Effects of autophagy‑related gene 5 on tumor development and treatment (Review)
- Authors:
- Pengli Zhou
- Zhou Zhang
- Mingyue Liu
- Ping Li
- Ying Zhu
-
Affiliations: College of Basic Medicine, China Medical University, Shenyang, Liaoning 110000, P.R. China, Clinical Medical Research Center, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu 214002, P.R. China, Department of Ultrasound, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu 214002, P.R. China, Department of Pathology, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu 214002, P.R. China - Published online on: June 19, 2023 https://doi.org/10.3892/or.2023.8592
- Article Number: 155
This article is mentioned in:
Abstract
Xue C, Chu Q, Zheng Q, Jiang S, Bao Z, Su Y, Lu J and Li L: Role of main RNA modifications in cancer: N6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther. 7:1422022. View Article : Google Scholar : PubMed/NCBI | |
Kocaturk NM, Akkoc Y, Kig C, Bayraktar O, Gozuacik D and Kutlu O: Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci. 134:116–137. 2019. View Article : Google Scholar : PubMed/NCBI | |
Onorati AV, Dyczynski M, Ojha R and Amaravadi RK: Targeting autophagy in cancer. Cancer. 124:3307–3318. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ferro F, Servais S, Besson P, Roger S, Dumas JF and Brisson L: Autophagy and mitophagy in cancer metabolic remodelling. Semin Cell Dev Biol. 98:129–138. 2020. View Article : Google Scholar : PubMed/NCBI | |
Amaravadi RK, Kimmelman AC and Debnath J: Targeting autophagy in cancer: Recent advances and future directions. Cancer Discov. 9:1167–1181. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lin PW, Chu ML and Liu HS: Autophagy and metabolism. Kaohsiung J Med Sci. 37:12–19. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gómez-Virgilio L, Silva-Lucero MD, Flores-Morelos DS, Gallardo-Nieto J, Lopez-Toledo G, Abarca-Fernandez AM, Zacapala-Gómez AE, Luna-Muñoz J, Montiel-Sosa F, Soto-Rojas LO, et al: Autophagy: A key regulator of homeostasis and disease: An overview of molecular mechanisms and modulators. Cells. 11:22622022. View Article : Google Scholar : PubMed/NCBI | |
Wen X, Yang Y and Klionsky DJ: Moments in autophagy and disease: Past and present. Mol Aspects Med. 82:1009662021. View Article : Google Scholar : PubMed/NCBI | |
Cao W, Li J, Yang K and Cao D: An overview of autophagy: Mechanism, regulation and research progress. Bull Cancer. 108:304–322. 2021. View Article : Google Scholar : PubMed/NCBI | |
Saha S, Panigrahi DP, Patil S and Bhutia SK: Autophagy in health and disease: A comprehensive review. Biomed Pharmacother. 104:485–495. 2018. View Article : Google Scholar : PubMed/NCBI | |
Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K, Cecconi F, Choi AMK, et al: Autophagy in major human diseases. EMBO J. 40:e1088632021. View Article : Google Scholar : PubMed/NCBI | |
Behera J, Ison J, Tyagi A, Mbalaviele G and Tyagi N: Mechanisms of autophagy and mitophagy in skeletal development, diseases and therapeutics. Life Sci. 301:1205952022. View Article : Google Scholar : PubMed/NCBI | |
Mameli E, Martello A and Caporali A: Autophagy at the interface of endothelial cell homeostasis and vascular disease. FEBS J. 289:2976–2991. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yu QY, Ye LQ and Li HL: Molecular interaction of stress granules with Tau and autophagy in Alzheimer's disease. Neurochem Int. 157:1053422022. View Article : Google Scholar : PubMed/NCBI | |
