P53‑microRNA interactions regulate the response of colorectal tumor cells to oxaliplatin under normoxic and hypoxic conditions
- Authors:
- Jiayu Zhang
- Chenguang Li
- Luanbiao Sun
- Denghua Sun
- Tiancheng Zhao
-
Affiliations: Gastrointestinal Colorectal and Anal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China, Department of Breast Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China, Department of Endoscopy Center, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China - Published online on: October 31, 2023 https://doi.org/10.3892/or.2023.8656
- Article Number: 219
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Cai J and Wang L: Looking back 2018-focused on colorectal cancer. Zhonghua Wei Chang Wai Ke Za Zhi. 22:9–16. 2019.(In Chinese). PubMed/NCBI | |
Quirke P, Durdey P, Dixon MF and Williams NS: Local recurrence of rectal adenocarcinoma due to inadequate surgical resection. Histopathological study of lateral tumour spread and surgical excision. Lancet. 2:996–999. 1986. View Article : Google Scholar : PubMed/NCBI | |
Hsu HH, Chen MC, Baskaran R, Lin YM, Day CH, Lin YJ, Tu CC, Vijaya Padma V, Kuo WW and Huang CY: Oxaliplatin resistance in colorectal cancer cells is mediated via activation of ABCG2 to alleviate ER stress induced apoptosis. J Cell Physiol. 233:5458–5467. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Zhou Q, Li M, Tong X, Sun J, Qing Y, Sun L, Yang X, Hu X, Jiang J, et al: Upregulation of CYP2S1 by oxaliplatin is associated with p53 status in colorectal cancer cell lines. Sci Rep. 6:330782016. View Article : Google Scholar : PubMed/NCBI | |
Meads MB, Gatenby RA and Dalton WS: Environment-mediated drug resistance: A major contributor to minimal residual disease. Nat Rev Cancer. 9:665–674. 2009. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Balibrea E, Martínez-Cardús A, Ginés A, Ruiz de Porras V, Moutinho C, Layos L, Manzano JL, Bugés C, Bystrup S, Esteller M and Abad A: Tumor-related molecular mechanisms of oxaliplatin resistance. Mol Cancer Ther. 14:1767–1776. 2015. View Article : Google Scholar : PubMed/NCBI | |
Plasencia C, Martinez-Balibrea E, Martinez-Cardús A, Quinn DI, Abad A and Neamati N: Expression analysis of genes involved in oxaliplatin response and development of oxaliplatin-resistant HT29 colon cancer cells. Int J Oncol. 29:225–235. 2006.PubMed/NCBI | |
Pedraz-Cuesta E, Christensen S, Jensen AA, Jensen NF, Bunch L, Romer MU, Brünner N, Stenvang J and Pedersen SF: The glutamate transport inhibitor DL-Threo-β-Benzyloxyaspartic acid (DL-TBOA) differentially affects SN38- and oxaliplatin-induced death of drug-resistant colorectal cancer cells. BMC Cancer. 15:4112015. View Article : Google Scholar : PubMed/NCBI | |
Liao X, Song G, Xu Z, Bu Y, Chang F, Jia F, Xiao X, Ren X, Zhang M and Jia Q: Oxaliplatin resistance is enhanced by saracatinib via upregulation Wnt-ABCG1 signaling in hepatocellular carcinoma. BMC Cancer. 20:312020. View Article : Google Scholar : PubMed/NCBI | |
Hubbi ME and Semenza GL: Regulation of cell proliferation by hypoxia-inducible factors. Am J Physiol Cell Physiol. 309:C775–C782. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pugh CW and Ratcliffe PJ: Regulation of angiogenesis by hypoxia: Role of the HIF system. Nat Med. 9:677–684. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gilkes DM, Semenza GL and Wirtz D: Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat Rev Cancer. 14:430–439. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tang YA, Chen YF, Bao Y, Mahara S, Yatim SMJM, Oguz G, Lee PL, Feng M, Cai Y, Tan EY, et al: Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer. Proc Natl Acad Sci USA. 115:E5990–E5999. 2018. View Article : Google Scholar : PubMed/NCBI | |
