cancer prevention and treatment. Pharmacol Res. 129:318–328. 2018. View Article : Google Scholar : PubMed/NCBI | |
Song X, Tan L, Wang M, Ren C, Guo C, Yang B, Ren Y, Cao Z, Li Y and Pei J: Myricetin: A review of the most recent research. Biomed Pharmacother. 134:1110172021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Cui SX, Sun SY, Shi WN, Song ZY, Wang SQ, Yu XF, Gao ZH and Qu XJ: Chemoprevention of intestinal tumorigenesis by the natural dietary flavonoid myricetin in APCMin/+ mice. Oncotarget. 7:60446–60460. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang MJ, Su H, Yan JY, Li N, Song ZY, Wang HJ, Huo LG, Wang F, Ji WS, Qu X J and Qu MH: Chemopreventive effect of Myricetin, a natural occurring compound, on colonic chronic inflammation and inflammation-driven tumorigenesis in mice. Biomed Pharmacother. 97:1131–1137. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gong G, Guan YY, Zhang ZL, Rahman K, Wang SJ, Zhou S, Luan X and Zhang H: Isorhamnetin: A review of pharmacological effects. Biomed Pharmacother. 128:1103012020. View Article : Google Scholar : PubMed/NCBI | |
Bobe G, Sansbury LB, Albert PS, Cross AJ, Kahle L, Ashby J, Slattery ML, Caan B, Paskett E, Iber F, et al: Dietary flavonoids and colorectal adenoma recurrence in the Polyp Prevention Trial. Cancer Epidemiol Biomarkers Prev. 17:1344–1353. 2008. View Article : Google Scholar : PubMed/NCBI | |
Saud SM, Young MR, Jones-Hall YL, Ileva L, Evbuomwan MO, Wise J, Colburn NH, Kim YS and Bobe G: Chemopreventive activity of plant flavonoid isorhamnetin in colorectal cancer is mediated by oncogenic Src and β-catenin. Cancer Res. 73:5473–5484. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mattioli R, Francioso A, Mosca L and Silva P: Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules. 25:38092020. View Article : Google Scholar : PubMed/NCBI | |
Khoo HE, Azlan A, Tang ST and Lim SM: Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 61:13617792017. View Article : Google Scholar : PubMed/NCBI | |
Fragoso MF, Romualdo GR, Vanderveer LA, Franco-Barraza J, Cukierman E, Clapper ML, Carvalho RF and Barbisan LF: Lyophilized acai pulp (Euterpe oleracea Mart) attenuates colitis-associated colon carcinogenesis while its main anthocyanin has the potential to affect the motility of colon cancer cells. Food Chem Toxicol. 121:237–245. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fernandez J, Garcia L, Monte J, Villar CJ and Lombo F: Functional Anthocyanin-rich sausages diminish colorectal cancer in an animal model and reduce Pro-inflammatory bacteria in the intestinal microbiota. Genes (Basel). 9:1332018. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Jiang B, Zhong C, Guo J, Zhang L, Mu T, Zhang Q and Bi X: Chemoprevention of colorectal cancer by black raspberry anthocyanins involved the modulation of gut microbiota and SFRP2 demethylation. Carcinogenesis. 39:471–481. 2018. View Article : Google Scholar : PubMed/NCBI | |
Charepalli V, Reddivari L, Radhakrishnan S, Vadde R, Agarwal R and Vanamala JK: Anthocyanin-containing purple-fleshed potatoes suppress colon tumorigenesis via elimination of colon cancer stem cells. J Nutr Biochem. 26:1641–1649. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cai H, Marczylo TH, Teller N, Brown K, Steward WP, Marko D and Gescher AJ: Anthocyanin-rich red grape extract impedes adenoma development in the Apc(Min) mouse: Pharmacodynamic changes and anthocyanin levels in the murine biophase. Eur J Cancer. 46:811–817. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kang SY, Seeram NP, Nair MG and Bourquin LD: Tart cherry anthocyanins inhibit tumor development in Apc(Min) mice and reduce proliferation of human colon cancer cells. Cancer Lett. 194:13–19. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lippert E, Ruemmele P, Obermeier F, Goelder S, Kunst C, Rogler G, Dunger N, Messmann H, Hartmann A and Endlicher E: Anthocyanins prevent colorectal cancer development in a mouse model. Digestion. 95:275–280. 2017. View Article : Google Scholar : PubMed/NCBI | |
