1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Woodman CB, Collins S, Winter H, Bailey A,
Ellis J, Prior P, Yates M, Rollason TP and Young LS: Natural
history of cervical human papillomavirus infection in young women:
A longitudinal cohort study. Lancet. 357:1831–1836. 2001.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Hammer A, Rositch A, Qeadan F, Gravitt PE
and Blaakaer J: Age-specific prevalence of HPV16/18 genotypes in
cervical cancer: A systematic review and meta-analysis. Int J
Cancer. 138:2795–2803. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Doorbar J, Quint W, Banks L, Bravo IG,
Stoler M, Broker TR and Stanley MA: The biology and life-cycle of
human papillomaviruses. Vaccine. 30 (Suppl 5):F55–F70. 2012.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Duensing S and Münger K: Mechanisms of
genomic instability in human cancer: Insights from studies with
human papillomavirus oncoproteins. Int J Cancer. 109:157–162. 2004.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Kjellberg L, Hallmans G, Ahren AM,
Johansson R, Bergman F, Wadell G, Angström T and Dillner J:
Smoking, diet, pregnancy and oral contraceptive use as risk factors
for cervical intra-epithelial neoplasia in relation to human
papillomavirus infection. Br J Cancer. 82:1332–1338. 2000.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Agarwal SM, Raghav D, Singh H and Raghava
GPS: CCDB: A curated database of genes involved in cervix cancer.
Nucleic Acids Res. 39:D975–D979. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Almonte M, Sasieni P and Cuzick J:
Incorporating human papillomavirus testing into cytological
screening in the era of prophylactic vaccines. Best Pract Res Clin
Obstet Gynaecol. 25:617–629. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Meggiolaro A, Unim B, Semyonov L, Miccoli
S, Maffongelli E and La Torre G: The role of Pap test screening
against cervical cancer: A systematic review and meta-analysis.
Clin Ter. 167:124–139. 2016.PubMed/NCBI
|
10
|
Leinonen M, Nieminen P, Kotaniemi-Talonen
L, Malila N, Tarkkanen J, Laurila P and Anttila A: Age-specific
evaluation of primary human papillomavirus screening vs.
conventional cytology in a randomized setting. J Natl Cancer Inst.
101:1612–1623. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Huh WK, Joura EA, Giuliano AR, Iversen OE,
de Andrade RP, Ault KA, Bartholomew D, Cestero RM, Fedrizzi EN,
Hirschberg AL, et al: Final efficacy, immunogenicity, and safety
analyses of a nine-valent human papillomavirus vaccine in women
aged 16-26 years: A randomised, double-blind trial. Lancet.
390:2143–2159. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Polonijo AN and Carpiano RM: Social
inequalities in adolescent human papillomavirus (HPV) vaccination:
A test of fundamental cause theory. Soc Sci Med. 82:115–125. 2013.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Dasari S, Wudayagiri R and Valluru L:
Cervical cancer: Biomarkers for diagnosis and treatment. Clin Chim
Acta. 445:7–11. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kulasingam V, Pavlou MP and Diamandis EP:
Integrating high-throughput technologies in the quest for effective
biomarkers for ovarian cancer. Nat Rev Cancer. 10:371–378. 2010.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Ganepola GA, Nizin J, Rutledge JR and
Chang DH: Use of blood-based biomarkers for early diagnosis and
surveillance of colorectal cancer. World J Gastrointest Oncol.
6:83–97. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xu Y, Xu Q, Yang L, Ye X, Liu F, Wu F, Ni
S, Tan C, Cai G, Meng X, et al: Identification and validation of a
blood-based 18-gene expression signature in colorectal cancer. Clin
Cancer Res. 19:3039–3049. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
R Core Team, . R: A language and
environment for statistical computing. R Foundation for Statistical
Computing; Vienna: 2018, https://www.R-project.org/
|
18
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: Limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Benjamini Y and Hochberg Y: Controlling
the false discovery rate: A practical and powerful approach to
multiple testing. J Royal Statistical Society: Series B
(Methodological). 57:289–300. 1995.
