5‑Fluorouracil and capecitabine therapies for the treatment of colorectal cancer (Review)
- Authors:
- Shiekhah M. Alzahrani
- Huda A. Al Doghaither
- Ayat B. Al‑Ghafari
- Peter N. Pushparaj
-
Affiliations: Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia - Published online on: August 7, 2023 https://doi.org/10.3892/or.2023.8612
- Article Number: 175
This article is mentioned in:
Abstract
Seigel RL, Miller K and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar | |
Blecher E, Chaney-Graves K, DeSantis C, Edwards B, Ferlay J, Forman D, Grey N, Harford J, Kramer J, McMikel A and McNeal B: Global cancer facts and figures. American Cancer Society; Atlanta, GA, USA: 2011 | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Alzahrani SM, Al Doghaither HA and Al-Ghafari AB: General insight into cancer: An overview of colorectal cancer (review). Mol Clin Oncol. 15:2712021. View Article : Google Scholar : PubMed/NCBI | |
Centelles JJ: General aspects of colorectal cancer. ISRN Oncol. 2012:1392682012.PubMed/NCBI | |
Blagosklonny MV: Analysis of FDA approved anticancer drugs reveals the future of cancer therapy. Cell Cycle. 3:1033–1040. 2004. View Article : Google Scholar | |
Kinch MS: An analysis of FDA-approved drugs for oncology. Drug Discov Today. 19:1831–1835. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Wei Q, Zhou Y, Wang J, Liu Q and Xu H: A systematic analysis of FDA-approved anticancer drugs. BMC Syst Biol. 11 (Suppl 5):S872017. View Article : Google Scholar : PubMed/NCBI | |
Winkler GC, Barle EL, Galati G and Kluwe WM: Functional differentiation of cytotoxic cancer drugs and targeted cancer therapeutics. Regul Toxicol Pharmacol. 70:46–53. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tseng HH and He B: Molecular markers as therapeutic targets in lung cancer. Chin J Cancer. 32:59–62. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kinsella AR, Smith D and Pickard M: Resistance to chemotherapeutic antimetabolites: A function of salvage pathway involvement and cellular response to DNA damage. Br J Cancer. 75:935–945. 1997. View Article : Google Scholar : PubMed/NCBI | |
Espinosa E, Zamora P, Feliu J and Barón MG: Classification of anticancer drugs-a new system based on therapeutic targets. Cancer Treat Rev. 29:515–523. 2003. View Article : Google Scholar : PubMed/NCBI | |
Peters GJ: Novel developments in the use of antimetabolites. Nucleosides Nucleotides Nucleic Acids. 33:358–374. 2014. View Article : Google Scholar : PubMed/NCBI | |
Peters GJ and Jansen G: Antimetabolites. Souhami RL, Tannock I, Hohenberger P and Horiot JC: ‘Oxford Textbook of Oncology’. Oxford University Press; pp. 663–713. 2001 | |
Kaye SB: New antimetabolites in cancer chemotherapy and their clinical impact. Br J Cancer. 78 (Suppl 3):S1–S7. 1998. View Article : Google Scholar | |
Peters GJ, Van der Wilt CL, Van Moorsel CJ, Kroep JR, Bergman AM and Ackland SP: Basis for effective combination cancer chemotherapy with antimetabolites. Pharmacol Ther. 87:227–253. 2000. View Article : Google Scholar : PubMed/NCBI | |
Pizzorno G, Diasio RB and Cheng YC: Pyrimidine analogs. In Holland-Frei Cancer Medicine. 6th edition. BC Decker; 2003, Available from:. https://www.ncbi.nlm.nih.gov/books/NBK13287/ | |
Thorn CF, Marsh S, Carrillo MW, McLeod HL, Klein TE and Altman RB: PharmGKB summary: Fluoropyrimidine pathways. Pharmacogenet Genomics. 21:237–242. 2011. View Article : Google Scholar : PubMed/NCBI | |
Saif MW: Targeting cancers in the gastrointestinal tract: Role of capecitabine. Onco Targets Ther. 2:29–41. 2009. View Article : Google Scholar : PubMed/NCBI | |
Walko CM and Lindley C: Capecitabine: A review. Clin Ther. 27:23–44. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fluorouracil: Uses, Interactions, Mechanism of Action | DrugBank Online. (2022). Retrieved. 4–May;2022.from. https://go.drugbank.com/drugs/DB00544 | |
