Roles of Rictor alterations in gastrointestinal tumors (Review)
- Authors:
- Ruizhen Cao
- Shuilong Guo
- Li Min
- Peng Li
-
Affiliations: Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China - Published online on: January 4, 2024 https://doi.org/10.3892/or.2024.8696
- Article Number: 37
-
Copyright: © Cao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Ying X, Liu S, Lyu G, Xu Z, Zhang X, Li H, Li Q, Wang N and Ji J: Gastric cancer: Epidemiology, risk factors and prevention strategies. Chin J Cancer Res. 32:695–704. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lu L, Mullins CS, Schafmayer C, Zeißig S and Linnebacher M: A global assessment of recent trends in gastrointestinal cancer and lifestyle-associated risk factors. Cancer Commun (Lond). 41:1137–1151. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hou J, He Z, Liu T, Chen D, Wang B, Wen Q and Zheng X: Evolution of molecular targeted cancer therapy: Mechanisms of drug resistance and novel opportunities identified by CRISPR-Cas9 Screening. Front Oncol. 12:7550532022. View Article : Google Scholar : PubMed/NCBI | |
Zhao D, Jiang M, Zhang X and Hou H: The role of Rictor amplification in targeted therapy and drug resistance. Mol Med. 26:202020. View Article : Google Scholar : PubMed/NCBI | |
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al: The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2:401–404. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bian Y, Wang Z, Xu J, Zhao W, Cao H and Zhang Z: Elevated Rictor expression is associated with tumor progression and poor prognosis in patients with gastric cancer. Biochem Biophys Res Commun. 464:534–540. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang LF, Chen HJ, Yu JL, Qi J, Lin XH and Zou ZW: Expression of Rictor and mTOR in colorectal cancer and their clinical significance. Nan Fang Yi Ke Da Xue Xue Bao. 36:396–400. 2016.(In Chinese). PubMed/NCBI | |
Jiang WJ, Feng RX, Liu JT, Fan LL, Wang H and Sun GP: RICTOR expression in esophageal squamous cell carcinoma and its clinical significance. Med Oncol. 34:322017. View Article : Google Scholar : PubMed/NCBI | |
Beauchamp EM and Platanias LC: The evolution of the TOR pathway and its role in cancer. Oncogene. 32:3923–3932. 2013. View Article : Google Scholar : PubMed/NCBI | |
Murugan AK: mTOR: Role in cancer, metastasis and drug resistance. Semin Cancer Biol. 59:92–111. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gaubitz C, Prouteau M, Kusmider B and Loewith R: TORC2 structure and function. Trends Biochem Sci. 41:532–545. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P and Sabatini DM: Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 14:1296–1302. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhou P, Zhang N, Nussinov R and Ma B: Defining the domain arrangement of the mammalian target of rapamycin complex component rictor protein. J Comput Biol. 22:876–886. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang MC, Wu AG, Huang YZ, Shao GL, Ji SF, Wang RW, Yuan HJ, Fan XL, Zheng LH and Jiao QL: Autophagic regulation of cell growth by altered expression of Beclin 1 in triple-negative breast cancer. Int J Clin Exp Med. 8:7049–7058. 2015.PubMed/NCBI | |
Sui H, Shi C, Yan Z and Li H: Combination of erlotinib and a PARP inhibitor inhibits growth of A2780 tumor xenografts due to increased autophagy. Drug Des Devel Ther. 9:3183–3190. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fan H, Jiang M, Li B, He Y, Huang C, Luo D, Xu H, Yang L and Zhou J: MicroRNA-let-7a regulates cell autophagy by targeting Rictor in gastric cancer cell lines MGC-803 and SGC-7901. Oncol Rep. 39:1207–1214. 2018.PubMed/NCBI | |
