1
|
Adamska A, Domenichini A and Falasca M:
Pancreatic ductal adenocarcinoma: Current and evolving therapies.
Int J Mol Sci. 18:13382017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Von Hoff DD, Ervin T, Arena FP, Chiorean
EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, et
al: Increased survival in pancreatic cancer with nab-paclitaxel
plus gemcitabine. N Engl J Med. 369:1691–1703. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Conroy T, Desseigne F, Ychou M, Bouché O,
Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de
la Fouchardière C, et al: FOLFIRINOX versus gemcitabine for
metastatic pancreatic cancer. N Engl J Med. 364:1817–1825. 2011.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Adamska A, Ferro R, Lattanzio R, Capone E,
Domenichini A, Damiani V, Chiorino G, Akkaya BG, Linton KJ, De
Laurenzi V, et al: ABCC3 is a novel target for the treatment of
pancreatic cancer. Adv Biol Regul. 73:1006342019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gnanamony M and Gondi CS: Chemoresistance
in pancreatic cancer: Emerging concepts. Oncol Lett. 13:2507–2513.
2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Adamska A and Falasca M: ATP-binding
cassette transporters in progression and clinical outcome of
pancreatic cancer: What is the way forward? World J Gastroenterol.
24:3222–3238. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ozben T: Mechanisms and strategies to
overcome multiple drug resistance in cancer. FEBS Lett.
580:2903–2909. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
O'Reilly EM: Pancreatic adenocarcinoma:
New strategies for success. Gastrointest Cancer Res. 3:S11–S15.
2009.PubMed/NCBI
|
9
|
Vincent A, Herman J, Schulick R, Hruban RH
and Goggins M: Pancreatic cancer. Lancet. 378:607–620. 2011.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Szakacs G, Paterson JK, Ludwig JA,
Booth-Genthe C and Gottesman MM: Targeting multidrug resistance in
cancer. Nat Rev Drug Discov. 5:219–234. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Borst P, de Wolf C and van de Wetering K:
Multidrug resistance-associated proteins 3, 4, and 5. Pflugers
Arch. 453:661–673. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Robey RW, Pluchino KM, Hall MD, Fojo AT,
Bates SE and Gottesman MM: Revisiting the role of ABC transporters
in multidrug-resistant cancer. Nat Rev Cancer. 18:452–464. 2018.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Dvorak P, Pesta M and Soucek P: ABC gene
expression profiles have clinical importance and possibly form a
new hallmark of cancer. Tumour Biol. 39:10104283176998002017.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Sodani K, Patel A, Kathawala RJ and Chen
ZS: Multidrug resistance associated proteins in multidrug
resistance. Chin J Cancer. 31:58–72. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tiwari AK, Sodani K, Dai CL, Ashby CR Jr
and Chen ZS: Revisiting the ABCs of multidrug resistance in cancer
chemotherapy. Curr Pharm Biotechnol. 12:570–594. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bugde P, Biswas R, Merien F, Lu J, Liu DX,
Chen M, Zhou S and Li Y: The therapeutic potential of targeting ABC
transporters to combat multi-drug resistance. Expert Opin Ther
Targets. 21:511–530. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Fukuda Y and Schuetz JD: ABC transporters
and their role in nucleoside and nucleotide drug resistance.
Biochem Pharmacol. 83:1073–1083. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Vasiliou V, Vasiliou K and Nebert DW:
Human ATP-binding cassette (ABC) transporter family. Hum Genomics.
3:281–290. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Choi YH and Yu AM: ABC transporters in
multidrug resistance and pharmacokinetics, and strategies for drug
development. Curr Pharm Des. 20:793–807. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Reid G, Wielinga P, Zelcer N, De Haas M,
Van Deemter L, Wijnholds J, Balzarini J and Borst P:
Characterization of the transport of nucleoside analog drugs by the
human multidrug resistance proteins MRP4 and MRP5. Mol Pharmacol.
63:1094–1103. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Konig J, Hartel M, Nies AT, Martignoni ME,
Guo J, Büchler MW, Friess H and Keppler D: Expression and
localization of human multidrug resistance protein (ABCC) family
members in pancreatic carcinoma. Int J Cancer. 115:359–367. 2005.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Dazert P, Meissner K, Vogelgesang S,
Heydrich B, Eckel L, Böhm M, Warzok R, Kerb R, Brinkmann U,
Schaeffeler E, et al: Expression and localization of the multidrug
resistance protein 5 (MRP5/ABCC5), a cellular export pump for
cyclic nucleotides, in human heart. Am J Pathol. 163:1567–1577.
2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Mohelnikova-Duchonova B, Brynychova V,
Oliverius M, Honsova E, Kala Z, Muckova K and Soucek P: Differences
in transcript levels of ABC transporters between pancreatic
adenocarcinoma and nonneoplastic tissues. Pancreas. 42:707–716.