Carrillo E, Navarro SA, Ramírez A, García MÁ, Griñán-Lisón C, Perán M and Marchal JA: 5-Fluorouracil derivatives: A patent review (2012–2014). Expert Opin Ther Pat. 25:1131–1144. 2015. View Article : Google Scholar : PubMed/NCBI | |
Adjei AA: A review of the pharmacology and clinical activity of new chemotherapy agents for the treatment of colorectal cancer. Br J Clin Pharmacol. 48:265–277. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hirsch BR and Zafar SY: Capecitabine in the management of colorectal cancer. Cancer Manag Res. 3:79–89. 2011.PubMed/NCBI | |
Malet-Martino M and Martino R: Clinical studies of three oral prodrugs of 5-fluorouracil (capecitabine, UFT, S-1): A review. Oncologist. 7:288–323. 2002. View Article : Google Scholar : PubMed/NCBI | |
DrugBank Online, . 5-Fluorouracil. https://go.drugbank.com/structures/DB00544/image.svgRetrieved. September 29–2022. | |
EMBL's European Bioinformatics Institute (EMBL-EBI), . 5-fluorouracil (CHEBI:46345). http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:46345Retrieved. May 4–2022. | |
National Center for Biotechnology Information, . FLUOROURACIL. https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3228Retrieved. May 4–2022. | |
CAMEO Chemicals, . FLUOROURACIL. https://cameochemicals.noaa.gov/chemical/5005Retrieved. May 4–2022. | |
PubChem, . https://pubchem.ncbi.nlm.nih.govRetrieved. May 4–2022. | |
ChemAxon, . Calculators and Predictors. https://chemaxon.com/products/calculators-and-predictors#topology_analysisRetrieved. 4–May;2022. | |
DrugBank Online, . DrugBank Release Version 5.1.8. https://go.drugbank.com/releases/latestRetrieved. May 4–2022. | |
Wielińska J, Nowacki A and Liberek B: 5-Fluorouracil-complete insight into its neutral and ionised forms. Molecules. 24:36832019. View Article : Google Scholar : PubMed/NCBI | |
Privat EJ and Sowers LC: A proposed mechanism for the mutagenicity of 5-formyluracil. Mutat Res. 354:151–156. 1996. View Article : Google Scholar : PubMed/NCBI | |
Şanli N, Şanli S and Alsancak G: Determination of dissociation constants of folinic acid (leucovorin), 5-fluorouracil, and irinotecan in hydro-organic media by a spectrophotometric method. J Chem Eng Data. 55:2695–2699. 2010. View Article : Google Scholar | |
Phua LC, Mal M, Koh PK, Cheah PY, Chan EC and Ho HK: Investigating the role of nucleoside transporters in the resistance of colorectal cancer to 5-fluorouracil therapy. Cancer Chemother Pharmacol. 71:817–823. 2013. View Article : Google Scholar : PubMed/NCBI | |
Álvarez P, Marchal JA, Boulaiz H, Carrillo E, Vélez C, Rodríguez-Serrano F, Melguizo C, Prados J, Madeddu R and Aranega A: 5-Fluorouracil derivatives: A patent review. Expert Opin Ther Pat. 22:107–23. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gustavsson B, Carlsson G, Machover D, Petrelli N, Roth A, Schmoll HJ, Tveit KM and Gibson F: A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin Colorectal Cancer. 14:1–0. 2015. View Article : Google Scholar : PubMed/NCBI | |
Piedbois P, Buyse M, Blijham G, Glimelius B, Herrmann RB, Valone F, Carlson R, Machiavelli M, Delfino C, Abad A and Petrelli N: Meta-analysis of randomized trials testing the biochemical modulation of fluorouracil by methotrexate in metastatic colorectal cancer. In Database of Abstracts of Reviews of Effects (DARE): Quality-assessed Reviews [Internet]. Centre for Reviews and Dissemination (UK); 1994, Available from:. https://www.ncbi.nlm.nih.gov/books/NBK66225/ | |
Mikhail SE, Sun JF and Marshall JL: Safety of capecitabine: A review. Expert Opin Drug Saf. 9:831–841. 2010. View Article : Google Scholar : PubMed/NCBI | |
Van der Jeught K, Xu HC, Li YJ, Lu XB and Ji G: Drug resistance and new therapies in colorectal cancer. World J Gastroenterol. 24:3834–3848. 2018. View Article : Google Scholar : PubMed/NCBI | |