Seo SU, Woo SM, Lee HS, Kim SH, Min KJ and Kwon TK: mTORC1/2 inhibitor and curcumin induce apoptosis through lysosomal membrane permeabilization-mediated autophagy. Oncogene. 37:5205–5220. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Sun Y and Zhao A: MicroRNA-134 suppresses cell proliferation in gastric cancer cells via targeting of GOLPH3. Oncol Rep. 37:2441–2448. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sarbassov DD, Guertin DA, Ali SM and Sabatini DM: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hresko RC and Mueckler M: mTOR. Rictor is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem. 280:40406–40416. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yuan TL and Cantley LC: PI3K pathway alterations in cancer: Variations on a theme. Oncogene. 27:5497–5510. 2008. View Article : Google Scholar : PubMed/NCBI | |
Treins C, Warne PH, Magnuson MA, Pende M and Downward J: Rictor is a novel target of p70 S6 kinase-1. Oncogene. 29:1003–1016. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lang F, Strutz-Seebohm N, Seebohm G and Lang UE: Significance of SGK1 in the regulation of neuronal function. J Physiol. 588:3349–3354. 2010. View Article : Google Scholar : PubMed/NCBI | |
Leong ML, Maiyar AC, Kim B, O'Keeffe BA and Firestone GL: Expression of the serum- and glucocorticoid-inducible protein kinase, Sgk, is a cell survival response to multiple types of environmental stress stimuli in mammary epithelial cells. J Biol Chem. 278:5871–5882. 2003. View Article : Google Scholar : PubMed/NCBI | |
García-Martínez Juan M and Alessi Dario R: mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J. 416:375–385. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Zhu L, Oh YT, Qian G, Chen Z and Sun SY: Rictor, an essential component of mTOR complex 2, undergoes caspase-mediated cleavage during apoptosis induced by multiple stimuli. Apoptosis. 26:338–347. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wen FF, Li XY, Li YY, He S, Xu XY, Liu YH, Liu L and Wu SH: Expression of Raptor and Rictor and their relationships with angiogenesis in colorectal cancer. Neoplasma. 67:501–508. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cao RZ, Min L, Liu S, Tian RY, Jiang HY, Liu J, Shao LL, Cheng R, Zhu ST, Guo SL and Li P: Rictor activates Cav 1 through the Akt signaling pathway to inhibit the apoptosis of gastric cancer cells. Front Oncol. 11:6414532021. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Zang H, Kong J and Gong L: In vivo and impact of miRNA-153 on the suppression of cell growth apoptosis through mTORC2 signaling pathway in breast cancer. J Recept Signal Transduct Res. 42:390–398. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hou B, Liu S, Li E and Jiang X: Different role of raptor and rictor in regulating Rasfonin-Induced autophagy and apoptosis in renal carcinoma cells. Chem Biodivers. 17:e20007432020. View Article : Google Scholar : PubMed/NCBI | |
Lu Z, Shi X, Gong F, Li S, Wang Y, Ren Y, Zhang M, Yu B, Li Y, Zhao W, et al: Rictor/mTORC2 affects tumorigenesis and therapeutic efficacy of mTOR inhibitors in esophageal squamous cell carcinoma. Acta Pharm Sin B. 10:1004–1019. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Lou X, Zou Y, Hu D, Liu J, Ning J, Jiao Y, Zhang Z, Yang F, Fan L, et al: Overexpression of Rictor protein and Rictor-H. pylori interaction has impact on tumor progression and prognosis in patients with gastric cancer. Folia Histochem Cytobiol. 58:96–107. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Amato KR, Song W, Youngblood V, Lee K, Boothby M, Brantley-Sieders DM and Chen J: Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways. Mol Cell Biol. 35:1299–1313. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liang X, Sun R, Zhao X, Zhang Y, Gu Q, Dong X, Zhang D, Sun J and Sun B: Rictor regulates the vasculogenic mimicry of melanoma via the Akt-MMP-2/9 pathway. J Cell Mol Med. 21:3579–3591. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guan B, Wu K, Zeng J, Xu S, Mu L, Gao Y, Wang K, Ma Z, Tian J, Shi Q, et al: Tumor-suppressive microRNA-218 inhibits tumor angiogenesis via targeting the mTOR component Rictor in prostate cancer. Oncotarget. 8:8162–8172. 2027. View Article : Google Scholar | |
Dormond O, Contreras AG, Meijer E, Datta D and Flynn E: CD40-induced signaling in human endothelial cells results in mTORC2- and Akt-dependent expression of vascular endothelial growth factor in vitro and in vivo. J Immunol. 181:8088–8095. 2008. View Article : Google Scholar : PubMed/NCBI | |
