1
|
Fearon K, Strasser F, Anker SD, Bosaeus I,
Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N,
Mantovani G, et al: Definition and classification of cancer
cachexia: An international consensus. Lancet Oncol. 12:489–495.
2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Evans WJ, Morley JE, Argilés J, Bales C,
Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H,
Mantovani G, et al: Cachexia: A new definition. Clin Nutr.
27:793–799. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Armstrong VS, Fitzgerald LW and Bathe OF:
Cancer-associated muscle wasting-candidate mechanisms and molecular
pathways. Int J Mol Sci. 21:92682020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Brown JL, Lee DE, Rosa-Caldwell ME, Brown
LA, Perry RA, Haynie WS, Huseman K, Sataranatarajan K, Van Remmen
H, Washington TA, et al: Protein imbalance in the development of
skeletal muscle wasting in tumour-bearing mice. J Cachexia
Sarcopenia Muscle. 9:987–1002. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Burckart K, Beca S, Urban RJ and
Sheffield-Moore M: Pathogenesis of muscle wasting in cancer
cachexia: Targeted anabolic and anti-catabolic therapies. Curr Opin
Clin Nutr Metab Care. 13:4102010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yuan L, Han J, Meng Q, Xi Q, Zhuang Q,
Jiang Y, Han Y, Zhang B, Fang J and Wu G: Muscle-specific E3
ubiquitin ligases are involved in muscle atrophy of cancer
cachexia: An in vitro and in vivo study. Oncol Rep.
33:2261–2268. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Adams V, Gußen V, Zozulya S, Cruz A,
Moriscot A, Linke A and Labeit S: Small-molecule chemical knockdown
of MuRF1 in melanoma bearing mice attenuates tumor cachexia
associated myopathy. Cells. 9:22722020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cole CL, Kleckner IR, Jatoi A, Schwarz EM
and Dunne RF: The role of systemic inflammation in
cancer-associated muscle wasting and rationale for exercise as a
therapeutic intervention. JCSM Clin Rep. 3:e000652018.PubMed/NCBI
|
9
|
Webster JM, Kempen LJ, Hardy RS and Langen
RC: Inflammation and skeletal muscle wasting during cachexia. Front
physiol. 11:5976752020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rohm M, Zeigerer A, Machado J and Herzig
S: Energy metabolism in cachexia. EMBO Rep. 20:e472582019.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Bonetto A, Aydogdu T, Kunzevitzky N,
Guttridge DC, Khuri S, Koniaris LG and Zimmers TA: STAT3 activation
in skeletal muscle links muscle wasting and the acute phase
response in cancer cachexia. PLoS One. 6:e225382011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Gauldie J, Richards C and Baumann H: IL6
and the acute phase reaction. Res Immunol. 143:755–758. 1992.
View Article : Google Scholar : PubMed/NCBI
|
13
|
He WA, Berardi E, Cardillo VM, Acharyya S,
Aulino P, Thomas-Ahner J, Wang J, Bloomston M, Muscarella P, Nau P,
et al: NF-κB-mediated Pax7 dysregulation in the muscle
microenvironment promotes cancer cachexia. J Clin Investig.
123:4821–4835. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zammit PS, Golding JP, Nagata Y, Hudon V,
Partridge TA and Beauchamp JR: Muscle satellite cells adopt
divergent fates: A mechanism for self-renewal? J Cell Biol.
166:347–357. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Megeney LA, Kablar B, Garrett K, Anderson
JE and Rudnicki MA: MyoD is required for myogenic stem cell
function in adult skeletal muscle. Genes Dev. 10:1173–1183. 1996.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Schiaffino S and Mammucari C: Regulation
of skeletal muscle growth by the IGF1-Akt/PKB pathway: Insights
from genetic models. Skelet Muscle. 1:42011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yang W, Huang J, Wu H, Wang Y, Du Z, Ling
Y, Wang W, Wu Q and Gao W: Molecular mechanisms of cancer
cachexia-induced muscle atrophy. Mol Med Rep. 22:4967–4980. 2020.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Quan-Jun Y, Yan H, Yong-Long H, Li-Li W,
Jie L, Jin-Lu H, Jin L, Peng-Guo C, Run G and Cheng G: Selumetinib
attenuates skeletal muscle wasting in murine cachexia model through
ERK inhibition and AKT activation. Mol Cancer Ther. 16:334–343.