Carinci M, Palumbo L, Pellielo G, Agyapong ED, Morciano G, Patergnani S, Giorgi C, Pinton P and Rimessi A: The multifaceted roles of autophagy in infectious, obstructive, and malignant airway diseases. Biomedicines. 10:19442022. View Article : Google Scholar : PubMed/NCBI | |
Hernandez GA and Perera RM: Autophagy in cancer cell remodeling and quality control. Mol Cell. 82:1514–1527. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li X, He S and Ma B: Autophagy and autophagy-related proteins in cancer. Mol Cancer. 19:122020. View Article : Google Scholar : PubMed/NCBI | |
Levine B and Kroemer G: Biological functions of autophagy genes: A disease perspective. Cell. 176:11–42. 2019. View Article : Google Scholar : PubMed/NCBI | |
Song Q, Liu H, Zhen H and Zhao B: Autophagy and its role in regeneration and remodeling within invertebrate. Cell Biosci. 10:1112020. View Article : Google Scholar : PubMed/NCBI | |
Pradel B, Robert-Hebmann V and Espert L: Regulation of Innate Immune Responses by Autophagy: A Goldmine for Viruses. Front Immunol. 11:5780382020. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Luo Y, Zou J, Ouyang J, Cai Z, Zeng X, Ling H and Zeng T: Autophagy and its role in gastric cancer. Clin Chim Acta. 489:10–20. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu BW, Wang HS, Wang H and Jiang GM: Epigenetic and post-translational modifications in autophagy: Biological functions and therapeutic targets. Signal Transduct Target Ther. 8:322023. View Article : Google Scholar : PubMed/NCBI | |
Zheng W, Xie W, Yin D, Luo R, Liu M and Guo F: ATG5 and ATG7 induced autophagy interplays with UPR via PERK signaling. Cell Commun Signal. 17:422019. View Article : Google Scholar : PubMed/NCBI | |
He M, Li M, Guan Y, Wan Z, Tian J, Xu F, Zhou H, Gao M, Bi H and Chong T: A New prognostic risk score: Based on the analysis of autophagy-related genes and renal cell carcinoma. Front Genet. 12:8201542021. View Article : Google Scholar : PubMed/NCBI | |
Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T and Simon HU: Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol. 8:1124–1132. 2006. View Article : Google Scholar : PubMed/NCBI | |
Matsushita M, Suzuki NN, Obara K, Fujioka Y, Ohsumi Y and Inagaki F: Structure of Atg5.Atg16, a complex essential for autophagy. J Biol Chem. 282:6763–6772. 2007. View Article : Google Scholar : PubMed/NCBI | |
Noda NN, Fujioka Y, Hanada T, Ohsumi Y and Inagaki F: Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep. 14:206–211. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nikseresht M, Shahverdi M, Dehghani M, Abidi H, Mahmoudi R, Ghalamfarsa G, Manzouri L and Ghavami S: Association of single nucleotide autophagy-related protein 5 gene polymorphism rs2245214 with susceptibility to non-small cell lung cancer. J Cell Biochem. 120:1924–1931. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li M, Shen Y, Xiong Y, Wang S, Li C, Bai J and Zhang Y: Loss of SMARCB1 promotes autophagy and facilitates tumour progression in chordoma by transcriptionally activating ATG5. Cell Prolif. 54:e131362021. View Article : Google Scholar : PubMed/NCBI | |
Frangež Ž, Gérard D, He Z, Gavriil M, Fernández-Marrero Y, Seyed Jafari SM, Hunger RE, Lucarelli P, Yousefi S, Sauter T, et al: ATG5 and ATG7 expression levels are reduced in cutaneous melanoma and regulated by NRF1. Front Oncol. 11:7216242021. View Article : Google Scholar : PubMed/NCBI | |