Alizadeh AM, Shiri S and Farsinejad S: Metastasis review: From bench to bedside. Tumour Biol. 35:8483–8523. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ and Sabatini DM: Ablation in mice of the mTORC components raptor, Rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell. 11:859–871. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hua H, Kong Q, Zhang H, Wang J, Luo T and Jiang Y: Targeting mTOR for cancer therapy. J Hematol Oncol. 12:712019. View Article : Google Scholar : PubMed/NCBI | |
Agarwal NK, Chen CH, Cho H, Boulbès DR, Spooner E and Sarbassov DD: Rictor regulates cell migration by suppressing RhoGDI2. Oncogene. 32:2521–2526. 2013. View Article : Google Scholar : PubMed/NCBI | |
Agarwal NK, Kazyken D and Sarbassov dos D: Rictor encounters RhoGDI2: The second pilot is taking a lead. Small GTPases. 4:102–105. 2013. View Article : Google Scholar : PubMed/NCBI | |
Savukaitytė A, Gudoitytė G, Bartnykaitė A, Ugenskienė R and Juozaitytė E: siRNA knockdown of REDD1 facilitates aspirin-mediated dephosphorylation of mTORC1 target 4E-BP1 in MDA-MB-468 human breast cancer cell line. Cancer Manag Res. 13:1123–1133. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wei F, Zhang Y, Geng L, Zhang P, Wang G and Liu Y: mTOR inhibition induces EGFR feedback activation in association with its resistance to human pancreatic cancer. Int J Mol Sci. 16:3267–3282. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lang SA, Hackl C, Moser C, Fichtner-Feigl S, Koehl GE, Schlitt HJ, Geissler EK and Stoeltzing O: Implication of Rictor in the mTOR inhibitor-mediated induction of insulin-like growth factor-I receptor (IGF-IR) and human epidermal growth factor receptor-2 (HER2) expression in gastrointestinal cancer cells. Biochim Biophys Acta. 1803:435–442. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yin Y, Hua H, Li M, Liu S, Kong Q, Shao T, Wang J, Luo Y, Wang Q, Luo T, et al: mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of Mtor. Cell Res. 26:46–65. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hossain MS, Karuniawati H, Jairoun AA, Urbi Z, Ooi J, John A, Lim YC, Kibria KMK, Mohiuddin AKM, Ming LC, et al: Colorectal cancer: A review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers (Basel). 14:17322022. View Article : Google Scholar : PubMed/NCBI | |
Bellier J, Nokin MJ, Caprasse M, Tiamiou A, Blomme A, Scheijen JL, Koopmansch B, MacKay GM, Chiavarina B, Costanza B, et al: Methylglyoxal scavengers resensitize KRAS-Mutated colorectal tumors to cetuximab. Cell Rep. 30:1400–1416.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shuhua W, Chenbo S, Yangyang L, Xiangqian G, Shuang H, Tangyue L and Dong T: Autophagy-related genes Raptor, Rictor, and Beclin 1 expression and relationship with multidrug resistance in colorectal carcinoma. Hum Pathol. 46:1752–1759. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Tang X, Ren Y, Yang Y, Song F, Fu J, Liu S, Yu M, Chen J, Wang S, et al: An RNA-RNA crosstalk network involving HMGB1 and RICTOR facilitates hepatocellular carcinoma tumorigenesis by promoting glutamine metabolism and impedes immunotherapy by PD-L1+ exosomes activity. Signal Transduct Target Ther. 6:4212021. View Article : Google Scholar : PubMed/NCBI | |
Reyes-Gordillo K, Shah R, Arellanes-Robledo J, Cheng Y, Ibrahim J and Tuma PL: Akt1 and Akt2 isoforms play distinct roles in regulating the development of inflammation and fibrosis associated with alcoholic liver disease. Cells. 8:13372019. View Article : Google Scholar : PubMed/NCBI | |
Guri Y, Colombi M, Dazert E, Hindupur SK, Roszik J, Moes S, Jenoe P, Heim MH, Riezman I, Riezman H and Hall MN: mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell. 32:807–823.e12. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Feng M, Yang H, Liu H, Guo H, Gao X, Liu Y, Liu R, Zhang N, Chen R and Kong R: Rictor promotes cell migration and actin polymerization through regulating ABLIM1 phosphorylation in Hepatocellular Carcinoma. Int J Biol Sci. 16:2835–2852. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Che L, Li L, Pilo MG, Cigliano A, Ribback S, Li X, Latte G, Mela M, Evert M, et al: Co-activation of Akt and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice. Sci Rep. 6:204842016. View Article : Google Scholar : PubMed/NCBI | |