Asadi K, Ferguson LR, Philpott M and Karunasinghe N: Cancer-preventive Properties of an Anthocyanin-enriched Sweet Potato in the APC(MIN) mouse model. J Cancer Prev. 22:135–146. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang CS: Inhibition of carcinogenesis by tea. Nature. 389:134–135. 1997. View Article : Google Scholar : PubMed/NCBI | |
Sukhthankar M, Yamaguchi K, Lee SH, McEntee MF, Eling TE, Hara Y and Baek SJ: A green tea component suppresses posttranslational expression of basic fibroblast growth factor in colorectal cancer. Gastroenterology. 134:1972–1980. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Ye T, Chen WJ, Lv Y, Hao Z, Chen J, Zhao JY, Wang HP and Cai YK: Structural shift of gut microbiota during chemo-preventive effects of epigallocatechin gallate on colorectal carcinogenesis in mice. World J Gastroenterol. 23:8128–8139. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yum HW, Zhong X, Park J, Na HK, Kim N, Lee HS and Surh YJ: Oligonol inhibits dextran sulfate sodium-induced colitis and colonic adenoma formation in mice. Antioxid Redox Signal. 19:102–114. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Qi QL, Wang MT and Li QY: Therapeutic potential of naringin: An overview. Pharm Biol. 54:3203–3210. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang YS, Wang F, Cui SX and Qu XJ: Natural dietary compound naringin prevents azoxymethane/dextran sodium sulfate-induced chronic colorectal inflammation and carcinogenesis in mice. Cancer Biol Ther. 19:735–744. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lu JF, Zhu MQ, Zhang H, Liu H, Xia B, Wang YL, Shi X, Peng L and Wu JW: Neohesperidin attenuates obesity by altering the composition of the gut microbiota in high-fat diet-fed mice. FASEB J. 34:12053–12071. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao T, Hu S, Ma P, Che D, Liu R, Zhang Y, Wang J, Li C, Ding Y, Fu J, et al: Neohesperidin suppresses IgE-mediated anaphylactic reactions and mast cell activation via Lyn-PLC-Ca2+ pathway. Phytother Res. 33:2034–2043. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gong Y, Dong R, Gao X, Li J, Jiang L, Zheng J, Cui S, Ying M, Yang B, Cao J and He Q: Neohesperidin prevents colorectal tumorigenesis by altering the gut microbiota. Pharmacol Res. 148:1044602019. View Article : Google Scholar : PubMed/NCBI | |
Wei SY, Chen Y and Xu XY: Progress on the pharmacological research of puerarin: A review. Chin J Nat Med. 12:407–414. 2014.PubMed/NCBI | |
Deng XQ, Zhang HB, Wang GF, Xu D, Zhang WY, Wang QS and Cui YL: Colon-specific microspheres loaded with puerarin reduce tumorigenesis and metastasis in colitis-associated colorectal cancer. Int J Pharm. 570:1186442019. View Article : Google Scholar : PubMed/NCBI | |
Zeng J, Chen Y, Ding R, Feng L, Fu Z, Yang S, Deng X, Xie Z and Zheng S: Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-κB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway. J Neuroinflammation. 14:1192017. View Article : Google Scholar : PubMed/NCBI | |
Yadav VR, Prasad S, Sung B and Aggarwal BB: The role of chalcones in suppression of NF-κB-mediated inflammation and cancer. Int Immunopharmacol. 11:295–309. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Wu Y, Deng B, Li J, Cao H, Qu Y, Qian X and Zhong G: Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget. 7:85318–85331. 2016. View Article : Google Scholar : PubMed/NCBI | |
Predes D, Oliveira LFS, Ferreira LSS, Maia LA, Delou JMA, Faletti A, Oliveira I, Amado NG, Reis AH, Fraga CAM, et al: The Chalcone Lonchocarpin Inhibits Wnt/β-catenin signaling and suppresses colorectal cancer proliferation. Cancers (Basel). 11:19682019. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Nanney LB, Luongo C, Lamps L, Heppner KJ, DuBois RN and Beauchamp RD: Concurrent overexpression of cyclin D1 and cyclin-dependent kinase 4 (Cdk4) in intestinal adenomas from multiple intestinal neoplasia (Min) mice and human familial adenomatous polyposis patients. Cancer Res. 57:169–175. 1997.PubMed/NCBI | |