2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen Z, Shi T, Zhang L, Zhu P, Deng M,
Huang C, Hu T, Jiang L and Li J: Mammalian drug efflux transporters
of the ATP binding cassette (ABC) family in multidrug resistance: A
review of the past decade. Cancer Lett. 370:153–164. 2016.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Slot AJ, Molinski SV and Cole SP:
Mammalian multidrug-resistance proteins (MRPs). Essays Biochem.
50:179–207. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zeng S, Pottler M, Lan B, Grützmann R,
Pilarsky C and Yang H: Chemoresistance in pancreatic cancer. Int J
Mol Sci. 20:45042019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Tanaka M, Okazaki T, Suzuki H, Abbruzzese
JL and Li D: Association of multi-drug resistance gene
polymorphisms with pancreatic cancer outcome. Cancer. 117:744–751.
2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hagmann W, Faissner R, Schnolzer M, Löhr M
and Jesnowski R: Membrane drug transporters and chemoresistance in
human pancreatic carcinoma. Cancers (Basel). 3:106–125. 2010.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Oguri T, Achiwa H, Sato S, Bessho Y,
Takano Y, Miyazaki M, Muramatsu H, Maeda H, Niimi T and Ueda R: The
determinants of sensitivity and acquired resistance to gemcitabine
differ in non-small cell lung cancer: A role of ABCC5 in
gemcitabine sensitivity. Mol Cancer Ther. 5:1800–1806. 2006.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Fletcher JI, Haber M, Henderson MJ and
Norris MD: ABC transporters in cancer: More than just drug efflux
pumps. Nat Rev Cancer. 10:147–156. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Domenichini A, Adamska A and Falasca M:
ABC transporters as cancer drivers: Potential functions in cancer
development. Biochim Biophys Acta Gen Subj. 1863:52–60. 2019.
View Article : Google Scholar : PubMed/NCBI
|
32
|
He J, Fortunati E, Liu DX and Li Y:
Pleiotropic roles of ABC transporters in breast cancer. Int J Mol
Sci. 22:31992021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Calcagno AM and Ambudkar SV: Analysis of
expression of drug resistance-linked ABC transporters in cancer
cells by quantitative RT-PCR. Methods Mol Biol. 637:121–132. 2010.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Li C, Chen D, Luo M, Ge M and Zhu J:
Knockdown of ribosomal protein L39 by RNA interference inhibits the
growth of human pancreatic cancer cells in vitro and in vivo.
Biotechnol J. 9:652–663. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Liang CC, Park AY and Guan JL: In vitro
scratch assay: A convenient and inexpensive method for analysis of
cell migration in vitro. Nat Protoc. 2:329–333. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Jumper J, Evans R, Pritzel A, Green T,
Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A,
Potapenko A, et al: Highly accurate protein structure prediction
with AlphaFold. Nature. 596:583–589. 2021. View Article : Google Scholar : PubMed/NCBI
|
38
|
Varadi M, Anyango S, Deshpande M, Nair S,
Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, et al:
AlphaFold protein structure database: Massively expanding the
structural coverage of protein-sequence space with high-accuracy
models. Nucleic Acids Res. 50:D439–D444. 2022. View Article : Google Scholar : PubMed/NCBI
|
39
|
O'Boyle NM, Banck M, James CA, Morley C,
Vandermeersch T and Hutchison GR: Open babel: An open chemical
toolbox. J Cheminform. 3:332011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Morris GM, Huey R, Lindstrom W, Sanner MF,
Belew RK, Goodsell DS and Olson AJ: AutoDock4 and AutoDockTools4:
Automated docking with selective receptor flexibility. J Comput
Chem. 30:2785–2791. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Adasme MF, Linnemann KL, Bolz SN, Kaiser
F, Salentin S, Haupt VJ and Schroeder M: PLIP 2021: Expanding the
scope of the protein-ligand interaction profiler to DNA and RNA.
Nucleic Acids Res. 49:W530–W534. 2021. View Article : Google Scholar : PubMed/NCBI
|
42
|
Schoning-Stierand K, Diedrich K,
Fahrrolfes R, Flachsenberg F, Meyder A, Nittinger E, Steinegger R
and Rarey M: ProteinsPlus: Interactive analysis of protein-ligand
binding interfaces. Nucleic Acids Res. 48:W48–W53. 2020. View Article : Google Scholar : PubMed/NCBI
|
43
|
Laskowski RA and Swindells MB: LigPlot+:
Multiple ligand-protein interaction diagrams for drug discovery. J
Chem Inf Model. 51:2778–2786. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kohan HG and Boroujerdi M: Time and
concentration dependency of P-gp, MRP1 and MRP5 induction in
response to gemcitabine uptake in Capan-2 pancreatic cancer cells.