Di Costanzo F, Sdrobolini A and Gasperoni S: Capecitabine, a new oral fluoropyrimidine for the treatment of colorectal cancer. Crit Rev Oncol Hematol. 35:101–108. 2000. View Article : Google Scholar : PubMed/NCBI | |
Mohammadian M, Zeynali S, Azarbaijani AF, Ansari MH and Kheradmand F: Cytotoxic effects of the newly-developed chemotherapeutic agents 17-AAG in combination with oxaliplatin and capecitabine in colorectal cancer cell lines. Res Pharm Sci. 12:517–525. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sharma R, Adam E and Schumacher U: The action of 5-fluorouracil on human HT29 colon cancer cells grown in SCID mice: Mitosis, apoptosis and cell differentiation. Br J Cancer. 76:1011–1016. 1997. View Article : Google Scholar : PubMed/NCBI | |
Swiss Institute of Bioinformatics, . SwissADME. http://www.swissadme.ch/index.phpRetrieved. May 4–2022. | |
Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI | |
D'Arcy MS: Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 43:582–592. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schafer KA: The cell cycle: A review. Vet Pathol. 35:461–478. 1998. View Article : Google Scholar : PubMed/NCBI | |
Dickson MA and Schwartz GK: Development of cell-cycle inhibitors for cancer therapy. Curr Oncol. 16:36–43. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nigg EA: Cyclin-dependent protein kinases: Key regulators of the eukaryotic cell cycle. Bioessays. 17:471–480. 1995. View Article : Google Scholar : PubMed/NCBI | |
Park MT and Lee SJ: Cell cycle and cancer. J Biochem Mol Biol. 36:60–65. 2003.PubMed/NCBI | |
Alberts B, Johnson A, Lewis J, Raff M, Roberts K and Walter P: Molecular biology of the cell. 4th edition. New York: Garland Science; 2002, Available from:. https://www.ncbi.nlm.nih.gov/books/NBK21054/ | |
Sagona AP and Stenmark H: Cytokinesis and cancer. FEBS Lett. 584:2652–2661. 2010. View Article : Google Scholar : PubMed/NCBI | |
Green DR, McGahon A and Martin SJ: Regulation of apoptosis by oncogenes. J Cell Biochem. 60:33–38. 1996. View Article : Google Scholar : PubMed/NCBI | |
Brown JM and Wouters BG: Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res. 59:1391–1399. 1999.PubMed/NCBI | |
Tiwari M: Antimetabolites: Established cancer therapy. J Cancer Res Ther. 8:510–519. 2012. View Article : Google Scholar : PubMed/NCBI | |
Övey İS and Güler Y: Apoptotic efficiency of capecitabine and 5-fluorouracil on human cancer cells through TRPV1 channels. NISCAIR-CSIR. pp64–72. 2020.http://nopr.niscair.res.in/handle/123456789/54047 | |
Shi H, Jiang J, Ji J, Shi M, Cai Q, Chen X, Yu Y, Liu B, Zhu Z and Zhang J: Anti-angiogenesis participates in antitumor effects of metronomic capecitabine on colon cancer. Cancer Lett. 349:128–135. 2014. View Article : Google Scholar : PubMed/NCBI | |
De Angelis PM, Svendsrud DH, Kravik KL and Stokke T: Cellular response to 5-fluorouracil (5-FU) in 5-FU-resistant colon cancer cell lines during treatment and recovery. Mol Cancer. 5:202006. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Shen L, Yu M, Ni J, Dong X, Zhou Y and Wu S: Colon cancer cells treated with 5-fluorouracil exhibit changes in polylactosamine-type N-glycans. Mol Med Rep. 9:1697–1702. 2014. View Article : Google Scholar : PubMed/NCBI | |
Afrin S, Giampieri F, Cianciosi D, Alvarez-Suarez JM, Bullon B, Amici A, Quiles JL, Forbes-Hernández TY and Battino M: Strawberry tree honey in combination with 5-fluorouracil enhances chemosensitivity in human colon adenocarcinoma cells. Food Chem Toxicol. 156:1124842021. View Article : Google Scholar : PubMed/NCBI | |
DrugBank Online, . Capecitabine: Uses, Interactions, Mechanism of Action. https://go.drugbank.com/drugs/DB01101Retrieved. May 4–2022. | |