|
20
|
Szklarczyk D, Gable AL, Lyon D, Junge A,
Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork
P, et al: STRING v11: Protein-protein association networks with
increased coverage, supporting functional discovery in genome-wide
experimental datasets. Nucleic Acids Res. 47:D607–D613. 2019.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zuo Z, Hu H, Xu Q, Luo X, Peng D, Zhu K,
Zhao Q, Xie Y and Ren J: BBCancer: An expression atlas of
blood-based biomarkers in the early diagnosis of cancers. Nucleic
Acids Res. 48:D789–D796. 2020.PubMed/NCBI
|
22
|
Ma Q, Shao Y, Chen W, Quan C, Zhu Y, Xu X,
Zhou Z and Wang S: Discovery of candidate gene expression
signatures in peripheral blood for the screening of cervical
cancer. Biomark Med. 14:109–118. 2020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sotiriou C and Piccart MJ: Taking
gene-expression profiling to the clinic: when will molecular
signatures become relevant to patient care? Nat Rev Cancer.
7:545–553. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Carrero YN, Callejas DE and Mosquera JA:
In situ immunopathological events in human cervical intraepithelial
neoplasia and cervical cancer: Review. Transl Oncol. 14:1010582021.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Colotta F, Dower SK, Sims JE and Mantovani
A: The type II ‘decoy’ receptor: A novel regulatory pathway for
interleukin 1. Immunol Today. 15:562–566. 1994. View Article : Google Scholar : PubMed/NCBI
|
26
|
Dinarello CA: Interleukin-18. Methods.
19:121–132. 1999. View Article : Google Scholar : PubMed/NCBI
|
27
|
Niu F, Wang T, Li J, Yan M, Li D, Li B and
Jin T: The impact of genetic variants in IL1R2 on cervical cancer
risk among Uygur females from China: A case-control study. Mol
Genet Genomic Med. 7:e005162019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mhatre S, Wang Z, Nagrani R, Badwe R,
Chiplunkar S, Mittal B, Yadav S, Zhang H, Chung CC, Patil P, et al:
Common genetic variation and risk of gallbladder cancer in India: A
case-control genome-wide association study. Lancet Oncol.
18:535–544. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Laios A, O'Toole SA, Flavin R, Martin C,
Ring M, Gleeson N, D'Arcy T, McGuinness EP, Sheils O, Sheppard BL
and O'Leary JJ: An integrative model for recurrence in ovarian
cancer. Mol Cancer. 7:82008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Autenshlyus A, Arkhipov S, Mikhailova E,
Marinkin I, Arkhipova V and Varaksin N: The relationship between
cytokine production, CSF2RA, and IL1R2 expression in mammary
adenocarcinoma, tumor histopathological parameters, and lymph node
metastasis. Technol Cancer Res Treat. 18:15330338198836262019.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Lee SJ, Cho YS, Cho MC, Shim JH, Lee KA,
Ko KK, Choe YK, Park SN, Hoshino T, Kim S, et al: Both E6 and E7
oncoproteins of human papillomavirus 16 inhibit IL-18-induced
IFN-gamma production in human peripheral blood mononuclear and NK
cells. J Immunol. 167:497–504. 2001. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhou T, Damsky W, Weizman OE, McGeary MK,
Hartmann KP, Rosen CE, Fischer S, Jackson R, Flavell RA, Wang J, et
al: IL-18BP is a secreted immune checkpoint and barrier to IL-18
immunotherapy. Nature. 583:609–614. 2020. View Article : Google Scholar : PubMed/NCBI
|
33
|
Huang H: Matrix metalloproteinase-9
(MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent
advances. Sensors (Basel). 18:E32492018. View Article : Google Scholar
|
34
|
Li Y, Wu T, Zhang B, Yao Y and Yin G:
Matrix metalloproteinase-9 is a prognostic marker for patients with
cervical cancer. Med Oncol. 29:3394–3399. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zajkowska M, Zbucka-Krętowska M,
Sidorkiewicz I, Lubowicka E, Będkowska GE, Gacuta E, Szmitkowski M
and Ławicki S: Human plasma levels of vascular endothelial growth
factor, matrix metalloproteinase 9, and tissue inhibitor of matrix
metalloproteinase 1 and their applicability as tumor markers in
diagnoses of cervical cancer based on ROC analysis. Cancer Control.