Roberts DL, Williams KJ, Cowen RL, Barathova M, Eustace AJ, Brittain-Dissont S, Tilby MJ, Pearson DG, Ottley CJ, Stratford IJ and Dive C: Contribution of HIF-1 and drug penetrance to oxaliplatin resistance in hypoxic colorectal cancer cells. Br J Cancer. 101:1290–1297. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gariboldi MB, Taiana E, Bonzi MC, Craparotta I, Giovannardi S, Mancini M and Monti E: The BH3-mimetic obatoclax reduces HIF-1α levels and HIF-1 transcriptional activity and sensitizes hypoxic colon adenocarcinoma cells to 5-fluorouracil. Cancer Lett. 364:156–164. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nijhuis A, Thompson H, Adam J, Parker A, Gammon L, Lewis A, Bundy JG, Soga T, Jalaly A, Propper D, et al: Remodelling of microRNAs in colorectal cancer by hypoxia alters metabolism profiles and 5-fluorouracil resistance. Hum Mol Genet. 26:1552–1564. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu K, Zhan Y, Yuan Z, Qiu Y, Wang H, Fan G, Wang J, Li W, Cao Y, Shen X, et al: Hypoxia induces drug resistance in colorectal cancer through the HIF-1α/miR-338-5p/IL-6 feedback loop. Mol Ther. 27:1810–1824. 2019. View Article : Google Scholar : PubMed/NCBI | |
Therachiyil L, Haroon J, Sahir F, Siveen KS, Uddin S, Kulinski M, Buddenkotte J, Steinhoff M and Krishnankutty R: Dysregulated phosphorylation of p53, autophagy and stemness attributes the mutant p53 harboring colon cancer cells impaired sensitivity to oxaliplatin. Front Oncol. 10:17442020. View Article : Google Scholar : PubMed/NCBI | |
Shang L and Wei M: Inhibition of SMYD2 sensitized cisplatin to resistant cells in NSCLC through activating p53 pathway. Front Oncol. 9:3062019. View Article : Google Scholar : PubMed/NCBI | |
Takayama T, Miyanishi K, Hayashi T, Sato Y and Niitsu Y: Colorectal cancer: Genetics of development and metastasis. J Gastroenterol. 41:185–192. 2006. View Article : Google Scholar : PubMed/NCBI | |
Huang D, Sun W, Zhou Y, Li P, Chen F, Chen H, Xia D, Xu E, Lai M, Wu Y and Zhang H: Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev. 37:173–187. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sui X, Kong N, Wang X, Fang Y, Hu X, Xu Y, Chen W, Wang K, Li D, Jin W, et al: JNK confers 5-fluorouracil resistance in p53-deficient and mutant p53-expressing colon cancer cells by inducing survival autophagy. Sci Rep. 4:46942014. View Article : Google Scholar : PubMed/NCBI | |
Ikediobi ON, Davies H, Bignell G, Edkins S, Stevens C, O'Meara S, Santarius T, Avis T, Barthorpe S, Brackenbury L, et al: Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther. 5:2606–2612. 2006. View Article : Google Scholar : PubMed/NCBI | |
Park JY, Park SJ, Shim KY, Lee KJ, Kim YB, Kim YH and Kim SK: Echinomycin and a novel analogue induce apoptosis of HT-29 cells via the activation of MAP kinases pathway. Pharmacol Res. 50:201–207. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kim JS, Lee C, Bonifant CL, Ressom H and Waldman T: Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA. Mol Cell Biol. 27:662–677. 2007. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Sun W, Yu J, Zhou Y, Gu Y, Han J, Zhou L, Jiang X and Wang C: LINC00460-miR-149-5p/miR-150-5p-mutant p53 feedback loop promotes oxaliplatin resistance in colorectal cancer. Mol Ther Nucleic Acids. 22:1004–1015. 2020. View Article : Google Scholar : PubMed/NCBI | |