Park JW, Kim Y, Lee SB, Oh CW, Lee EJ, Ko JY and Park JH: Autophagy inhibits cancer stemness in triple-negative breast cancer via miR-181a-mediated regulation of ATG5 and/or ATG2B. Mol Oncol. 16:1857–1875. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Li Z, Bai F and Zhang S: PAX5-induced upregulation of IDH1-AS1 promotes tumor growth in prostate cancer by regulating ATG5-mediated autophagy. Cell Death Dis. 10:7342019. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Zhang H, Meng L, Song H, Zhou Q, Qu C, Zhao P, Li Q, Zou C, Liu X and Zhang Z: Hypoxia-induced acetylation of PAK1 enhances autophagy and promotes brain tumorigenesis via phosphorylating ATG5. Autophagy. 17:723–742. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xie X, Bi HL, Lai S, Zhang YL, Li N, Cao HJ, Han L, Wang HX and Li HH: The immunoproteasome catalytic β5i subunit regulates cardiac hypertrophy by targeting the autophagy protein ATG5 for degradation. Sci Adv. 5:eaau04952019. View Article : Google Scholar : PubMed/NCBI | |
Di Q, Zhao X, Tang H, Li X, Xiao Y, Wu H, Wu Z, Quan J and Chen W: USP22 suppresses the NLRP3 inflammasome by degrading NLRP3 via ATG5-dependent autophagy. Autophagy. 19:873–885. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Liu S and Tao Y: Regulating tumor suppressor genes: Post-translational modifications. Signal Transduct Target Ther. 5:902020. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Ng DS, Yam JC, Tham CC, Pang CP and Chu WK: Post-translational modifications on the retinoblastoma protein. J Biomed Sci. 29:332022. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Song C and Zhan X: The role of protein acetylation in carcinogenesis and targeted drug discovery. Front Endocrinol (Lausanne). 13:9723122022. View Article : Google Scholar : PubMed/NCBI | |
Wan W, You Z, Xu Y, Zhou L, Guan Z, Peng C, Wong CCL, Su H, Zhou T, Xia H and Liu W: mTORC1 Phosphorylates Acetyltransferase p300 to Regulate Autophagy and Lipogenesis. Mol Cell. 68:323–335.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Levy JMM, Towers CG and Thorburn A: Targeting autophagy in cancer. Nat Rev Cancer. 17:528–542. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin TY, Chan HH, Chen SH, Sarvagalla S, Chen PS, Coumar MS, Cheng SM, Chang YC, Lin CH, Leung E and Cheung CHA: BIRC5/Survivin is a novel ATG12-ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. Autophagy. 16:1296–1313. 2020. View Article : Google Scholar : PubMed/NCBI | |
Otto FB and Thumm M: Mechanistic dissection of macro- and micronucleophagy. Autophagy. 17:626–639. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cicchini M, Karantza V and Xia B: Molecular pathways: Autophagy in cancer-a matter of timing and context. Clin Cancer Res. 21:498–504. 2015. View Article : Google Scholar : PubMed/NCBI | |
Don Wai Luu L, Kaakoush NO and Castaño-Rodríguez N: The role of ATG16L2 in autophagy and disease. Autophagy. 18:2537–2546. 2022. View Article : Google Scholar : PubMed/NCBI | |
Changotra H, Kaur S, Yadav SS, Gupta GL, Parkash J and Duseja A: ATG5: A central autophagy regulator implicated in various human diseases. Cell Biochem Funct. 40:650–667. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lei Y, Xu X, Liu H, Chen L, Zhou H, Jiang J, Yang Y and Wu B: HBx induces hepatocellular carcinogenesis through ARRB1-mediated autophagy to drive the G1/S cycle. Autophagy. 17:4423–4441. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Xiong H, Liu D, Hill C, Ertay A, Li J, Zou Y, Miller P, White E, Downward J, et al: Autophagy inhibition specifically promotes epithelial-mesenchymal transition and invasion in RAS-mutated cancer cells. Autophagy. 15:886–899. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Pi H, Liao L, Tan M, Deng P, Yue Y, Xi Y, Tian L, Xie J, Chen M, et al: Cadmium promotes breast cancer cell proliferation, migration and invasion by inhibiting ACSS2/ATG5-mediated autophagy. Environ Pollut. 273:1165042021. View Article : Google Scholar : PubMed/NCBI | |