2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Toti E, Chen CO, Palmery M, Villaño
Valencia D and Peluso I: Non-provitamin A and provitamin A
carotenoids as immunomodulators: recommended dietary allowance
therapeutic index, or personalized nutrition? Oxid Med Cell Longev.
2018.46378612018.PubMed/NCBI
|
20
|
Huang J, Weinstein SJ, Yu K, Männistö S
and Albanes D: Serum beta carotene and overall and cause-specific
mortality: A prospective cohort study. Circul Res. 123:1339–1349.
2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ardite E, Barbera JA, Roca J and
Fernández-Checa JC: Glutathione depletion impairs myogenic
differentiation of murine skeletal muscle C2C12 cells through
sustained NF-κB activation. Am. J Pathol. 165:719–728.
2004.PubMed/NCBI
|
22
|
Powers SK, Smuder A and Judge A: Oxidative
stress and disuse muscle atrophy: Cause or consequence? Curr Opin
Clin Nutr Metab Care. 15:2402012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen QH, Wu BK, Pan D, Sang LX and Chang
B: Beta-carotene and its protective effect on gastric cancer. World
J Clin Cases. 9:65912021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ogawa M, Kariya Y, Kitakaze T, Yamaji R,
Harada N, Sakamoto T, Hosotani K, Nakano Y and Inui H: The
preventive effect of β-carotene on denervation-induced soleus
muscle atrophy in mice. Br J Nutr. 109:1349–1358. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kawamura A, Aoi W, Abe R, Kobayashi Y,
Wada S, Kuwahata M and Higashi A: Combined intake of astaxanthin,
β-carotene, and resveratrol elevates protein synthesis during
muscle hypertrophy in mice. Nutrition. 69:1105612020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lauretani F, Semba RD, Bandinelli S,
Dayhoff-Brannigan M, Giacomini V, Corsi AM, Guralnik JM and
Ferrucci L: Low plasma carotenoids and skeletal muscle strength
decline over 6 years. J Gerontol A Biol Sci Med Sci J. 63:376–383.
2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Alipanah N, Varadhan R, Sun K, Ferrucci L,
Fried L and Semba RD: Low serum carotenoids are associated with a
decline in walking speed in older women. J Nutr Health Aging.
13:170–175. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kitakaze T, Harada N, Imagita H and Yamaji
R: β-Carotene increases muscle mass and hypertrophy in the soleus
muscle in mice. J Nutr Sci Vitaminol. 61:481–487. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Praud C, Al Ahmadieh S, Voldoire E, Le
Vern Y, Godet E, Couroussé N, Graulet B, Le Bihan Duval E, Berri C
and Duclos MJ: Beta-carotene preferentially regulates chicken
myoblast proliferation withdrawal and differentiation commitment
via BCO1 activity and retinoic acid production. Exp Cell Res.
358:140–146. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Robboy MS, Sato AS and Schwabe AD: The
hypercarotenemia in anorexia nervosa: A comparison of vitamin A and
carotene levels in various forms of menstrual dysfunction and
cachexia. Am J Clin Nutr. 27:362–367. 1974. View Article : Google Scholar : PubMed/NCBI
|
31
|
Carlsson G, Gullberg B and Hafström L:
Estimation of liver tumor volume using different formulas-an
experimental study in rats. J Cancer Res Clin Oncol. 105:20–23.
1983. View Article : Google Scholar : PubMed/NCBI
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Geppert J, Walth AA, Terrón Expósito R,
Kaltenecker D, Morigny P, Machado J, Becker M, Simoes E, Lima JDCC,
Daniel C, et al: Aging aggravates cachexia in tumor-bearing mice.
Cancers. 14:902021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hain BA, Xu H, VanCleave AM, Gordon BS,
Kimball SR and Waning DL: REDD1 deletion attenuates cancer cachexia
in mice. J Appl Physiol. 131:1718–1730. 2021. View Article : Google Scholar : PubMed/NCBI
|
35
|
Gao S and Carson JA: Lewis lung carcinoma
regulation of mechanical stretch-induced protein synthesis in
cultured myotubes. Am J Physiol Cell Physiol. 310:C66–C79. 2016.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Sun R, Zhang S, Lu X, Hu W, Lou N, Zhao Y,
Zhou J, Zhang X and Yang H: Comparative molecular analysis of early
and late cancer cachexia-induced muscle wasting in mouse models.