Maqbool R, Lone SN and Ul Hussain M: Post-transcriptional regulation of the tumor suppressor p53 by a novel miR-27a, with implications during hypoxia and tumorigenesis. Biochem J. 473:3597–3610. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li H, Rokavec M, Jiang L, Horst D and Hermeking H: Antagonistic effects of p53 and HIF1A on microRNA-34a regulation of PPP1R11 and STAT3 and hypoxia-induced epithelial to mesenchymal transition in colorectal cancer cells. Gastroenterology. 153:505–520. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kiyonari S, Iimori M, Matsuoka K, Watanabe S, Morikawa-Ichinose T, Miura D, Niimi S, Saeki H, Tokunaga E, Oki E, et al: The 1,2-diaminocyclohexane carrier ligand in oxaliplatin induces p53-dependent transcriptional repression of factors involved in thymidylate biosynthesis. Mol Cancer Ther. 14:2332–2342. 2015. View Article : Google Scholar : PubMed/NCBI | |
Moradi Marjaneh R, Khazaei M, Ferns GA, Avan A and Aghaee-Bakhtiari SH: MicroRNAs as potential therapeutic targets to predict responses to oxaliplatin in colorectal cancer: From basic evidence to therapeutic implication. IUBMB Life. 71:1428–1441. 2019. View Article : Google Scholar : PubMed/NCBI | |
Islam SU, Ahmed MB, Sonn JK, Jin EJ and Lee YS: PRP4 induces epithelial-mesenchymal transition and drug resistance in colon cancer cells via activation of p53. Int J Mol Sci. 23:30922022. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Wei N, Ma R, Jiang S and Song D: A miR-210-3p regulon that controls the Warburg effect by modulating HIF-1α and p53 activity in triple-negative breast cancer. Cell Death Dis. 11:7312020. View Article : Google Scholar : PubMed/NCBI | |
Nersisyan S, Galatenko A, Chekova M and Tonevitsky A: Hypoxia-induced miR-148a downregulation contributes to poor survival in colorectal cancer. Front Genet. 12:6624682021. View Article : Google Scholar : PubMed/NCBI | |
Ullmann P, Qureshi-Baig K, Rodriguez F, Ginolhac A, Nonnenmacher Y, Ternes D, Weiler J, Gäbler K, Bahlawane C, Hiller K, et al: Hypoxia-responsive miR-210 promotes self-renewal capacity of colon tumor-initiating cells by repressing ISCU and by inducing lactate production. Oncotarget. 7:65454–65470. 2016. View Article : Google Scholar : PubMed/NCBI | |
Evert J, Pathak S, Sun XF and Zhang H: A study on effect of oxaliplatin in MicroRNA expression in human colon cancer. J Cancer. 9:2046–2053. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, Huso D and Lowenstein CJ: P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci USA. 107:6334–6339. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Yu M, Zhao K, He M, Ge W, Sun Y, Wang Y, Sun H and Hu Y: Upregulation of MiR-205 under hypoxia promotes epithelial-mesenchymal transition by targeting ASPP2. Cell Death Dis. 7:e25172016. View Article : Google Scholar : PubMed/NCBI | |
Jin F, Yang R, Wei Y, Wang D, Zhu Y, Wang X, Lu Y, Wang Y, Zen K and Li L: HIF-1α-induced miR-23a~27a~24 cluster promotes colorectal cancer progression via reprogramming metabolism. Cancer Lett. 440–441. 211–222. 2019. | |
Qian X, Yu J, Yin Y, He J, Wang L, Li Q, Zhang LQ, Li CY, Shi ZM, Xu Q, et al: MicroRNA-143 inhibits tumor growth and angiogenesis and sensitizes chemosensitivity to oxaliplatin in colorectal cancers. Cell Cycle. 12:1385–1394. 2013. View Article : Google Scholar : PubMed/NCBI | |
He C, Wang L, Zhang J and Xu H: Hypoxia-inducible microRNA-224 promotes the cell growth, migration and invasion by directly targeting RASSF8 in gastric cancer. Mol Cancer. 16:352017. View Article : Google Scholar : PubMed/NCBI | |