DrugBank Online, . Capecitabine. https://go.drugbank.com/structures/DB01101/image.svgRetrieved. September 29–2022. | |
Team, E. Capecitabine (CHEBI:31348), 2022b, . Retrieved. 4–May;2022.from. http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:31348 | |
Twelves C, Boyer M, Findlay M, Cassidy J, Weitzel C, Barker C, Osterwalder B, Jamieson C and Hieke K; Xeloda Colorectal Cancer Study Group, : Capecitabine (Xeloda) improves medical resource use compared with 5-fluorouracil plus leucovorin in a phase III trial conducted in patients with advanced colorectal carcinoma. Eur J Cancer. 37:597–604. 2001. View Article : Google Scholar : PubMed/NCBI | |
Budman DR, Meropol NJ, Reigner B, Creaven PJ, Lichtman SM, Berghorn E, Behr J, Gordon RJ, Osterwalder B and Griffin T: Preliminary studies of a novel oral fluoropyrimidine carbamate: Capecitabine. J Clin Oncol. 16:1795–1802. 1998. View Article : Google Scholar : PubMed/NCBI | |
National Center for Biotechnology Information, . CAPECITABINE. https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7656Retrieved. May 4–2022. | |
O'Neil MJ: The merck index-an encyclopedia of chemicals, drugs and biologicals. Merck and Co. Inc.; Whitehouse Station, NJ: pp. pp17232006 | |
Loo WT, Chow LW, Suzuki T, Ono K, Ishida T, Hirakawa H, Ohuchi N and Sasano H: Expression of thymidine phosphorylase and dihydropyrimidine dehydrogenase in human breast carcinoma cells and tissues. Anticancer Res. 29:2525–2530. 2009.PubMed/NCBI | |
Schüller J, Cassidy J, Dumont E, Roos B, Durston S, Banken L, Utoh M, Mori K, Weidekamm E and Reigner B: Preferential activation of capecitabine in tumor following oral administration to colorectal cancer patients. Cancer Chemother Pharmacol. 45:291–297. 2000. View Article : Google Scholar : PubMed/NCBI | |
Brito RA, Medgyesy D, Zukowski TH, Royce ME, Ravandi-Kashani F, Hoff PM and Pazdur R: Fluoropyrimidines: A critical evaluation. Oncology. 57 (Suppl 1):S2–S8. 1999. View Article : Google Scholar | |
Li M, Zhang N and Li M: Capecitabine treatment of HCT-15 colon cancer cells induces apoptosis via mitochondrial pathway. Trop J Pharm Res. 16:1529–1536. 2017. View Article : Google Scholar | |
Ciccolini J, Fina F, Bezulier K, Giacometti S, Roussel M, Evrard A, Cuq P, Romain S, Martin PM and Aubert C: Transmission of apoptosis in human colorectal tumor cells exposed to capecitabine, Xeloda, is mediated via Fas. Mol Cancer Ther. 1:923–927. 2002.PubMed/NCBI | |
Prasad S, Yadav VR, Sung B, Reuter S, Kannappan R, Deorukhkar A, Diagaradjane P, Wei C, Baladandayuthapani V, Krishnan S, et al: Ursolic acid inhibits growth and metastasis of human colorectal cancer in an orthotopic nude mouse model by targeting multiple cell signaling pathways: Chemosensitization with capecitabine. Clin Cancer Res. 18:4942–4953. 2012. View Article : Google Scholar : PubMed/NCBI | |
Namvaran A, Fazeli M, Farajnia S, Hamidian G and Rezazadeh H: Apoptosis and caspase 3 pathway role on anti-proliferative effects of scrophulariaoxy sepala methanolic extract on caco-2 cells. Drug Res (Stuttg). 67:547–552. 2017. View Article : Google Scholar : PubMed/NCBI | |
Loo WT, Sasano H and Chow LW: Evaluation of therapeutic efficacy of capecitabine on human breast carcinoma tissues and cell lines in vitro. Biomed Pharmacother. 61:553–557. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nazari-Vanani R, Karimian K, Azarpira N and Heli H: Capecitabine-loaded nanoniosomes and evaluation of anticancer efficacy. Artif Cells Nanomed Biotechnol. 47:420–426. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kang YK, Lee SS, Yoon DH, Lee SY, Chun YJ, Kim MS, Ryu MH, Chang HM, Lee JL and Kim TW: Pyridoxine is not effective to prevent hand-foot syndrome associated with capecitabine therapy: Results of a randomized, double-blind, placebo-controlled study. J Clin Oncol. 28:3824–3829. 2010. View Article : Google Scholar : PubMed/NCBI | |