He L, Han J, Li B, Huang L, Ma K, Chen Q, Liu X, Bao L and Liu H: Identification of a new cyathane diterpene that induces mitochondrial and autophagy-dependent apoptosis and shows a potent in vivo anti-colorectal cancer activity. Eur J Med Chem. 111:183–192. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xiong X, Lu B, Tian Q, Zhang H, Wu M, Guo H, Zhang Q, Li X, Zhou T and Wang Y: Inhibition of autophagy enhances cinobufagin-induced apoptosis in gastric cancer. Oncol Rep. 41:492–500. 2019.PubMed/NCBI | |
Cao L and Lin F: TECPR1 Induces apoptosis in non-small cell lung carcinoma via ATG5 Upregulation-Induced autophagy promotion. Ann Clin Lab Sci. 52:580–592. 2022.PubMed/NCBI | |
Zheng Y, Tan K and Huang H: Long noncoding RNA HAGLROS regulates apoptosis and autophagy in colorectal cancer cells via sponging miR-100 to target ATG5 expression. J Cell Biochem. 120:3922–3933. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Jiang Y, Cheng J, Ma J, Li Q and Pang T: ATG5 regulates mesenchymal stem cells differentiation and mediates chemosensitivity in acute myeloid leukemia. Biochem Biophys Res Commun. 525:398–405. 2020. View Article : Google Scholar : PubMed/NCBI | |
Oh DS and Lee HK: Autophagy protein ATG5 regulates CD36 expression and anti-tumor MHC class II antigen presentation in dendritic cells. Autophagy. 15:2091–2106. 2019. View Article : Google Scholar : PubMed/NCBI | |
Demirbag-Sarikaya S, Akkoc Y, Turgut S, Erbil-Bilir S, Kocaturk NM, Dengjel J and Gozuacik D: A novel ATG5 interaction with Ku70 potentiates DNA repair upon genotoxic stress. Sci Rep. 12:81342022. View Article : Google Scholar : PubMed/NCBI | |
Sun SY, Hu XT, Yu XF, Zhang YY, Liu XH, Liu YH, Wu SH, Li YY, Cui SX and Qu XJ: Nuclear translocation of ATG5 induces DNA mismatch repair deficiency (MMR-D)/microsatellite instability (MSI) via interacting with Mis18α in colorectal cancer. Br J Pharmacol. 178:2351–2369. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu K, Xiang L, Li S, Wang S, Chen C and Mu H: HIF1α promotes prostate cancer progression by increasing ATG5 expression. Anim Cells Syst (Seoul). 23:326–334. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Yin J, Huang J, Liu Z and Pei S: miR-20a-enhanced cell migration and invasion via ATg5 in osteosarcoma. Minerva Endocrinol. 44:415–417. 2019.PubMed/NCBI | |
Zhou S, Wang X, Ding J, Yang H and Xie Y: Increased ATG5 expression predicts poor prognosis and promotes EMT in cervical carcinoma. Front Cell Dev Biol. 9:7571842021. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Chen J, Zhang M, Wang H, Zeng Y, Huang Y and Xu C: Autophagy induced by muscarinic acetylcholine receptor 1 mediates migration and invasion targeting Atg5 via AMPK/mTOR pathway in prostate cancer. J Oncol. 2022:65231952022.PubMed/NCBI | |
Qin Y, Sun W, Wang Z, Dong W, He L, Zhang T, Lv C and Zhang H: RBM47/SNHG5/FOXO3 axis activates autophagy and inhibits cell proliferation in papillary thyroid carcinoma. Cell Death Dis. 13:2702022. View Article : Google Scholar : PubMed/NCBI | |
Zhu JF, Huang W, Yi HM, Xiao T, Li JY, Feng J, Yi H, Lu SS, Li XH, Lu RH, et al: Annexin A1-suppressed autophagy promotes nasopharyngeal carcinoma cell invasion and metastasis by PI3K/AKT signaling activation. Cell Death Dis. 9:11542018. View Article : Google Scholar : PubMed/NCBI | |
He J, Huang B, Zhang K, Liu M and Xu T: Long non-coding RNA in cervical cancer: From biology to therapeutic opportunity. Biomed Pharmacother. 127:1102092020. View Article : Google Scholar : PubMed/NCBI | |