Hogan FS, Krishnegowda NK, Mikhailova M and Kahlenberg MS: Flavonoid, silibinin, inhibits proliferation and promotes cell-cycle arrest of human colon cancer. J Surg Res. 143:58–65. 2007. View Article : Google Scholar : PubMed/NCBI | |
Karim BO, Rhee KJ, Liu G, Zheng D and Huso DL: Chemoprevention utility of silibinin and Cdk4 pathway inhibition in Apc(−/+) mice. BMC Cancer. 13:1572013. View Article : Google Scholar : PubMed/NCBI | |
Barone M, Tanzi S, Lofano K, Scavo MP, Pricci M, Demarinis L, Papagni S, Guido R, Maiorano E, Ingravallo G, et al: Dietary-induced ERbeta upregulation counteracts intestinal neoplasia development in intact male ApcMin/+ mice. Carcinogenesis. 31:269–274. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhao TT, Xu YQ, Hu HM, Gong HB and Zhu HL: Isoliquiritigenin (ISL) and its Formulations: Potential Antitumor Agents. Curr Med Chem. 26:6786–6796. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zeng S, Chen L, Sun Q, Zhao H, Yang H, Ren S, Liu M, Meng X and Xu H: Scutellarin ameliorates colitis-associated colorectal cancer by suppressing Wnt/β-catenin signaling cascade. Eur J Pharmacol. 906:1742532021. View Article : Google Scholar : PubMed/NCBI | |
Feng Z, Hao W, Lin X, Fan D and Zhou J: Antitumor activity of total flavonoids from Tetrastigma hemsleyanum Diels et Gilg is associated with the inhibition of regulatory T cells in mice. Onco Targets Ther. 7:947–956. 2014.PubMed/NCBI | |
Wu X, Yu N, Zhang Y, Ye Y, Sun W, Ye L, Wu H, Yang Z, Wu L and Wang F: Radix Tetrastigma hemsleyani flavone exhibits antitumor activity in colorectal cancer via Wnt/β-catenin signaling pathway. Onco Targets Ther. 11:6437–6446. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhao X, Lin T, Wang Q, Zhang Y and Xie J: Molecular mechanisms of polysaccharides from Ziziphus jujuba Mill var. spinosa seeds regulating the bioavailability of spinosin and preventing colitis. Int J Biol Macromol. 163:1393–1402. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhai WM, Yang YX, Shi JL, Liu QT, Liu GL, Fang N, Li J and Guo JY: GABA and 5-HT systems are implicated in the anxiolytic-like effect of spinosin in mice. Pharmacol Biochem Behav. 128:41–49. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu MY, Lee SY, Kang SS and Kim YS: Antitumor activity of jujuboside B and the underlying mechanism via induction of apoptosis and autophagy. J Nat Prod. 77:370–376. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shan S, Xie Y, Zhang C, Jia B, Li H and Li Z: Identification of polyphenol from Ziziphi spinosae semen against human colon cancer cells and colitis-associated colorectal cancer in mice. Food Funct. 11:8259–8272. 2020. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto S, Tominari T, Matsumoto C, Yoshinouchi S, Ichimaru R, Watanabe K, Hirata M, Grundler FMW, Miyaura C and Inada M: Effects of polymethoxyflavonoids on bone loss induced by estrogen deficiency and by LPS-dependent inflammation in mice. Pharmaceuticals (Basel). 11:72018. View Article : Google Scholar : PubMed/NCBI | |
Parhiz H, Roohbakhsh A, Soltani F, Rezaee R and Iranshahi M: Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: An updated review of their molecular mechanisms and experimental models. Phytother Res. 29:323–331. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu JC, Tsai ML, Lai CS, Lo CY, Ho CT, Wang YJ and Pan MH: Polymethoxyflavones prevent benzo[a]pyrene/dextran sodium sulfate-induced colorectal carcinogenesis through modulating xenobiotic metabolism and ameliorate autophagic defect in ICR mice. Int J Cancer. 142:1689–1701. 2018. View Article : Google Scholar : PubMed/NCBI | |