25:10732748187893572018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jiang W, Cazacu S, Xiang C, Zenklusen JC,
Fine HA, Berens M, Armstrong B, Brodie C and Mikkelsen T: FK506
binding protein mediates glioma cell growth and sensitivity to
rapamycin treatment by regulating NF-kappaB signaling pathway.
Neoplasia. 10:235–243. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Davis MM and Bjorkman PJ: T-cell antigen
receptor genes and T-cell recognition. Nature. 334:395–402. 1988.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Hanahan D: Hallmarks of cancer: New
dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tsimberidou AM, Van Morris K, Vo HH, Eck
S, Lin YF, Rivas JM and Andersson BS: T-cell receptor-based
therapy: An innovative therapeutic approach for solid tumors. J
Hematol Oncol. 14:1022021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Feng M, Wang Y, Chen K, Bian Z, Jinfang Wu
and Gao Q: IL-17A promotes the migration and invasiveness of
cervical cancer cells by coordinately activating MMPs expression
via the p38/NF-κB signal pathway. PLoS One. 9:e1085022014.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Lafontaine DL and DTollervey D: The
function and synthesis of ribosomes. Nat Rev Mol Cell Biol.
2:514–520. 2001. View Article : Google Scholar : PubMed/NCBI
|
42
|
Vyleta ML, Wong J and Magun BE:
Suppression of ribosomal function triggers innate immune signaling
through activation of the NLRP3 inflammasome. PLoS One.
7:e360442012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kartikasari AER, Huertas CS, Mitchell A
and Plebanski M: Tumor-induced inflammatory cytokines and the
emerging diagnostic devices for cancer detection and prognosis.
Front Oncol. 11:6921422021. View Article : Google Scholar : PubMed/NCBI
|
44
|
Rachinger N, Fischer S, Böhme I,
Linck-Paulus L, Kuphal S, Kappelmann-Fenzl M and Bosserhoff AK:
Loss of gene information: discrepancies between RNA sequencing,
cDNA microarray, and qRT-PCR. Int J Mol Sci. 22:93492021.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Hemmat N and Bannazadeh Baghi H:
Association of human papillomavirus infection and inflammation in
cervical cancer. Pathog Dis. 77:ftz0482019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Vitkauskaite A, Urboniene D, Celiesiute J,
Jariene K, Skrodeniene E, Nadisauskiene RJ and Vaitkiene D:
Circulating inflammatory markers in cervical cancer patients and
healthy controls. J Immunotoxicol. 17:105–109. 2020. View Article : Google Scholar : PubMed/NCBI
|
47
|
Todoric J, Antonucci L and Karin M:
Targeting inflammation in cancer prevention and therapy. Cancer
Prev Res (Phila). 9:895–905. 2016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Grabosch SM, Shariff OM and Helm CW:
Non-steroidal anti-inflammatory agents to induce regression and
prevent the progression of cervical intraepithelial neoplasia.
Cochrane Database Syst Rev. 2:CD0041212018.PubMed/NCBI
|
49
|
Lin CL, Lee CH, Chen CM, Cheng CW, Chen
PN, Ying TH and Hsieh YH: Protodioscin induces apoptosis through
ROS-mediated endoplasmic reticulum stress via the JNK/p38
activation pathways in human cervical cancer cells. Cell Physiol
Biochem. 46:322–334. 2018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Ye Y, Wang X, Jeschke U and von Schönfeldt
V: COX-2-PGE2-EPs in gynecological cancers. Arch Gynecol Obstet.
301:1365–1375. 2020. View Article : Google Scholar : PubMed/NCBI
|
51
|
Yim EK, Lee MJ, Lee KH, Um SJ and Park JS:
Antiproliferative and antiviral mechanisms of ursolic acid and
dexamethasone in cervical carcinoma cell lines. Int J Gynecol
Cancer. 16:2023–2031. 2006. View Article : Google Scholar : PubMed/NCBI
|
52
|
Bhatla N, Berek JS, Cuello Fredes M, Denny
LA, Grenman S, Karunaratne K, Kehoe ST, Konishi I, Olawaiye AB,
Prat J, et al: Revised FIGO staging for carcinoma of the cervix
uteri. Int J Gynaecol Obstet. 145:129–135. 2019. View Article : Google Scholar : PubMed/NCBI
|