1
|
Shao F: Gasdermins: Making pores for
pyroptosis. Nat Rev Immunol. 21:620–621. 2021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Shi J, Zhao Y, Wang K, Shi X, Wang Y,
Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by
inflammatory caspases determines pyroptotic cell death. Nature.
526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kayagaki N, Stowe IB, Lee BL, O'Rourke K,
Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT,
et al: Caspase-11 cleaves gasdermin D for non-canonical
inflammasome signalling. Nature. 526:666–671. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Rogers C, Fernandes-Alnemri T, Mayes L,
Alnemri D, Cingolani G and Alnemri ES: Cleavage of DFNA5 by
caspase-3 during apoptosis mediates progression to secondary
necrotic/pyroptotic cell death. Nat Commun. 8:141282017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kovacs SB and Miao EA: Gasdermins:
Effectors of Pyroptosis. Trends Cell Biol. 27:673–684. 2017.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Kepp O, Galluzzi L, Zitvogel L and Kroemer
G: Pyroptosis-a cell death modality of its kind? Eur J Immunol.
40:627–630. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Okada Y, Okada T, Sato-Numata K, Islam MR,
Ando–Akatsuka Y, Numata T, Kubo M, Shimizu T, Kurbannazarova RS,
Marunaka Y and Sabirov RZ: Cell volume-activated and
volume-correlated anion channels in mammalian cells: Their
biophysical, molecular, and pharmacological properties. Pharmacol
Rev. 71:49–88. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Okada Y, Sato K and Numata T:
Pathophysiology and puzzles of the volume-sensitive outwardly
rectifying anion channel. J Physiol. 587:2141–2149. 2009.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang H, Li H, Liu E, Guang Y, Yang L, Mao
J, Zhu L, Chen L and Wang L: The AQP-3 water channel and the ClC-3
chloride channel coordinate the hypotonicity-induced swelling
volume in nasopharyngeal carcinoma cells. Int J Biochem Cell Biol.
57:96–107. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhou C, Tang X, Xu J, Wang J, Yang Y, Chen
Y, Chen L, Wang L, Zhu L and Yang H: Opening of the CLC-3 chloride
channel induced by dihydroartemisinin contributed to early
apoptotic events in human poorly differentiated nasopharyngeal
carcinoma cells. J Cell Biochem. 119:9560–9572. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ye D, Luo H, Lai Z, Zou L, Zhu L, Mao J,
Jacob T, Ye W, Wang L and Chen L: ClC-3 chloride channel proteins
regulate the cell cycle by up-regulating cyclin D1-CDK4/6 through
suppressing p21/p27 expression in nasopharyngeal carcinoma cells.
Sci Rep. 6:302762016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jentsch TJ: VRACs and other ion channels
and transporters in the regulation of cell volume and beyond. Nat
Rev Mol Cell Biol. 17:293–307. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yang L, Ye D, Ye W, Jiao C, Zhu L, Mao J,
Jacob TJC, Wang L and Chen L: ClC-3 is a main component of
background chloride channels activated under isotonic conditions by
autocrine ATP in nasopharyngeal carcinoma cells. J Cell Physiol.
226:2516–2526. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cao G, Zuo W, Fan A, Zhang H, Yang L, Zhu
L, Ye W, Wang L and Chen L: Volume-sensitive chloride channels are
involved in maintenance of basal cell volume in human acute
lymphoblastic leukemia cells. J Membr Biol. 240:111–119. 2011.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Yang L, Zhu L, Xu Y, Zhang H, Ye W, Mao J,
Chen L and Wang L: Uncoupling of K+ and Cl- transport across the
cell membrane in the process of regulatory volume decrease. Biochem
Pharmacol. 84:292–302. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ye X, Liu X, Wei W, Yu H, Jin X, Yu J, Li
C, Xu B, Guo X and Mao J: Volume-activated chloride channels
contribute to lipopolysaccharide plus nigericin-induced pyroptosis
in bone marrow-derived macrophages. Biochem Pharmacol.
193:1147912021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yang F, Bettadapura SN, Smeltzer MS, Zhu H
and Wang S: Pyroptosis and pyroptosis-inducing cancer drugs. Acta
Pharmacol Sin. 43:2462–2473. 2022. View Article : Google Scholar : PubMed/NCBI
|
18
|
Gregory RE and DeLisa AF: Paclitaxel: A
new antineoplastic agent for refractory ovarian cancer. Clin Pharm.
12:401–415. 1993.PubMed/NCBI
|
19
|
Wang X, Li H, Li W, Xie J, Wang F, Peng X,
Song Y and Tan G: The role of Caspase-1/GSDMD-mediated pyroptosis
in Taxol-induced cell death and a Taxol-resistant phenotype in
nasopharyngeal carcinoma regulated by autophagy. Cell Biol Toxicol.
36:437–457. 2020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang CC, Li CG, Wang YF, Xu LH, He XH,
Zeng QZ, Zeng CY, Mai FY, Hu B and Ouyang DY: Chemotherapeutic
paclitaxel and cisplatin differentially induce pyroptosis in A549
lung cancer cells via caspase-3/GSDME activation. Apoptosis.
24:312–325. 2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zeng QZ, Yang F, Li CG, Xu LH, He XH, Mai
FY, Zeng CY, Zhang CC, Zha QB and Ouyang DY: Paclitaxel enhances
the innate immunity by promoting NLRP3 inflammasome activation in
macrophages. Front Immunol. 10:722019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Feng J, Peng Z, Gao L, Yang X, Sun Z, Hou
X, Li E, Zhu L and Yang H: ClC-3 promotes paclitaxel resistance via
modulating tubulins polymerization in ovarian cancer cells. Biomed
Pharmacother. 138:1114072021. View Article : Google Scholar : PubMed/NCBI
|
23
|
Mao J, Yuan J, Wang L, Zhang H, Jin X, Zhu
J, Li H, Xu B and Chen L: Tamoxifen inhibits migration of estrogen
receptor-negative hepatocellular carcinoma cells by blocking the
swelling-activated chloride current. J Cell Physiol. 228:991–1001.