Javid SH, Moran AE, Carothers AM, Redston M and Bertagnolli MM: Modulation of tumor formation and intestinal cell migration by estrogens in the Apc(Min/+) mouse model of colorectal cancer. Carcinogenesis. 26:587–595. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mukund V, Mukund D, Sharma V, Mannarapu M and Alam A: Genistein: Its role in metabolic diseases and cancer. Crit Rev Oncol Hematol. 119:13–22. 2017. View Article : Google Scholar : PubMed/NCBI | |
Du Q, Wang Y, Liu C, Wang H, Fan H, Li Y, Wang J, Zhang X, Lu J, Ji H and Hu R: Chemopreventive activity of GEN-27, a genistein derivative, in colitis-associated cancer is mediated by p65-CDX2-β-catenin axis. Oncotarget. 7:17870–17884. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cirmi S, Maugeri A, Ferlazzo N, Gangemi S, Calapai G, Schumacher U and Navarra M: Anticancer potential of citrus juices and their extracts: A systematic review of both preclinical and clinical studies. Front Pharmacol. 8:4202017. View Article : Google Scholar : PubMed/NCBI | |
Cirmi S, Ferlazzo N, Lombardo GE, Maugeri A, Calapai G, Gangemi S and Navarra M: Chemopreventive agents and inhibitors of cancer hallmarks: May citrus offer new perspectives? Nutrients. 8:6982016. View Article : Google Scholar : PubMed/NCBI | |
Ferlazzo N, Cirmi S, Calapai G, Ventura-Spagnolo E, Gangemi S and Navarra M: Anti-Inflammatory activity of citrus bergamia derivatives: Where do we stand? Molecules. 21:12732016. View Article : Google Scholar : PubMed/NCBI | |
Navarra M, Femia AP, Romagnoli A, Tortora K, Luceri C, Cirmi S, Ferlazzo N and Caderni G: A flavonoid-rich extract from bergamot juice prevents carcinogenesis in a genetic model of colorectal cancer, the Pirc rat (F344/NTac-Apcam1137). Eur J Nutr. 59:885–894. 2020. View Article : Google Scholar : PubMed/NCBI | |
Du WJ, Yang XL, Song ZJ, Wang JY, Zhang WJ, He X, Zhang RQ, Zhang CF, Li F, Yu CH, et al: Antitumor activity of total flavonoids from Daphne genkwa in colorectal cancer. Phytother Res. 30:323–330. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shishodia S, Sethi G and Aggarwal BB: Curcumin: Getting back to the roots. Ann N Y Acad Sci. 1056:206–217. 2005. View Article : Google Scholar : PubMed/NCBI | |
Girardi B, Pricci M, Giorgio F, Piazzolla M, Iannone A, Losurdo G, Principi M, Barone M, Ierardi E and Di Leo A: Silymarin, boswellic acid and curcumin enriched dietetic formulation reduces the growth of inherited intestinal polyps in an animal model. World J Gastroenterol. 26:1601–1612. 2020. View Article : Google Scholar : PubMed/NCBI | |
Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S and DuBois RN: Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 107:1183–1188. 1994. View Article : Google Scholar : PubMed/NCBI | |
Elder DJ, Baker JA, Banu NA, Moorghen M and Paraskeva C: Human colorectal adenomas demonstrate a size-dependent increase in epithelial cyclooxygenase-2 expression. J Pathol. 198:428–434. 2002. View Article : Google Scholar : PubMed/NCBI | |
Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, Trzaskos JM, Evans JF and Taketo MM: Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell. 87:803–809. 1996. View Article : Google Scholar : PubMed/NCBI | |
Jacoby RF, Seibert K, Cole CE, Kelloff G and Lubet RA: The cyclooxygenase-2 inhibitor celecoxib is a potent preventive and therapeutic agent in the min mouse model of adenomatous polyposis. Cancer Res. 60:5040–5044. 2000.PubMed/NCBI | |
Hao J, Dai X, Gao J, Li Y, Hou Z, Chang Z and Wang Y: Curcumin suppresses colorectal tumorigenesis via the Wnt/β-catenin signaling pathway by downregulating Axin2. Oncol Lett. 21:1862021. View Article : Google Scholar : PubMed/NCBI | |
McFadden RM, Larmonier CB, Shehab KW, Midura-Kiela M, Ramalingam R, Harrison CA, Besselsen DG, Chase JH, Caporaso JG, Jobin C, et al: The role of curcumin in modulating colonic microbiota during colitis and colon cancer prevention. Inflamm Bowel Dis. 21:2483–2494. 2015. View Article : Google Scholar : PubMed/NCBI | |