Oncol Rep. 36:3291–3302. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chiappalupi S, Sorci G, Vukasinovic A,
Salvadori L, Sagheddu R, Coletti D, Renga G, Romani L, Donato R and
Riuzzi F: Targeting RAGE prevents muscle wasting and prolongs
survival in cancer cachexia. J Cachexia Sarcopenia Muscle.
11:929–946. 2020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang G, Jin B and Li YP: C/EBPβ mediates
tumour-induced ubiquitin ligase atrogin1/MAFbx upregulation and
muscle wasting. EMBO J. 30:4323–4335. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang J, Zheng J, Chen H, Li X, Ye C,
Zhang F, Zhang Z, Yao Q and Guo Y: Curcumin targeting
NF-κB/ubiquitin-proteasome-system axis ameliorates muscle atrophy
in triple-negative breast cancer cachexia mice. Mediators Inflamm.
2022:25671502022.PubMed/NCBI
|
40
|
Wiberg R, Jonsson S, Novikova LN and
Kingham PJ: Investigation of the expression of myogenic
transcription factors, microRNAs and muscle-specific E3 ubiquitin
ligases in the medial gastrocnemius and soleus muscles following
peripheral nerve injury. PLoS One. 10:e01426992015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ro A, Kageyama N and Mukai T:
Pathophysiology of venous thromboembolism with respect to the
anatomical features of the deep veins of lower limbs: A review. Ann
Vasc Dis. 10:99–106. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Bryan Dixon J: Gastrocnemius vs. soleus
strain: How to differentiate and deal with calf muscle injuries.
Curr Rev Musculoskelet Med. 2:74–77. 2009. View Article : Google Scholar : PubMed/NCBI
|
43
|
Baracos VE, DeVivo C, Hoyle D and Goldberg
AL: Activation of the ATP-ubiquitin-proteasome pathway in skeletal
muscle of cachectic rats bearing a hepatoma. Am J Physiol.
268:E996–E1006. 1995.PubMed/NCBI
|
44
|
Acharyya S, Butchbach ME, Sahenk Z, Wang
H, Saji M, Carathers M, Ringel MD, Skipworth RJ, Fearon KC,
Hollingsworth MA, et al: Dystrophin glycoprotein complex
dysfunction: A regulatory link between muscular dystrophy and
cancer cachexia. Cancer Cell. 8:421–432. 2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Fearon KC, Glass DJ and Guttridge DC:
Cancer cachexia: Mediators, signaling, and metabolic pathways. Cell
Metab. 16:153–166. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Chew BP: Vitamin A and β-carotene on host
defense. J Dairy Sci. 70:2732–2743. 1987. View Article : Google Scholar : PubMed/NCBI
|
47
|
Li R, Hong P and Zheng X: β-Carotene
attenuates lipopolysaccharide-induced inflammation via inhibition
of the NF-κB, JAK2/STAT3 and JNK/p38 MAPK signaling pathways in
macrophages. Anim Sci J. 90:140–148. 2019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Akkara PJ and Sabina EP: Pre-treatment
with beta carotene gives protection against nephrotoxicity induced
by bromobenzene via modulation of antioxidant system,
pro-inflammatory cytokines and pro-apoptotic factors. Appl Biochem
Biotechnol. 190:616–633. 2020. View Article : Google Scholar : PubMed/NCBI
|
49
|
Rodríguez-Rodríguez E, López-Sobaler AM,
Navia B, Andrés P, Jiménez-Ortega AI and Ortega RM: β-Carotene
concentration and its association with inflammatory biomarkers in
Spanish schoolchildren. Ann Nutr Metab. 71:80–87. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Rui L: Energy metabolism in the liver.