Satoh T and Hosokawa M: The mammalian carboxylesterases: From molecules to functions. Annu Rev Pharmacol Toxicol. 38:257–288. 1998. View Article : Google Scholar : PubMed/NCBI | |
Sanghani SP, Quinney SK, Fredenburg TB, Sun Z, Davis WI, Murry DJ, Cummings OW, Seitz DE and Bosron WF: Carboxylesterases expressed in human colon tumor tissue and their role in CPT-11 hydrolysis. Clin Cancer Res. 9:4983–4991. 2003.PubMed/NCBI | |
Satoh T and Hosokawa M: Structure, function and regulation of carboxylesterases. Chem Biol Interact. 162:195–211. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sanghani SP, Sanghani PC, Schiel MA and Bosron WF: Human carboxylesterases: An update on CES1, CES2 and CES3. Protein Pept Lett. 16:1207–1214. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Zou L, Jin Q, Hou J, Ge G and Yang L: Human carboxylesterases: A comprehensive review. Acta Pharm Sin B. 8:699–712. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pindel EV, Kedishvili NY, Abraham TL, Brzezinski MR, Zhang J, Dean RA and Bosron WF: Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. J Biol Chem. 272:14769–14775. 1997. View Article : Google Scholar : PubMed/NCBI | |
Oakeshott JG, Claudianos C, Russell RJ and Robin GC: Carboxyl/cholinesterases: A case study of the evolution of a successful multigene family. Bioessays. 21:1031–1042. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kim KK, Song HK, Shin DH, Hwang KY, Choe S, Yoo OJ and Suh SW: Crystal structure of carboxylesterase from Pseudomonas fluorescens, an alpha/beta hydrolase with broad substrate specificity. Structure. 5:1571–1584. 1997. View Article : Google Scholar : PubMed/NCBI | |
Fleming CD, Edwards CC, Kirby SD, Maxwell DM, Potter PM, Cerasoli DM and Redinbo MR: Crystal structures of human carboxylesterase 1 in covalent complexes with the chemical warfare agents soman and tabun. Biochemistry. 46:5063–5071. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hosokawa M: Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules. 13:412–431. 2008. View Article : Google Scholar : PubMed/NCBI | |
Taketani M, Shii M, Ohura K, Ninomiya S and Imai T: Carboxylesterase in the liver and small intestine of experimental animals and human. Life Sci. 81:924–932. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yano H, Kayukawa S, Iida S, Nakagawa C, Oguri T, Sanda T, Ding J, Mori F, Ito A, Ri M, et al: Overexpression of carboxylesterase-2 results in enhanced efficacy of topoisomerase I inhibitor, irinotecan (CPT-11), for multiple myeloma. Cancer Sci. 99:2309–2314. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xie M, Yang D, Liu L, Xue B and Yan B: Human and rodent carboxylesterases: Immunorelatedness, overlapping substrate specificity, differential sensitivity to serine enzyme inhibitors, and tumor-related expression. Drug Metab Dispos. 30:541–547. 2002. View Article : Google Scholar : PubMed/NCBI | |
Frances A and Cordelier P: The emerging role of cytidine deaminase in human diseases: A new opportunity for therapy? Mol Ther. 28:357–366. 2020. View Article : Google Scholar : PubMed/NCBI | |
Micozzi D, Carpi FM, Pucciarelli S, Polzonetti V, Polidori P, Vilar S, Williams B, Costanzi S and Vincenzetti S: Human cytidine deaminase: A biochemical characterization of its naturally occurring variants. Int J Biol Macromol. 63:64–74. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vincenzetti S, Quadrini B, Mariani P, De Sanctis G, Cammertoni N, Polzonetti V, Pucciarelli S, Natalini P and Vita A: Modulation of human cytidine deaminase by specific aminoacids involved in the intersubunit interactions. Proteins. 70:144–156. 2008. View Article : Google Scholar : PubMed/NCBI | |