Adachi S, Hamoya T, Fujii G, Narita T, Komiya M, Miyamoto S, Kurokawa Y, Takahashi M, Takayama T, Ishikawa H, et al: Theracurmin inhibits intestinal polyp development in Apc-mutant mice by inhibiting inflammation-related factors. Cancer Sci. 111:1367–1374. 2020. View Article : Google Scholar : PubMed/NCBI | |
Seiwert N, Fahrer J, Nagel G, Frank J, Behnam D and Kaina B: Curcumin administered as micellar solution suppresses intestinal inflammation and colorectal carcinogenesis. Nutr Cancer. 73:686–693. 2021. View Article : Google Scholar : PubMed/NCBI | |
Murakami A, Furukawa I, Miyamoto S, Tanaka T and Ohigashi H: Curcumin combined with turmerones, essential oil components of turmeric, abolishes inflammation-associated mouse colon carcinogenesis. Biofactors. 39:221–232. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Su ZY, Zhang C, Gaspar JM, Wang R, Hart RP, Verzi MP and Kong AN: Mechanisms of colitis-accelerated colon carcinogenesis and its prevention with the combination of aspirin and curcumin: Transcriptomic analysis using RNA-seq. Biochem Pharmacol. 135:22–34. 2017. View Article : Google Scholar : PubMed/NCBI | |
Femia AP, Soares PV, Luceri C, Lodovici M, Giannini A and Caderni G: Sulindac, 3,3′-diindolylmethane and curcumin reduce carcinogenesis in the Pirc rat, an Apc-driven model of colon carcinogenesis. BMC Cancer. 15:6112015. View Article : Google Scholar : PubMed/NCBI | |
Lev-Ari S, Strier L, Kazanov D, Madar-Shapiro L, Dvory-Sobol H, Pinchuk I, Marian B, Lichtenberg D and Arber N: Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clin Cancer Res. 11:6738–6744. 2005. View Article : Google Scholar : PubMed/NCBI | |
Meng T, Xiao D, Muhammed A, Deng J, Chen L and He J: Anti-Inflammatory action and mechanisms of resveratrol. Molecules. 26:2292021. View Article : Google Scholar : PubMed/NCBI | |
Zheng Z, Chen Y, Huang J, Deng H, Tang X and Wang XJ: Mkp-1 is required for chemopreventive activity of butylated hydroxyanisole and resveratrol against colitis-associated colon tumorigenesis. Food Chem Toxicol. 127:72–80. 2019. View Article : Google Scholar : PubMed/NCBI | |
Reddivari L, Charepalli V, Radhakrishnan S, Vadde R, Elias RJ, Lambert JD and Vanamala JK: Grape compounds suppress colon cancer stem cells in vitro and in a rodent model of colon carcinogenesis. BMC Complement Altern Med. 16:2782016. View Article : Google Scholar : PubMed/NCBI | |
Saud SM, Li W, Morris NL, Matter MS, Colburn NH, Kim YS and Young MR: Resveratrol prevents tumorigenesis in mouse model of Kras activated sporadic colorectal cancer by suppressing oncogenic Kras expression. Carcinogenesis. 35:2778–2786. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rauf A, Patel S, Imran M, Maalik A, Arshad MU, Saeed F, Mabkhot YN, Al-Showiman SS, Ahmad N and Elsharkawy E: Honokiol: An anticancer lignan. Biomed Pharmacother. 107:555–562. 2018. View Article : Google Scholar : PubMed/NCBI | |
Subramaniam D, Ponnurangam S, Ramalingam S, Kwatra D, Dandawate P, Weir SJ, Umar S, Jensen RA and Anant S: Honokiol affects stem cell viability by suppressing oncogenic YAP1 function to inhibit colon tumorigenesis. Cells. 10:16072021. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Shi BL, Qi RZ, Chang X and Zheng HG: Ultra-Performance liquid Chromatography/mass spectrometry-based metabolomics for discovering potential biomarkers and metabolic pathways of colorectal cancer in mouse model (ApcMin/+) and revealing the effect of honokiol. Front Oncol. 11:6710142021. View Article : Google Scholar : PubMed/NCBI | |