Chen HY, Lin YM, Chung HC, Lang YD, Lin CJ, Huang J, Wang WC, Lin FM, Chen Z, Huang HD, et al: miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res. 72:3631–3641. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Zhang Q, Yuan W, Li X, Chen C, Guo Y, Shao B, Dang Q, Zhou Q, Wang Q, et al: MiR-103a-3p promotes tumour glycolysis in colorectal cancer via hippo/YAP1/HIF1A axis. J Exp Clin Cancer Res. 39:2502020. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Weng X, Liu C, Li X and Chen C: Hypoxia enhances activity and malignant behaviors of colorectal cancer cells through the STAT3/MicroRNA-19a/PTEN/PI3K/AKT axis. Anal Cell Pathol (Amst). 2021:41324882021.PubMed/NCBI | |
Kim CW, Oh ET, Kim JM, Park JS, Lee DH, Lee JS, Kim KK and Park HJ: Hypoxia-induced microRNA-590-5p promotes colorectal cancer progression by modulating matrix metalloproteinase activity. Cancer Lett. 416:31–41. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu K, Chen G, Qiu Y, Yuan Z, Li H, Yuan X, Sun J, Xu J, Liang X and Yin P: miR-503-5p confers drug resistance by targeting PUMA in colorectal carcinoma. Oncotarget. 8:21719–21732. 2017. View Article : Google Scholar : PubMed/NCBI | |
Saieva L, Barreca MM, Zichittella C, Prado MG, Tripodi M, Alessandro R and Conigliaro A: Hypoxia-induced miR-675-5p supports β-catenin nuclear localization by regulating GSK3-β activity in colorectal cancer cell lines. Int J Mol Sci. 21:38322020. View Article : Google Scholar : PubMed/NCBI | |
Costa V, Lo Dico A, Rizzo A, Rajata F, Tripodi M, Alessandro R and Conigliaro A: MiR-675-5p supports hypoxia induced epithelial to mesenchymal transition in colon cancer cells. Oncotarget. 8:24292–24302. 2017. View Article : Google Scholar : PubMed/NCBI | |
Poel D, Boyd LNC, Beekhof R, Schelfhorst T, Pham TV, Piersma SR, Knol JC, Jimenez CR, Verheul HMW and Buffart TE: Proteomic analysis of miR-195 and miR-497 replacement reveals potential candidates that increase sensitivity to oxaliplatin in MSI/P53wt colorectal cancer cells. Cells. 8:11112019. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Zhao J, Wu CW, Zhang L, Liu X, Kang W, Leung WW, Zhang N, Chan FK, Sung JJ, et al: Tumor suppressor functions of miR-133a in colorectal cancer. Mol Cancer Res. 11:1051–1060. 2013. View Article : Google Scholar : PubMed/NCBI | |
Moriondo G, Scioscia G, Soccio P, Tondo P, De Pace CC, Sabato R, Foschino Barbaro MP and Lacedonia D: Effect of hypoxia-induced micro-RNAs expression on oncogenesis. Int J Mol Sci. 23:62942022. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Lan Z, He J, Lai Q, Yao X, Li Q, Liu Y, Lai H, Gu C, Yan Q, et al: LncRNA SNHG6 promotes chemoresistance through ULK1-induced autophagy by sponging miR-26a-5p in colorectal cancer cells. Cancer Cell Int. 19:2342019. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Ke F, Chen T, Zhou Q, Weng L, Tan J, Shen W, Li L, Zhou J, Xu C, et al: MicroRNAs that regulate PTEN as potential biomarkers in colorectal cancer: A systematic review. J Cancer Res Clin Oncol. 146:809–820. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Chen X, Lin K, Zeng K, Liu X, Xu X, Pan B, Xu T, Sun L, He B, et al: lncRNA SNHG6 regulates EZH2 expression by sponging miR-26a/b and miR-214 in colorectal cancer. J Hematol Oncol. 12:32019. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Li L, Wu M, Liu M and Xie X, Guo J, Tang H and Xie X: MiR-26a inhibits proliferation and migration of breast cancer through repression of MCL-1. PLoS One. 8:e651382013. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Zhang P, Zhao Y, Yang J, Jiang G and Fan J: Decreased MicroRNA-26a expression causes cisplatin resistance in human non-small cell lung cancer. Cancer Biol Ther. 17:515–525. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S, et al: IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 124:1853–1867. 2014. View Article : Google Scholar : PubMed/NCBI | |