Villanueva A, Chiang DY, Newell P, Peix J, Thung S, Alsinet C, Tovar V, Roayaie S, Minguez B, Sole M, et al: Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology. 135:1972–1983. 1983.e1–e11. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Xu M, Liu P, Zhang S, Shang R, Qiao Y, Che L, Ribback S, Cigliano A, Evert K, et al: The mTORC2-Akt1 Cascade Is Crucial for c-Myc to Promote Hepatocarcinogenesis in Mice and Humans. Hepatology. 70:1600–1613. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lin XM, Hu L, Gu J, Wang RY, Li L, Tang J, Zhang BH, Yan XZ, Zhu YJ, Hu CL, et al: Choline Kinase α mediates interactions between the epidermal growth factor receptor and mechanistic target of rapamycin complex 2 in hepatocellular carcinoma cells to promote drug resistance and xenograft tumor progression. Gastroenterology. 152:1187–1202. 2017. View Article : Google Scholar : PubMed/NCBI | |
Joechle K, Guenzle J, Hellerbrand C, Strnad P, Cramer T, Neumann UP and Lang SA: Role of mammalian target of rapamycin complex 2 in primary and secondary liver cancer. World J Gastrointest Oncol. 13:1632–1647. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yokoi K, Kobayashi A, Motoyama H, Kitazawa M, Shimizu A, Notake T, Yokoyama T, Matsumura T, Takeoka M and Miyagawa SI: Survival pathway of cholangiocarcinoma via Akt/mTOR signaling to escape RAF/MEK/ERK pathway inhibition by sorafenib. Oncol Rep. 39:843–850. 2018.PubMed/NCBI | |
Hou G, Zhao Q, Zhang M, Fan T, Liu M, Shi X, Ren Y, Wang Y, Zhou J and Lu Z: Down-regulation of Rictor enhances cell sensitivity to PI3K inhibitor LY294002 by blocking mTORC2-medicated phosphorylation of Akt/PRAS40 in esophageal squamous cell carcinoma. Biomed Pharmacother. 106:1348–1356. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim ST, Kim SY, Klempner SJ, Yoon J, Kim N, Ahn S, Bang H, Kim KM, Park W, Park SH, et al: Rapamycin-insensitive companion of mTOR (RICTOR) amplification defines a subset of advanced gastric cancer and is sensitive to AZD2014-mediated mTORC1/2 inhibition. Ann Oncol. 28:547–554. 2017. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schmidt KM, Hellerbrand C, Ruemmele P, Michalski CW, Kong B, Kroemer A, Hackl C, Schlitt HJ, Geissler EK and Lang SA: Inhibition of mTORC2 component Rictor impairs tumor growth in pancreatic cancer models. Oncotarget. 8:24491–24505. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mpilla GB, Uddin MH, Al-Hallak MN, Aboukameel A, Li Y, Kim SH, Beydoun R, Dyson G, Baloglu E, Senapedis WT, et al: PAK4-NAMPT dual inhibition sensitizes pancreatic neuroendocrine tumors to everolimus. Mol Cancer Ther. 20:1836–1845. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Schoeps B, Yao D, Zhang Z, Schuck K, Tissen V, Jäger C, Schlitter AM, van der Kammen R, Ludwig C, et al: mTORC1 and mTORC2 Converge on the Arp2/3 complex to promote Kras-induced Acinar-to-ductal metaplasia and early pancreatic carcinogenesis. Gastroenterology. 160:1755–1770.e17. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Chu J, Sun H, Zhao D, Ma B, Xue D, Zhang W and Li Z: MiR-155 aggravates impaired autophagy of pancreatic acinar cells through targeting Rictor. Acta Biochim Biophys Sin (Shanghai). 52:192–199. 2020. View Article : Google Scholar : PubMed/NCBI | |
Elia A, Henry-Grant R, Adiseshiah C, Marboeuf C, Buckley RJ, Clemens MJ, Mudan S and Pyronnet S: Implication of 4E-BP1 protein dephosphorylation and accumulation in pancreatic cancer cell death induced by combined gemcitabine and TRAIL. Cell Death Dis. 8:32042017. View Article : Google Scholar : PubMed/NCBI | |
Eng CP, Sehgal SN and Vézina C: Activity of rapamycin (AY-22,989) against transplanted tumors. J Antibiot (Tokyo). 37:1231–1237. 1984. View Article : Google Scholar : PubMed/NCBI | |