Yan H and Bu P: Non-coding RNA in cancer. Essays Biochem. 65:625–639. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Cho KB, Li Y, Tao G, Xie Z and Guo B: Long Noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int J Mol Sci. 20:57582019. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Li F, He AT and Yang BB: Circular RNAs: Expression, localization, and therapeutic potentials. Mol Ther. 29:1683–1702. 2021. View Article : Google Scholar : PubMed/NCBI | |
Volovat SR, Volovat C, Hordila I, Hordila DA, Mirestean CC, Miron OT, Lungulescu C, Scripcariu DV, Stolniceanu CR, Konsoulova-Kirova AA, et al: MiRNA and LncRNA as potential biomarkers in Triple-negative breast cancer: A review. Front Oncol. 10:5268502020. View Article : Google Scholar : PubMed/NCBI | |
Zhang H and Lu B: The roles of ceRNAs-mediated autophagy in cancer chemoresistance and metastasis. Cancers (Basel). 12:29262020. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Huang B, Kong Y, Yang Y, Tian C, Chen L, Liao Y and Ma L: Polycystic ovary syndrome: Identification of novel and hub biomarkers in the autophagy-associated mRNA-miRNA-lncRNA network. Front Endocrinol (Lausanne). 13:10320642022. View Article : Google Scholar : PubMed/NCBI | |
Fisher L: Retraction: Long non-coding RNA XIST promotes proliferation, autophagy and inhibits apoptosis by regulating microRNA-30c/ATG5 axis in gastric cancer. RSC Adv. 11:42332021. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Peng ZX, Ji WD, Yu JD, Qian C, Liu JD and Fang GE: LncRNA CCAT1 upregulates ATG5 to enhance autophagy and promote gastric cancer development by absorbing miR-140-3p. Dig Dis Sci. 67:3725–3741. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Dong Z, Sheng Z and Cai Y: Hypoxia-induced PVT1 promotes lung cancer chemoresistance to cisplatin by autophagy via PVT1/miR-140-3p/ATG5 axis. Cell Death Discov. 8:1042022. View Article : Google Scholar : PubMed/NCBI | |
Qin Y, Sun W, Wang Z, Dong W, He L, Zhang T, Shao L and Zhang H: ATF2-Induced lncRNA GAS8-AS1 promotes autophagy of thyroid cancer cells by targeting the miR-187-3p/ATG5 and miR-1343-3p/ATG7 Axes. Mol Ther Nucleic Acids. 22:584–600. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wei H, Li L, Zhang H, Xu F, Chen L, Che G and Wang Y: Circ-FOXM1 knockdown suppresses non-small cell lung cancer development by regulating the miR-149-5p/ATG5 axis. Cell Cycle. 20:166–178. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zheng S, Zhong YF, Tan DM, Xu Y, Chen HX and Wang D: miR-183-5p enhances the radioresistance of colorectal cancer by directly targeting ATG5. J Biosci. 44:922019. View Article : Google Scholar : PubMed/NCBI | |
Che J, Wang W, Huang Y, Zhang L, Zhao J, Zhang P and Yuan X: miR-20a inhibits hypoxia-induced autophagy by targeting ATG5/FIP200 in colorectal cancer. Mol Carcinog. 58:1234–1247. 2019.PubMed/NCBI | |
Hwang TI, Chen PC, Tsai TF, Lin JF, Chou KY, Ho CY, Chen HE and Chang AC: Hsa-miR-30a-3p overcomes the acquired protective autophagy of bladder cancer in chemotherapy and suppresses tumor growth and muscle invasion. Cell Death Dis. 13:3902022. View Article : Google Scholar : PubMed/NCBI | |
Liang L, Yang Z, Deng Q, Jiang Y, Cheng Y, Sun Y and Li LL: miR-30d-5p suppresses proliferation and autophagy by targeting ATG5 in renal cell carcinoma. FEBS Open Bio. 11:529–540. 2021. View Article : Google Scholar : PubMed/NCBI | |
White E: The role for autophagy in cancer. J Clin Invest. 125:42–46. 2015. View Article : Google Scholar : PubMed/NCBI | |
Das S, Shukla N, Singh SS, Kushwaha S and Shrivastava R: Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis. 26:512–533. 2021. View Article : Google Scholar : PubMed/NCBI | |