2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xu R, Wang X and Shi C: Volume-regulated
anion channel as a novel cancer therapeutic target. Int J Biol
Macromol. 159:570–576. 2020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Wu D, Wei C, Li Y, Yang X and Zhou S:
Pyroptosis, a new breakthrough in cancer treatment. Front Oncol.
11:6988112021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Broz P, Pelegrin P and Shao F: The
gasdermins, a protein family executing cell death and inflammation.
Nat Rev Immunol. 20:143–157. 2020. View Article : Google Scholar : PubMed/NCBI
|
28
|
De Schutter E, Croes L, Ibrahim J, Pauwels
P, de Beeck KO, Vandenabeele P and Camp GV: GSDME and its role in
cancer: From behind the scenes to the front of the stage. Int J
Cancer. 148:2872–2883. 2021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen LX, Zhu LY, Jacob TJ and Wang LW:
Roles of volume-activated Cl- currents and regulatory volume
decrease in the cell cycle and proliferation in nasopharyngeal
carcinoma cells. Cell Prolif. 40:253–267. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Voss FK, Ullrich F, Munch J, Lazarow K,
Lutter D, Mah N, Andrade-Navarro MA, von Kries JP, Stauber T and
Jentsch TJ: Identification of LRRC8 heteromers as an essential
component of the volume-regulated anion channel VRAC. Science.
344:634–638. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Menzin AW, King SA, Aikins JK, Mikuta JJ
and Rubin SC: Taxol (paclitaxel) was approved by FDA for the
treatment of patients with recurrent ovarian cancer. Gynecol Oncol.
54:1031994.PubMed/NCBI
|
32
|
Kelly WK, Curley T, Slovin S, Heller G,
McCaffrey J, Bajorin D, Ciolino A, Regan K, Schwartz M, Kantoff P,
et al: Paclitaxel, estramustine phosphate, and carboplatin in
patients with advanced prostate cancer. J Clin Oncol. 19:44–53.
2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Cortazar P, Justice R, Johnson J, Sridhara
R, Keegan P and Pazdur R: US food and drug administration approval
overview in metastatic breast cancer. J Clin Oncol. 30:1705–1711.
2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ranson M and Thatcher N: Paclitaxel: A
hope for advanced non-small cell lung cancer? Expert Opin Investig
Drugs. 8:837–848. 1999. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhao S, Tang Y, Wang R and Najafi M:
Mechanisms of cancer cell death induction by paclitaxel: An updated
review. Apoptosis. 27:647–667. 2022. View Article : Google Scholar : PubMed/NCBI
|
36
|
Shi J, Gao W and Shao F: Pyroptosis:
Gasdermin-mediated programmed necrotic cell death. Trends Biochem
Sci. 42:245–254. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang Y, Gao W, Shi X, Ding J, Liu W, He H,
Wang K and Shao F: Chemotherapy drugs induce pyroptosis through
caspase-3 cleavage of a gasdermin. Nature. 547:99–103. 2017.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang X, Zhang P, An L, Sun N, Peng L,
Tang W, Ma D and Chen J: Miltirone induces cell death in
hepatocellular carcinoma cell through GSDME-dependent pyroptosis.
Acta Pharm Sin B. 10:1397–1413. 2020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Shen X, Wang H, Weng C, Jiang H and Chen
J: Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy
drug-induced nephrotoxicity. Cell Death Dis. 12:1862021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kittl M, Winklmayr M, Preishuber-Pflugl J,
Strobl V, Gaisberger M, Ritter M and Jakab M: Low pH attenuates
apoptosis by suppressing the volume-sensitive outwardly rectifying
(VSOR) chloride current in chondrocytes. Front Cell Dev Biol.
9:8041052021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Tang T, Lang X, Xu C, Wang X, Gong T, Yang
Y, Cui J, Bai L, Wang J, Jiang W and Zhou R: CLICs-dependent
chloride efflux is an essential and proximal upstream event for
NLRP3 inflammasome activation. Nat Commun. 8:2022017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Green JP, Yu S, Martin-Sanchez F, Pelegrin
P, Lopez-Castejon G, Lawrence CB and Brough D: Chloride regulates
dynamic NLRP3-dependent ASC oligomerization and inflammasome
priming. Proc Natl Acad Sci USA. 115:E9371–E9380. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Decher N, Lang HJ, Nilius B, Bruggemann A,
Busch AE and Steinmeyer K: DCPIB is a novel selective blocker of
I(Cl,swell) and prevents swelling-induced shortening of guinea-pig
atrial action potential duration. Br J Pharmacol. 134:1467–1479.
2001. View Article : Google Scholar : PubMed/NCBI
|
44
|
Pedersen SF, Okada Y and Nilius B:
Biophysics and physiology of the volume-regulated anion channel
(VRAC)/volume-sensitive outwardly rectifying anion channel (VSOR).
Pflugers Arch. 468:371–383. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zeng CY, Li CG, Shu JX, Xu LH, Ouyang DY,
Mai FY, Zeng QZ, Zhang CC, Li RM and He XH: ATP induces
caspase-3/gasdermin E-mediated pyroptosis in NLRP3 pathway-blocked
murine macrophages. Apoptosis. 24:703–717. 2019. View Article : Google Scholar : PubMed/NCBI
|