Micozzi D, Pucciarelli S, Carpi FM, Costanzi S, De Sanctis G, Polzonetti V, Natalini P, Santarelli IF, Vita A and Vincenzetti S: Role of tyrosine 33 residue for the stabilization of the tetrameric structure of human cytidine deaminase. Int J Biol Macromol. 47:471–482. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vincenzetti S, Pucciarelli S, Carpi FM, Micozzi D, Polzonetti V, Natalini P, Santarelli I, Polidori P and Vita A: Site directed mutagenesis as a tool to understand the catalytic mechanism of human cytidine deaminase. Protein Pept Lett. 20:538–549. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ho DH: Distribution of kinase and deaminase of 1-beta-D-arabinofuranosylcytosine in tissues of man and mouse. Cancer Res. 33:2816–2820. 1973.PubMed/NCBI | |
Ishikawa T, Sawada N, Sekiguchi F, Fukase Y and Ishitsuka H: Xeloda™ (capecitabine), a new oral fluoropyrimidine carbamate with an improved efficacy profile over other fluoropyrimidines. Proc Am Soc Clin Oncol. 16:226a1997. | |
Hessmann E, Patzak MS, Klein L, Chen N, Kari V, Ramu I, Bapiro TE, Frese KK, Gopinathan A, Richards FM, et al: Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer. Gut. 67:497–507. 2018. View Article : Google Scholar : PubMed/NCBI | |
Elamin YY, Rafee S, Osman N, O Byrne KJ and Gately K: Thymidine phosphorylase in cancer; enemy or friend? Cancer Microenviron. 9:33–43. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mitsiki E, Papageorgiou AC, Iyer S, Thiyagarajan N, Prior SH, Sleep D, Finnis C and Acharya KR: Structures of native human thymidine phosphorylase and in complex with 5-iodouracil. Biochem Biophys Res Commun. 386:666–670. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li W and Yue H: Thymidine phosphorylase: A potential new target for treating cardiovascular disease. Trends Cardiovasc Med. 28:157–171. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bijnsdorp IV, Capriotti F, Kruyt FA, Losekoot N, Fukushima M, Griffioen AW, Thijssen VL and Peters GJ: Thymidine phosphorylase in cancer cells stimulates human endothelial cell migration and invasion by the secretion of angiogenic factors. Br J Cancer. 104:1185–1192. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ishikawa F, Miyazono K, Hellman U, Drexler H, Wernstedt C, Hagiwara K, Usuki K, Takaku F, Risau W and Heldin CH: Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature. 338:557–562. 1989. View Article : Google Scholar : PubMed/NCBI | |
Bronckaers A, Gago F, Balzarini J and Liekens S: The dual role of thymidine phosphorylase in cancer development and chemotherapy. Med Res Rev. 29:903–953. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kamatani N, Jinnah HA, Hennekam RC and van Kuilenburg AB: Purine and pyrimidine metabolism. In Emery and Rimoin's Principles and Practice of Medical Genetics. Academic Press. 1–38. 2013. View Article : Google Scholar | |
Harris AL and Generali D: Inhibitors of tumor angiogenesis. Cancer Drug Design and Discovery. 275–306. 2008. | |
Temmink OH, de Bruin M, Turksma AW, Cricca S, Laan AC and Peters GJ: Activity and substrate specificity of pyrimidine phosphorylases and their role in fluoropyrimidine sensitivity in colon cancer cell lines. Int J Biochem Cell Biol. 39:565–575. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sivridis E, Giatromanolaki A, Anastasiadis P, Georgiou L, Gatter KC, Harris AL, Bicknell R and Koukourakis MI; Tumour Angiogenesis Research Group, : Angiogenic co-operation of VEGF and stromal cell TP in endometrial carcinomas. J Pathol. 196:416–422. 2002. View Article : Google Scholar : PubMed/NCBI | |
Xiao X, Wang T, Li L, Zhu Z, Zhang W, Cui G and Li W: Co-delivery of cisplatin(IV) and capecitabine as an effective and non-toxic cancer treatment. Front Pharmacol. 10:1102019. View Article : Google Scholar : PubMed/NCBI | |