Russo M and Russo GL: Autophagy inducers in cancer. Biochem Pharmacol. 153:51–61. 2018. View Article : Google Scholar : PubMed/NCBI | |
Seo W, Silwal P, Song IC and Jo EK: The dual role of autophagy in acute myeloid leukemia. J Hematol Oncol. 15:512022. View Article : Google Scholar : PubMed/NCBI | |
Babaei G, Aziz SG and Jaghi NZZ: EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed Pharmacother. 133:1109092021. View Article : Google Scholar : PubMed/NCBI | |
Yang PW, Hsieh MS, Chang YH, Huang PM and Lee JM: Genetic polymorphisms of ATG5 predict survival and recurrence in patients with early-stage esophageal squamous cell carcinoma. Oncotarget. 8:91494–91504. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, Xu Q, Zhang Y, Shen M, Zhang S, Mao F, Li B, Yan X, Shi Z, Wang L, et al: miR-34a inhibits progression of neuroblastoma by targeting autophagy-related gene 5. Eur J Pharmacol. 850:53–63. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Yao L, Zheng YZ, Xu Q, Liu XP, Hu X, Wang P and Shao ZM: Expression of autophagy-related proteins ATG5 and FIP200 predicts favorable disease-free survival in patients with breast cancer. Biochem Biophys Res Commun. 458:816–822. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao GS, Gao ZR, Zhang Q, Tang XF, Lv YF, Zhang ZS, Zhang Y, Tan QL, Peng DB, Jiang DM and Guo QN: TSSC3 promotes autophagy via inactivating the Src-mediated PI3K/Akt/mTOR pathway to suppress tumorigenesis and metastasis in osteosarcoma, and predicts a favorable prognosis. J Exp Clin Cancer Res. 37:1882018. View Article : Google Scholar : PubMed/NCBI | |
Dong M, Ye T, Bi Y, Wang Q, Kuerban K, Li J, Feng M, Wang K, Chen Y and Ye L: A novel hybrid of 3-benzyl coumarin seco-B-ring derivative and phenylsulfonylfuroxan induces apoptosis and autophagy in non-small-cell lung cancer. Phytomedicine. 52:79–88. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rong L, Li Z, Leng X, Li H, Ma Y, Chen Y and Song F: Salidroside induces apoptosis and protective autophagy in human gastric cancer AGS cells through the PI3K/Akt/mTOR pathway. Biomed Pharmacother. 122:1097262020. View Article : Google Scholar : PubMed/NCBI | |
Xu Q, Zhang H, Liu H, Han Y, Qiu W and Li Z: Inhibiting autophagy flux and DNA repair of tumor cells to boost radiotherapy of orthotopic glioblastoma. Biomaterials. 280:1212872022. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Zhao M, Wu Z, Chen C, Zhang Y, Wang L, Guo Q, Wang Q, Liang S, Hu S, et al: Nano-ultrasonic contrast agent for chemoimmunotherapy of breast cancer by immune metabolism reprogramming and tumor autophagy. ACS Nano. 16:3417–3431. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mi W, Wang C, Luo G, Li J, Zhang Y, Jiang M, Zhang C, Liu N, Jiang X, Yang G, et al: Targeting ERK induced cell death and p53/ROS-dependent protective autophagy in colorectal cancer. Cell Death Discov. 7:3752021. View Article : Google Scholar : PubMed/NCBI | |
Kinsey CG, Camolotto SA, Boespflug AM, Guillen KP, Foth M, Truong A, Schuman SS, Shea JE, Seipp MT, Yap JT, et al: Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat Med. 25:620–627. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Liu Y, Li H, Wei C, Mao A, Liu W and Pan G: Polyphyllin D induces apoptosis and protective autophagy in breast cancer cells through JNK1-Bcl-2 pathway. J Ethnopharmacol. 282:1145912022. View Article : Google Scholar : PubMed/NCBI | |