Xenobiotica. 45:642–652. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Amponsah PS, Fan P, Bauer N, Zhao Z,
Gladkich J, Fellenberg J and Herr I: microRNA-210 overexpression
inhibits tumor growth and potentially reverses gemcitabine
resistance in pancreatic cancer. Cancer Lett. 388:107–117. 2017.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Kriebel PW, Majumdar R, Jenkins LM, Senoo
H, Wang W, Ammu S, Chen S, Narayan K, Iijima M and Parent CA:
Extracellular vesicles direct migration by synthesizing and
releasing chemotactic signals. J Cell Biol. 217:2891–2910. 2018.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Biswas R, Bugde P, He J, Merien F, Lu J,
Liu DX, Myint K, Liu J, McKeage M and Li Y: Transport-mediated
oxaliplatin resistance associated with endogenous overexpression of
MRP2 in Caco-2 and PANC-1 cells. Cancers (Basel). 11:13302019.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Nambaru PK, Hubner T, Kock K, Mews S,
Grube M, Payen L, Guitton J, Sendler M, Jedlitschky G, Rimmbach C,
et al: Drug efflux transporter multidrug resistance-associated
protein 5 affects sensitivity of pancreatic cancer cell lines to
the nucleoside anticancer drug 5-fluorouracil. Drug Metab Dispos.
39:132–139. 2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Yoshida K, Toden S, Ravindranathan P, Han
H and Goel A: Curcumin sensitizes pancreatic cancer cells to
gemcitabine by attenuating PRC2 subunit EZH2, and the lncRNA PVT1
expression. Carcinogenesis. 38:1036–1046. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Adema AD, Floor K, Smid K, Honeywell RJ,
Scheffer GL, Jansen G and Peters GJ: Overexpression of MRP4 (ABCC4)
and MRP5 (ABCC5) confer resistance to the nucleoside analogs
cytarabine and troxacitabine, but not gemcitabine. Springerplus.
3:7322014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Bergman AM, Pinedo HM, Talianidis I,
Veerman G, Loves WJ, van der Wilt CL and Peters GJ: Increased
sensitivity to gemcitabine of P-glycoprotein and multidrug
resistance-associated protein-overexpressing human cancer cell
lines. Br J Cancer. 88:1963–1970. 2003. View Article : Google Scholar : PubMed/NCBI
|
52
|
Polgar O and Bates SE: ABC transporters in
the balance: Is there a role in multidrug resistance? Biochem Soc
Trans. 33:241–245. 2005. View Article : Google Scholar : PubMed/NCBI
|
53
|
El-Daly SM, Abo-Elfadl MT, Hussein J and
Abo-Zeid MAM: Enhancement of the antitumor effect of 5-fluorouracil
with modulation in drug transporters expression using PI3K
inhibitors in colorectal cancer cells. Life Sci. 315:1213202023.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Ji G, He S, Huang C, Gong Y, Li X and Zhou
L: Upregulation of ATP binding cassette subfamily c member 5
facilitates prostate cancer progression and enzalutamide resistance
via the CDK1-mediated AR Ser81 phosphorylation pathway. Int J Biol
Sci. 17:1613–1628. 2021. View Article : Google Scholar : PubMed/NCBI
|
55
|
Mourskaia AA, Amir E, Dong Z, Tiedemann K,
Cory S, Omeroglu A, Bertos N, Ouellet V, Clemons M, Scheffer GL, et
al: ABCC5 supports osteoclast formation and promotes breast cancer
metastasis to bone. Breast Cancer Res. 14:R1492012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Schmidt R, Steinhart Z, Layeghi M, Freimer
JW, Bueno R, Nguyen VQ, Blaeschke F, Ye CJ and Marson A: CRISPR
activation and interference screens decode stimulation responses in
primary human T cells. Science. 375:eabj40082022. View Article : Google Scholar : PubMed/NCBI
|
57
|
Morelli E, Gulla A, Amodio N, Taiana E,
Neri A, Fulciniti M and Munshi NC: CRISPR interference (CRISPRi)
and CRISPR activation (CRISPRa) to explore the Oncogenic lncRNA
network. Methods Mol Biol. 2348:189–204. 2021. View Article : Google Scholar : PubMed/NCBI
|
58
|
Borst P: Looking back at multidrug
resistance (MDR) research and ten mistakes to be avoided when
writing about ABC transporters in MDR. FEBS Lett. 594:4001–4011.
2020. View Article : Google Scholar : PubMed/NCBI
|
59
|
Qi R, Bai Y, Li K, Liu N, Xu Y, Dal E,
Wang Y, Lin R, Wang H, Liu Z, et al: Cancer-associated fibroblasts
suppress ferroptosis and induce gemcitabine resistance in
pancreatic cancer cells by secreting exosome-derived
ACSL4-targeting miRNAs. Drug Resist Updat. 68:1009602023.
View Article : Google Scholar : PubMed/NCBI
|