Compr Physiol. 4:1772014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Kumar R, Prakash SS, Priyadarshi RN and
Anand U: Sarcopenia in chronic liver disease: A metabolic
perspective. J Clin Transl Hepatol. 10:1213–1222. 2022.PubMed/NCBI
|
52
|
Stein T and Wade C: Metabolic consequences
of muscle disuse atrophy. J Nutr. 135:1824S–1828S. 2005. View Article : Google Scholar : PubMed/NCBI
|
53
|
Poulia KA, Sarantis P, Antoniadou D,
Koustas E, Papadimitropoulou A, Papavassiliou AG and Karamouzis MV:
Pancreatic cancer and cachexia-metabolic mechanisms and novel
insights. Nutrients. 12:15432020. View Article : Google Scholar : PubMed/NCBI
|
54
|
Stitt TN, Drujan D, Clarke BA, Panaro F,
Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD and Glass DJ: The
IGF-1/PI3K/Akt pathway prevents expression of muscle
atrophy-induced ubiquitin ligases by inhibiting FOXO transcription
factors. Mol Cell. 14:395–403. 2004. View Article : Google Scholar : PubMed/NCBI
|
55
|
Rodriguez J, Vernus B, Chelh I,
Cassar-Malek I, Gabillard JC, Hadj Sassi A, Seiliez I, Picard B and
Bonnieu A: Myostatin and the skeletal muscle atrophy and
hypertrophy signaling pathways. Cell Mol Life Sci. 71:4361–4371.
2014. View Article : Google Scholar : PubMed/NCBI
|
56
|
Zhu H, Lin X and Diao Y: Function and
regulation of muscle stem cells in skeletal muscle development and
regeneration: A narrative review. J bio-X Res. 4:89–96. 2021.
|
57
|
Lee KE, Kwon M, Kim YS and Kim Y, Chung
MG, Heo SC and Kim Y: β-carotene regulates cancer stemness in colon
cancer in vivo and in vitro. Nutr Res Pract. 16:161–172. 2022.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Lim JY, Kim YS, Kim KM, Min SJ and Kim Y:
Beta-carotene inhibits neuroblastoma tumorigenesis by regulating
cell differentiation and cancer cell stemness. Biochem Biophys Res
Commun. 450:1475–1480. 2014. View Article : Google Scholar : PubMed/NCBI
|
59
|
Lee HA, Park S and Kim Y: Effect of
beta-carotene on cancer cell stemness and differentiation in
SK-N-BE(2)C neuroblastoma cells. Oncol Rep. 30:1869–1877. 2013.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Tighe AP and Gudas LJ: Retinoic acid
inhibits leukemia inhibitory factor signaling pathways in mouse
embryonic stem cells. J Cell Physiol. 198:223–229. 2004. View Article : Google Scholar : PubMed/NCBI
|
61
|
Reagan-Shaw S, Nihal M and Ahmad N: Dose
translation from animal to human studies revisited. FASEB J.
22:659–661. 2008. View Article : Google Scholar : PubMed/NCBI
|
62
|
Mech-Nowak A, Swiderski A, Kruczek M,
Luczak I and Kostecka-Gugała A: Content of carotenoids in roots of
seventeen cultivars of Daucus carota L. Acta Biochim Pol.
59:139–141. 2012. View Article : Google Scholar : PubMed/NCBI
|
63
|
Kim Y, Jung S, Park G, Shin H, Heo SC and
Kim Y: β-Carotene suppresses cancer cachexia by regulating the
adipose tissue metabolism and gut microbiota dysregulation. J Nutr
Biochem. 114:1092482022. View Article : Google Scholar : PubMed/NCBI
|
64
|
Ballarò R, Costelli P and Penna F: Animal
models for cancer cachexia. Curr Opin. 10:281–287. 2016.PubMed/NCBI
|
65
|
Pin F, Busquets S, Toledo M, Camperi A,
Lopez-Soriano FJ, Costelli P, Argilés JM and Penna F: Combination
of exercise training and erythropoietin prevents cancer-induced
muscle alterations. Oncotarget. 6:432022015. View Article : Google Scholar : PubMed/NCBI
|
66
|
Baracos VE, Martin L, Korc M, Guttridge DC
and Fearon KC: Cancer-associated cachexia. Nat Rev Dis Primers.
4:171052018. View Article : Google Scholar : PubMed/NCBI
|