Ho CY, Chang AC, Hsu CH, Tsai TF, Lin YC, Chou KY, Chen HE, Lin JF, Chen PC and Hwang TI: Miconazole induces protective autophagy in bladder cancer cells. Environ Toxicol. 36:185–193. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zhang L, Zhou H, Wang W, Luo Y, Yang H and Yi H: Inhibition of autophagy promotes cisplatin-induced apoptotic cell death through Atg5 and Beclin 1 in A549 human lung cancer cells. Mol Med Rep. 17:6859–6865. 2018.PubMed/NCBI | |
Mo N, Lu YK, Xie WM, Liu Y, Zhou WX, Wang HX, Nong L, Jia YX, Tan AH, Chen Y, et al: Inhibition of autophagy enhances the radiosensitivity of nasopharyngeal carcinoma by reducing Rad51 expression. Oncol Rep. 32:1905–1912. 2014. View Article : Google Scholar : PubMed/NCBI | |
Digomann D, Linge A and Dubrovska A: SLC3A2/CD98hc, autophagy and tumor radioresistance: A link confirmed. Autophagy. 15:1850–1851. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pai Bellare G, Saha B and Patro BS: Targeting autophagy reverses de novo resistance in homologous recombination repair proficient breast cancers to PARP inhibition. Br J Cancer. 124:1260–1274. 2021. View Article : Google Scholar : PubMed/NCBI | |
Han M, Hu J, Lu P, Cao H, Yu C, Li X, Qian X, Yang X, Yang Y, Han N, et al: Exosome-transmitted miR-567 reverses trastuzumab resistance by inhibiting ATG5 in breast cancer. Cell Death Dis. 11:432020. View Article : Google Scholar : PubMed/NCBI | |
Wang ZC, Huang FZ, Xu HB, Sun JC and Wang CF: MicroRNA-137 inhibits autophagy and chemosensitizes pancreatic cancer cells by targeting ATG5. Int J Biochem Cell Biol. 111:63–71. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu Q, Xu XP, Yin XM and Peng XQ: miR-155-5p increases the sensitivity of liver cancer cells to adriamycin by regulating ATG5-mediated autophagy. Neoplasma. 68:87–95. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Dong YZ, Du X, Peng XN and Shen QM: MiRNA-153-3p promotes gefitinib-sensitivity in non-small cell lung cancer by inhibiting ATG5 expression and autophagy. Eur Rev Med Pharmacol Sci. 23:2444–2452. 2019.PubMed/NCBI | |
Han M, Qian X, Cao H, Wang F, Li X, Han N, Yang X, Yang Y, Dou D, Hu J, et al: lncRNA ZNF649-AS1 induces trastuzumab resistance by promoting ATG5 expression and autophagy. Mol Ther. 28:2488–2502. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Wang Y, Qian J, Yan X, Han Y, Yao N and Ma J: MGMT expression affects the gemcitabine resistance of pancreatic cancer cells. Life Sci. 259:1181482020. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, Tan S, Duan F, Yuan Q, Li Q and Deng G: Icariin induces apoptosis by suppressing autophagy in tamoxifen-resistant breast cancer cell line MCF-7/TAM. Breast Cancer. 26:766–775. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li X, Chen Q, Ao J, Lin W, Qiu L and Cao R: Synthesis of novel 4,7-disubstituted quinoline derivatives as autophagy inducing agents via targeting stabilization of ATG5. Bioorg Chem. 127:1059982022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Lu X, Tian P, Wang K and Shi J: Procyanidin B2 induces apoptosis and autophagy in gastric cancer cells by inhibiting Akt/mTOR signaling pathway. BMC Complement Med Ther. 21:762021. View Article : Google Scholar : PubMed/NCBI | |
Kan Y, Song M, Cui X, Yang Q, Zang Y, Li Q, Li Y, Cai W, Chen Y, Weng X, et al: Muyin extract inhibits non-small-cell lung cancer growth by inducing autophagy and apoptosis in vitro and in vivo. Phytomedicine. 96:1538342022. View Article : Google Scholar : PubMed/NCBI | |
Kim TW: Cinnamaldehyde induces autophagy-mediated cell death through ER stress and epigenetic modification in gastric cancer cells. Acta Pharmacol Sin. 43:712–723. 2022. View Article : Google Scholar : PubMed/NCBI |