Chiarini F, Evangelisti C, McCubrey JA and Martelli AM: Current treatment strategies for inhibiting Mtor in cancer. Trends Pharmacol Sci. 36:124–35. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu SH, Bi JF, Cloughesy T, Cavenee WK and Mischel PS: Emerging function of mTORC2 as a core regulator in Glioblastoma: Metabolic reprogramming and drug resistance. Cancer Biol Med. 11:255–263. 2014.PubMed/NCBI | |
Masui K, Harachi M, Cavenee WK, Mischel PS and Shibata N: mTOR Complex 2 is an integrator of cancer metabolism and epigenetics. Cancer Lett. 478:1–7. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou HY and Huang SL: Current development of the second generation of mTOR inhibitors as anticancer agents. Chin J Cancer. 31:8–18. 2012.PubMed/NCBI | |
Hu Y, Zhang K, Zhu X, Zheng X, Wang C, Niu X, Jiang T, Ji X, Zhao W, Pang L, et al: Synergistic inhibition of drug-resistant colon cancer growth with PI3K/mTOR dual inhibitor BEZ235 and Nano-emulsioned paclitaxel via reducing multidrug resistance and promoting apoptosis. Int J Nanomedicine. 16:2173–2186. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hermanowicz JM, Kalaska B, Pawlak K, Sieklucka B, Miklosz J, Mojzych M and Pawlak D: Preclinical toxicity and safety of MM-129-First-in-Class BTK/PD-L1 inhibitor as a potential candidate against colon cancer. Pharmaceutics. 13:12222021. View Article : Google Scholar : PubMed/NCBI | |
Foley TM, Payne SN, Pasch CA, Yueh AE, Van De Hey DR, Korkos DP, Clipson L, Maher ME, Matkowskyj KA, Newton MA and Deming DA: APC dual PI3K/mTOR inhibition in colorectal cancers with and mutations. Mol Cancer Res. 15:317–327. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lou J, Lv JX, Zhang YP and Liu ZJ: OSI-027 inhibits the tumorigenesis of colon cancer through mediation of c-Myc/FOXO3a/PUMA axis. Cell Biol Int. 46:1204–1214. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Liu Y, Ding J, Huang Y, Liu J, Liu N, Ao Y, Hong Y, Wang L, Zhang L, et al: Targeting mTOR suppressed colon cancer growth through 4EBP1/eIF4E/PUMA pathway. Cancer Gene Ther. 27:448–460. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chang GR, Kuo CY, Tsai MY, Lin WL, Lin TC, Liao HJ, Chen CH and Wang YC: Anti-cancer effects of zotarolimus combined with 5-fluorouracil treatment in HCT-116 colorectal cancer-bearing BALB/c Nude Mice. Molecules. 26:46832021. View Article : Google Scholar : PubMed/NCBI | |
Rashid MM, Lee H and Jung BH: Evaluation of the antitumor effects of PP242 in a colon cancer xenograft mouse model using comprehensive metabolomics and lipidomics. Sci Rep. 10:175232020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zhu YR, Wang S and Zhao S: Autophagy inhibition sensitizes WYE-354-induced anti-colon cancer activity in vitro and in vivo. Tumor Biol. 37:11743–11752. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Lee CH, Tseng BY, Tsai YH, Tsai HW, Yao CL and Tseng SH: AZD8055 exerts antitumor effects on colon cancer cells by inhibiting mTOR and Cell-cycle Progression. Anticancer Res. 38:1445–1454. 2018.PubMed/NCBI | |
Jin ZZ, Wang W, Fang DL and Jin YJ: mTOR inhibition sensitizes ONC201-induced anti-colorectal cancer cell activity. Biochem Biophys Res Commun. 478:1515–1520. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nguyen DQ, Hoang DH, Nelson M, Nigam L, Nguyen VTT, Zhang L, Pham TKT, Ho HD, Nguyen DDT, Lam TQ, et al: Requirement of GTP binding for TIF-90-regulated ribosomal RNA synthesis and oncogenic activities in human colon cancer cells. J Cell Physiol. 235:7567–7579. 2020. View Article : Google Scholar : PubMed/NCBI | |
Reita D, Bour C, Benbrika R, Groh A, Pencreach E, Guérin E and Guenot D: Synergistic Anti-tumor effect of mTOR inhibitors with irinotecan on colon cancer cells. Cancers (Basel). 11:15812019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Miao X, Jiang Y, Wu Z, Zhu X, Liu H, Wu X, Cai J, Ding X and Gong W: The synergistic antitumor effect of IL-6 neutralization with NVP-BEZ235 in hepatocellular carcinoma. Cell Death Dis. 13:1462022. View Article : Google Scholar : PubMed/NCBI | |