Bosebabu B, Cheruku SP, Chamallamudi MR, Nampoothiri M, Shenoy RR, Nandakumar K, Parihar VK and Kumar N: An appraisal of current pharmacological perspectives of sesamol: A review. Mini Rev Med Chem. 20:988–1000. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shimizu S, Fujii G, Takahashi M, Nakanishi R, Komiya M, Shimura M, Noma N, Onuma W, Terasaki M, Yano T and Mutoh M: Sesamol suppresses cyclooxygenase-2 transcriptional activity in colon cancer cells and modifies intestinal polyp development in Apc (Min/+) mice. J Clin Biochem Nutr. 54:95–101. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dai G, Jiang Z, Sun B, Liu C, Meng Q, Ding K, Jing W and Ju W: Caffeic acid phenethyl ester prevents colitis-associated cancer by inhibiting NLRP3 inflammasome. Front Oncol. 10:7212020. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Liu Z, Yang X, Liu L and Ahn KS: An updated review on the potential antineoplastic actions of oleuropein. Phytother Res. 36:365–379. 2022. View Article : Google Scholar : PubMed/NCBI | |
Giner E, Recio MC, Rios JL, Cerda-Nicolas JM and Giner RM: Chemopreventive effect of oleuropein in colitis-associated colorectal cancer in c57bl/6 mice. Mol Nutr Food Res. 60:242–255. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Chen B and Gu Y: Pharmacological evaluation of tea polysaccharides with antioxidant activity in gastric cancer mice. Carbohydr Polym. 90:943–947. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ahmad N, Cheng P and Mukhtar H: Cell cycle dysregulation by green tea polyphenol epigallocatechin-3-gallate. Biochem Biophys Res Commun. 275:328–334. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rashidi B, Malekzadeh M, Goodarzi M, Masoudifar A and Mirzaei H: Green tea and its anti-angiogenesis effects. Biomed Pharmacother. 89:949–956. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiao H, Hao X, Simi B, Ju J, Jiang H, Reddy BS and Yang CS: Green tea polyphenols inhibit colorectal aberrant crypt foci (ACF) formation and prevent oncogenic changes in dysplastic ACF in azoxymethane-treated F344 rats. Carcinogenesis. 29:113–119. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang ST, Cui WQ, Pan D, Jiang M, Chang B and Sang L X: Tea polyphenols and their chemopreventive and therapeutic effects on colorectal cancer. World J Gastroenterol. 26:562–597. 2020. View Article : Google Scholar : PubMed/NCBI | |
Volate SR, Muga SJ, Issa AY, Nitcheva D, Smith T and Wargovich MJ: Epigenetic modulation of the retinoid X receptor alpha by green tea in the azoxymethane-Apc Min/+ mouse model of intestinal cancer. Mol Carcinog. 48:920–933. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Xue L, Tata A, Song M, Neto CC and Xiao H: Bioactive components of polyphenol-rich and non-polyphenol-rich cranberry fruit extracts and their chemopreventive effects on colitis-associated colon cancer. J Agric Food Chem. 68:6845–6853. 2020. View Article : Google Scholar : PubMed/NCBI | |
Koh SJ, Choi YI, Kim Y, Kim YS, Choi SW, Kim JW, Kim BG and Lee KL: Walnut phenolic extract inhibits nuclear factor kappaB signaling in intestinal epithelial cells, and ameliorates experimental colitis and colitis-associated colon cancer in mice. Eur J Nutr. 58:1603–1613. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fini L, Piazzi G, Daoud Y, Selgrad M, Maegawa S, Garcia M, Fogliano V, Romano M, Graziani G, Vitaglione P, et al: Chemoprevention of intestinal polyps in ApcMin/+ mice fed with western or balanced diets by drinking annurca apple polyphenol extract. Cancer Prev Res (Phila). 4:907–915. 2011. View Article : Google Scholar : PubMed/NCBI | |
Song M, Emilsson L, Bozorg SR, Nguyen LH, Joshi AD, Staller K, Nayor J, Chan AT and Ludvigsson JF: Risk of colorectal cancer incidence and mortality after polypectomy: A Swedish record-linkage study. Lancet Gastroenterol Hepatol. 5:537–547. 2020. View Article : Google Scholar : PubMed/NCBI | |
Keum N and Giovannucci E: Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 16:713–732. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sankaranarayanan R, Valiveti CK, Kumar DR, Van Slambrouck S, Kesharwani SS, Seefeldt T, Scaria J, Tummala H and Bhat GJ: The Flavonoid metabolite 2,4,6-trihydroxybenzoic acid is a CDK inhibitor and an anti-proliferative agent: A potential role in cancer prevention. Cancers (Basel). 11:4272019. View Article : Google Scholar : PubMed/NCBI |