Werner TV, Hart M, Nickels R, Kim YJ, Menger MD, Bohle RM, Keller A, Ludwig N and Meese E: MiR-34a-3p alters proliferation and apoptosis of meningioma cells in vitro and is directly targeting SMAD4, FRAT1 and BCL2. Aging (Albany NY). 9:932–954. 2017. View Article : Google Scholar : PubMed/NCBI | |
Velaei K, Samadi N, Barazvan B and Soleimani Rad J: Tumor microenvironment-mediated chemoresistance in breast cancer. Breast. 30:92–100. 2016. View Article : Google Scholar : PubMed/NCBI | |
Scholten DJ II, Timmer CM, Peacock JD, Pelle DW, Williams BO and Steensma MR: Down regulation of Wnt signaling mitigates hypoxia-induced chemoresistance in human osteosarcoma cells. PLoS One. 9:e1114312014. View Article : Google Scholar : PubMed/NCBI | |
Muz B, Kusdono HD, Azab F, de la Puente P, Federico C, Fiala M, Vij R, Salama NN and Azab AK: Tariquidar sensitizes multiple myeloma cells to proteasome inhibitors via reduction of hypoxia-induced P-gp-mediated drug resistance. Leuk Lymphoma. 58:2916–2925. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mirnezami AH, Pickard K, Zhang L, Primrose JN and Packham G: MicroRNAs: Key players in carcinogenesis and novel therapeutic targets. Eur J Surg Oncol. 35:339–347. 2009. View Article : Google Scholar : PubMed/NCBI | |
Munk R, Panda AC, Grammatikakis I, Gorospe M and Abdelmohsen K: Senescence-associated MicroRNAs. Int Rev Cell Mol Biol. 334:177–205. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vienberg S, Geiger J, Madsen S and Dalgaard LT: MicroRNAs in metabolism. Acta Physiol (Oxf). 219:346–361. 2017. View Article : Google Scholar : PubMed/NCBI | |
Si W, Shen J, Zheng H and Fan W: The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics. 11:252019. View Article : Google Scholar : PubMed/NCBI | |
Tiwari A, Mukherjee B and Dixit M: MicroRNA key to angiogenesis regulation: MiRNA biology and therapy. Curr Cancer Drug Targets. 18:266–277. 2018. View Article : Google Scholar : PubMed/NCBI | |
Oikawa T, Otsuka Y and Sabe H: p53-dependent and -independent epithelial integrity: beyond miRNAs and metabolic fluctuations. Cancers (Basel). 10:1622018. View Article : Google Scholar : PubMed/NCBI | |
Blume CJ, Hotz-Wagenblatt A, Hüllein J, Sellner L, Jethwa A, Stolz T, Slabicki M, Lee K, Sharathchandra A, Benner A, et al: p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia. 29:2015–2023. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ueno T, Toyooka S, Fukazawa T, Kubo T, Soh J, Asano H, Muraoka T, Tanaka N, Maki Y, Shien K, et al: Preclinical evaluation of microRNA-34b/c delivery for malignant pleural mesothelioma. Acta Med Okayama. 68:23–26. 2014.PubMed/NCBI | |
Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V, Liu J, Tabatabai ZL, Kakar S, Deng G, et al: MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis. 32:772–778. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Kesselman D, Kizub D, Guerrero-Preston R and Ratovitski EA: Phospho-ΔNp63α/microRNA feedback regulation in squamous carcinoma cells upon cisplatin exposure. Cell Cycle. 12:684–697. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bisio A, De Sanctis V, Del Vescovo V, Denti MA, Jegga AG, Inga A and Ciribilli Y: Identification of new p53 target microRNAs by bioinformatics and functional analysis. BMC Cancer. 13:5522013. View Article : Google Scholar : PubMed/NCBI | |
Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S and Miyazono K: Modulation of microRNA processing by p53. Nature. 460:529–533. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu CG, Croce CM, Negrini M, et al: A microRNA signature of hypoxia. Mol Cell Biol. 27:1859–1867. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liao JM, Cao B, Zhou X and Lu H: New insights into p53 functions through its target microRNAs. J Mol Cell Biol. 6:206–213. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rokavec M, Li H, Jiang L and Hermeking H: The p53/microRNA connection in gastrointestinal cancer. Clin Exp Gastroenterol. 7:395–413. 2014.PubMed/NCBI | |
Du R, Sun W, Xia L, Zhao A, Yu Y, Zhao L, Wang H, Huang C and Sun S: Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells. PLoS One. 7:e307712012. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Wei E, Shi H, Huang J, Gao L, Zhang T, Wei Y and Ge B: MiR-26a inhibits cell proliferation and induces apoptosis in human bladder cancer through regulating EZH2 bioactivity. Int J Clin Exp Pathol. 10:11234–11241. 2017.PubMed/NCBI | |
Li P, Zhang X, Wang H, Wang L, Liu T, Du L, Yang Y and Wang C: MALAT1 is associated with poor response to oxaliplatin-based chemotherapy in colorectal cancer patients and promotes chemoresistance through EZH2. Mol Cancer Ther. 16:739–751. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Wang FJ, Zhang HG, Xu XZ, Jia RC, Yao L and Qiao PF: miR-34a mediates oxaliplatin resistance of colorectal cancer cells by inhibiting macroautophagy via transforming growth factor-β/Smad4 pathway. World J Gastroenterol. 23:1816–1827. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Kaller M, Rokavec M, Kirchner T, Horst D and Hermeking H: Characterization of a p53/miR-34a/CSF1R/STAT3 feedback loop in colorectal cancer. Cell Mol Gastroenterol Hepatol. 10:391–418. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu T, Wang Z, Liu Y, Mei Z, Wang G, Liang Z, Cui A, Hu X, Cui L, Yang Y and Liu CY: Interleukin 22 protects colorectal cancer cells from chemotherapy by activating the STAT3 pathway and inducing autocrine expression of interleukin 8. Clin Immunol. 154:116–126. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jahid S, Sun J, Edwards RA, Dizon D, Panarelli NC, Milsom JW, Sikandar SS, Gümüs ZH and Lipkin SM: miR-23a promotes the transition from indolent to invasive colorectal cancer. Cancer Discov. 2:540–553. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang S, He X, Ding J, Liang L, Zhao Y, Zhang Z, Yao X, Pan Z, Zhang P, Li J, et al: Upregulation of miR-23a approximately 27a approximately 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells. Int J Cancer. 123:972–978. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li X, Li X, Liao D, Wang X, Wu Z, Nie J, Bai M, Fu X, Mei Q and Han W: Elevated microRNA-23a expression enhances the chemoresistance of colorectal cancer cells with microsatellite instability to 5-fluorouracil by directly targeting ABCF1. Curr Protein Pept Sci. 16:301–309. 2015. View Article : Google Scholar : PubMed/NCBI | |
Peng F, Zhang H, Du Y and Tan P: miR-23a promotes cisplatin chemoresistance and protects against cisplatin-induced apoptosis in tongue squamous cell carcinoma cells through twist. Oncol Rep. 33:942–950. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Li Q, Wang Z and Cao X: Sinomenine inhibits proliferation, migration, invasion and promotes apoptosis of prostate cancer cells by regulation of miR-23a. Biomed Pharmacother. 112:1085922019. View Article : Google Scholar : PubMed/NCBI | |
Zhang YS, Wang MY, Zhang WL and Tang CH: Proliferation, migration and apoptosis of acute myeloid leukemia cells regulated by mir-23a-3p targeting SMC1A and the mechanism. Zhonghua Zhong Liu Za Zhi. 41:753–759. 2019.(In Chinese). PubMed/NCBI |