Narahara S, Watanabe T, Nagaoka K, Fujimoto N, Furuta Y, Tanaka K, Tokunaga T, Kawasaki T, Yoshimaru Y, Setoyama H, et al: Clusterin and related scoring index as potential early predictors of response to sorafenib in hepatocellular carcinoma. Hepatol Commun. 6:1198–1212. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cao W, Liu X, Zhang Y, Li A, Xie Y, Zhou S, Song L, Xu R, Ma Y, Cai S and Tang X: BEZ235 increases the sensitivity of hepatocellular carcinoma to sorafenib by inhibiting PI3K/Akt/mTOR and inducing autophagy. Biomed Res Int. 2021:55563062021. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Xie C, Li A, Huo Z, Wu B, Cai S, Cao W, Ma Y, Xu R, Jiang Z, et al: Anti-GPC3 Antibody-Conjugated BEZ235 loaded polymeric nanoparticles (Ab-BEZ235-NP) enhances radiosensitivity in hepatocellular carcinoma cells by inhibition of DNA double-strand break repair. J Biomed Nanotechnol. 16:446–455. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xie Z, Wang J, Liu M, Chen D, Qiu C and Sun K: CC-223 blocks mTORC1/C2 activation and inhibits human hepatocellular carcinoma cells in vitro and in vivo. PLoS One. 12:e01732522017. View Article : Google Scholar : PubMed/NCBI | |
Choi HJ, Park JH, Kim OH, Kim KH, Hong HE, Seo H and Kim SJ: Combining Everolimus and Ku0063794 Promotes apoptosis of hepatocellular carcinoma cells via reduced autophagy resulting from diminished expression of miR-4790-3p. Int J Mol Sci. 22:28592021. View Article : Google Scholar : PubMed/NCBI | |
Yongxi T, Haijun H, Jiaping Z, Guoliang S and Hongying P: Autophagy inhibition sensitizes KU-0063794-mediated anti-HepG2 hepatocellular carcinoma cell activity in vitro and in vivo. Biochem Biophys Res Commun. 465:494–500. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhen MC, Wang FQ, Wu SF, Zhao YL, Liu PG and Yin ZY: Identification of mTOR as a primary resistance factor of the IAP antagonist AT406 in hepatocellular carcinoma cells. Oncotarget. 8:9466–9475. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kaneya Y, Takata H, Wada R, Kure S, Ishino K, Kudo M, Kondo R, Taniai N, Ohashi R, Yoshida H and Naito Z: Inhibitor for protein disulfide-isomerase family A member 3 enhances the antiproliferative effect of inhibitor for mechanistic target of rapamycin in liver cancer: An study on combination treatment with everolimus and 16F16. Oncol Lett. 21:282021. View Article : Google Scholar : PubMed/NCBI | |
Navarro-Villarán E, de la Cruz-Ojeda P, Contreras L, González R, Negrete M, Rodríguez-Hernández MA, Marín-Gómez LM, Álamo-Martínez JM, Calvo A, Gómez-Bravo MA, et al: Molecular pathways leading to induction of cell death and anti-proliferative properties by tacrolimus and mTOR inhibitors in liver cancer cells. Cell Physiol Biochem. 54:457–473. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Song X, Cao D, Xu Z, Fan B, Che L, Hu J, Chen B, Dong M, Pilo MG, et al: Pan-mTOR inhibitor MLN0128 is effective against intrahepatic cholangiocarcinoma in mice. J Hepatol. 67:1194–1203. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jee HY, Lee YG, Lee S, Elvira R, Seo HE, Lee JY, Han J and Lee K: Activation of ERK and p38 reduces AZD8055-mediated inhibition of protein synthesis in hepatocellular carcinoma HepG2 cell line. Int J Mol Sci. 22:118242021. View Article : Google Scholar : PubMed/NCBI | |
Patra T, Meyer K, Ray RB, Kanda T and Ray R: Akt inhibitor augments anti-proliferative efficacy of a dual mTORC1/2 inhibitor by FOXO3a activation in p53 mutated hepatocarcinoma cells. Cell Death Dis. 12:10732021. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Gu P, Guo W and Fan X: C6 ceramide sensitizes the anti-hepatocellular carcinoma (HCC) activity by AZD-8055, a novel mTORC1/2 dual inhibitor. Tumor Biol. 37:11039–11048. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peng X, Zhang D, Li Z, Fu M and Liu H: mTOR inhibition sensitizes human hepatocellular carcinoma cells to resminostat. Biochem Biophys Res Commun. 477:556–562. 2016. View Article : Google Scholar : PubMed/NCBI | |