Huo X, Li J, Zhao F, Ren D, Ahmad R, Yuan X, Du F and Zhao J: The role of capecitabine-based neoadjuvant and adjuvant chemotherapy in early-stage triple-negative breast cancer: A systematic review and meta-analysis. BMC Cancer. 21:782021. View Article : Google Scholar : PubMed/NCBI | |
Voegeli M and Wicki A: Neoadjuvant, adjuvant and palliative systemic therapy of colorectal cancer. Ther Umsch. 75:622–626. 2018.(In German). View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Wang Y, Lin Y, Cai W, Li X and He X: Preliminary efficacy and safety of camrelizumab in combination with XELOX plus bevacizumab or regorafenib in patients with metastatic colorectal cancer: A retrospective study. Front Oncol. 11:7744452021. View Article : Google Scholar : PubMed/NCBI | |
Sabeti Aghabozorgi A, Moradi Sarabi M, Jafarzadeh-Esfehani R, Koochakkhani S, Hassanzadeh M, Kavousipour S and Eftekhar E: Molecular determinants of response to 5-fluorouracil-based chemotherapy in colorectal cancer: The undisputable role of micro-ribonucleic acids. World J Gastrointest Oncol. 12:942–956. 2020. View Article : Google Scholar : PubMed/NCBI | |
Oneda E and Zaniboni A: Adjuvant treatment of colon cancer with microsatellite instability-the state of the art. Crit Rev Oncol Hematol. 169:1035372022. View Article : Google Scholar : PubMed/NCBI | |
Cura Y, Pérez-Ramírez C, Sánchez-Martín A, Membrive-Jimenez C, Valverde-Merino MI, González-Flores E and Morales AJ: Influence of single-nucleotide polymorphisms on clinical outcomes of capecitabine-based chemotherapy in colorectal cancer patients: A systematic review. Cancers (Basel). 15:18212023. View Article : Google Scholar : PubMed/NCBI | |
Michel M, Kaps L, Maderer A, Galle PR and Moehler M: The role of p53 dysfunction in colorectal cancer and its implication for therapy. Cancers (Basel). 13:22962021. View Article : Google Scholar : PubMed/NCBI | |
Jung G, Hernández-Illán E, Moreira L, Balaguer F and Goel A: Epigenetics of colorectal cancer: Biomarker and therapeutic potential. Nat Rev Gastroenterol Hepatol. 17:111–130. 2020. View Article : Google Scholar : PubMed/NCBI | |
Marin JJG, Macias RIR, Monte MJ, Herraez E, Peleteiro-Vigil A, Blas BS, Sanchon-Sanchez P, Temprano AG, Espinosa-Escudero RA, Lozano E, et al: Cellular mechanisms accounting for the refractoriness of colorectal carcinoma to pharmacological treatment. Cancers (Basel). 12:26052020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Geng L, Talmon G and Wang J: MicroRNA-520g confers drug resistance by regulating p21 expression in colorectal cancer. J Biol Chem. 290:6215–6225. 2015. View Article : Google Scholar : PubMed/NCBI | |
Boige V, Mollevi C, Gourgou S, Azria D, Seitz JF, Vincent M, Bigot L, Juzyna B, Miran I, Gerard JP and Laurent-Puig P: Impact of single-nucleotide polymorphisms in DNA repair pathway genes on response to chemoradiotherapy in rectal cancer patients: Results from ACCORD-12/PRODIGE-2 phase III trial. Int J Cancer. 145:3163–3172. 2019. View Article : Google Scholar : PubMed/NCBI | |
Leguisamo NM, Gloria HC, Kalil AN, Martins TV, Azambuja DB, Meira LB and Saffi J: Base excision repair imbalance in colorectal cancer has prognostic value and modulates response to chemotherapy. Oncotarget. 8:54199–54214. 2017. View Article : Google Scholar : PubMed/NCBI | |
Brown RE, Short SP and Williams CS: Colorectal cancer and metabolism. Curr Colorectal Cancer Rep. 14:226–241. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Meng F, Wang L, Mao Y, Zhou H, Hua D, Zhang H and Wang W: A polymorphism in ABCC4 is related to efficacy of 5-FU/capecitabine-based chemotherapy in colorectal cancer patients. Sci Rep. 7:70592017. View Article : Google Scholar : PubMed/NCBI | |
Cao H, Xu E, Liu H, Wan L and Lai M: Epithelial-mesenchymal transition in colorectal cancer metastasis: A system review. Pathol Res Pract. 211:557–569. 2015. View Article : Google Scholar : PubMed/NCBI |