Weber H, Leal P, Stein S, Kunkel H, García P, Bizama C, Espinoza JA, Riquelme I, Nervi B, Araya JC, et al: Rapamycin and WYE-354 suppress human gallbladder cancer xenografts in mice. Oncotarget. 6:31877–31888. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Mou LJ, Tao L, Chen W, Sun XT, Xia XF, Wu XY and Shi XL: Inhibition of mTOR suppresses human gallbladder carcinoma cell proliferation and enhances the cytotoxicity of 5-fluorouracil by downregulating MDR1 expression. Eur Rev Med Pharmacol Sci. 20:1699–1706. 2016.PubMed/NCBI | |
Mohri D, Ijichi H, Miyabayashi K, Takahashi R, Kudo Y, Sasaki T, Asaoka Y, Tanaka Y, Ikenoue T, Tateishi K, et al: A potent therapeutics for gallbladder cancer by combinatorial inhibition of the MAPK and mTOR signaling networks. J Gastroenterol. 51:711–721. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yokoyama D, Hisamori S, Deguchi Y, Nishigori T, Okabe H, Kanaya S, Manaka D, Kadokawa Y, Hata H, Minamiguchi S, et al: PTEN is a predictive biomarker of trastuzumab resistance and prognostic factor in HER2-overexpressing gastroesophageal adenocarcinoma. Sci Rep. 11:90132021. View Article : Google Scholar : PubMed/NCBI | |
Gao F, Li R, Wei PF, Ou L, Li M, Bai Y, Luo WJ and Fan Z: Synergistic anticancer effects of everolimus (RAD001) and Rhein on gastric cancer cells via phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. Bioengineered. 13:6332–6342. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu E, Zhu H, Wang F, Miao J, Du S, Zheng C, Wang X, Li Z, Xu F, Xia X and Guan W: OSI-027 alleviates Oxaliplatin Chemoresistance in gastric cancer cells by suppressing P-gp induction. Curr Mol Med. 21:922–930. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xing X, Zhang L, Wen X, Wang X, Cheng X, Du H, Hu Y, Li L, Dong B, Li Z and Ji J: PP242 suppresses cell proliferation, metastasis, and angiogenesis of gastric cancer through inhibition of the PI3K/Akt/mTOR pathway. Anticancer Drugs. 25:1129–1140. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zaidi AH, Kosovec JE, Matsui D, Omstead AN, Raj M, Rao RR, Biederman RWW, Finley GG, Landreneau RJ, Kelly RJ and Jobe BA: PI3K/mTOR dual inhibitor, LY3023414, demonstrates potent antitumor efficacy against esophageal adenocarcinoma in a rat model. Ann Surg. 266:91–98. 2017. View Article : Google Scholar : PubMed/NCBI | |
Du W, Gao A, Herman JG, Wang L, Zhang L, Jiao S and Guo M: Methylation of NRN1 is a novel synthetic lethal marker of PI3K-Akt-mTOR and ATR inhibitors in esophageal cancer. Cancer Sci. 112:2870–2883. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hou H, Zhao H, Yu X, Cong P, Zhou Y, Jiang Y and Cheng Y: METTL3 promotes the proliferation and invasion of esophageal cancer cells partly through Akt signaling pathway. Pathol Res Pract. 216:1530872020. View Article : Google Scholar : PubMed/NCBI | |
Lu Z, Zhang Y, Xu Y, Wei H, Zhao W, Wang P, Li Y and Hou G: mTOR inhibitor PP242 increases antitumor activity of sulforaphane by blocking Akt/mTOR pathway in esophageal squamous cell carcinoma. Mol Biol Rep. 49:451–461. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Xu M, Zhang H, Xu MZ, Wang XJ, Tang QH and Tang JY: The Antipancreatic cancer activity of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2. DNA Cell Biol. 34:610–617. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang B, Wang J, Chen Q, Qu C, Zhang J, Chen E, Zhang Y, Wang Y, Ni L and Liang T: Gemcitabine enhances OSI-027 cytotoxicity by upregulation of miR-663a in pancreatic ductal adenocarcinoma cells. Am J Transl Res. 11:473–485. 2019.PubMed/NCBI | |
Zhi X, Chen W, Xue F, Liang C, Chen BW, Zhou Y, Wen L, Hu L, Shen J, Bai X and Liang T: OSI-027 inhibits pancreatic ductal adenocarcinoma cell proliferation and enhances the therapeutic effect of gemcitabine both in vitro and in vivo. Oncotarget. 6:26230–26241. 2015. View Article : Google Scholar : PubMed/NCBI | |
Soares HP, Ni Y, Kisfalvi K, Sinnett-Smith J and Rozengurt E: Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells. PLoS One. 8:e572892013. View Article : Google Scholar : PubMed/NCBI | |
Peng T and Dou QP: Everolimus inhibits growth of gemcitabine-resistant pancreatic cancer cells via induction of caspase-dependent apoptosis and G2/M arrest. J Cell Biochem. 118:2722–2730. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hofmann BT, Picksak AS, Kwiatkowski M, Grupp K, Jücker M, Bachmann K, Mercanoglu B, Izbicki JR, Kahlert C, Bockhorn M, et al: Truncated O-GalNAc glycans impact on fundamental signaling pathways in pancreatic cancer. Glycobiology. Aug 18–2021.(Epub ahead of print). doi: 10.1093/glycob/cwab088. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Lv J, Chen J, Zhang X and Ji Y: Down-regulated microRNA-223 or elevated ZIC1 inhibits the development of pancreatic cancer via inhibiting PI3K/Akt/mTOR signaling pathway activation. Cell Cycle. 19:2851–2865. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lewis CS, Elnakat Thomas H, Orr-Asman MA, Green LC, Boody RE, Matiash K, Karve A, Hisada YM, Davis HW, Qi X, et al: mTOR kinase inhibition reduces tissue factor expression and growth of pancreatic neuroendocrine tumors. J Thromb Haemost. 17:169–182. 2019. View Article : Google Scholar : PubMed/NCBI | |
Conway JRW, Warren SC, Herrmann D, Murphy KJ, Cazet AS, Vennin C, Shearer RF, Killen MJ, Magenau A, Mélénec P, et al: Intravital imaging to monitor therapeutic response in moving hypoxic regions resistant to PI3K pathway targeting in pancreatic cancer. Cell Rep. 23:3312–3326. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sakamoto Y, Yamagishi S, Tanizawa Y, Tajimi M, Okusaka T and Ojima H: PI3K-mTOR pathway identified as a potential therapeutic target in biliary tract cancer using a newly established patient-derived cell panel assay. Jpn J Clin Oncol. 48:396–399. 2018. View Article : Google Scholar : PubMed/NCBI | |
Joechle K, Jumaa H, Thriene K, Hellerbrand C, Kulemann B, Fichtner-Feigl S, Lang SA and Guenzle J: Dual inhibition of mTORC1/2 reduces migration of cholangiocarcinoma cells by regulation of matrixmetalloproteinases. Front Cell Dev Biol. 9:7859792021. View Article : Google Scholar : PubMed/NCBI | |
Buzzoni R, Pusceddu S, Bajetta E, De Braud F, Platania M, Iannacone C, Cantore M, Mambrini A, Bertolini A, Alabiso O, et al: Activity and safety of RAD001 (everolimus) in patients affected by biliary tract cancer progressing after prior chemotherapy: A phase II ITMO study. Ann Oncol. 25:1597–1603. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ewald F, Grabinski N, Grottke A, Windhorst S, Nörz D, Carstensen L, Staufer K, Hofmann BT, Diehl F, David K, et al: Combined targeting of Akt and mTOR using MK-2206 and RAD001 is synergistic in the treatment of cholangiocarcinoma. Int J Cancer. 133:2065–2076. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rodon J, Dienstmann R, Serra V and Tabernero J: Development of PI3K inhibitors: Lessons learned from early clinical trials. Nat Rev Clin Oncol. 10:143–153. 2013. View Article : Google Scholar : PubMed/NCBI | |
Stuttfeld E, Aylett CH, Imseng S, Boehringer D, Scaiola A, Sauer E, Hall MN, Maier T and Ban N: Architecture of the human mTORC2 core complex. Elife. 7:e331012018. View Article : Google Scholar : PubMed/NCBI | |
Benavides-Serrato A, Lee J, Holmes B, Landon KA, Bashir T, Jung ME, Lichtenstein A and Gera J: Specific blockade of Rictor-mTOR association inhibits mTORC2 activity and is cytotoxic in glioblastoma. PLoS One. 12:e01765992017. View Article : Google Scholar : PubMed/NCBI | |
Werfel TA, Wang S, Jackson MA, Kavanaugh TE, Joly MM, Lee LH, Hicks DJ, Sanchez V, Ericsson PG, Kilchrist KV, et al: Selective mTORC2 inhibitor therapeutically blocks breast cancer cell growth and survival. Cancer Res. 78:1845–1858. 2018. View Article : Google Scholar : PubMed/NCBI | |
Waldner M, Fantus D, Solari M and Thomson AW: New perspectives on mTOR inhibitors (rapamycin, rapalogs and TORKinibs) in transplantation. Br J Clin Pharmacol. 82:1158–1170. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang C and Malarkannan S: Transcriptional regulation of NK cell development by mTOR complexes. Front Cell Dev Biol. 8:5660902020. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Gorentla B, Zhong XP and Shin J: mTOR and its tight regulation for iNKT cell development and effector function. Mol Immunol. 68:536–545. 2015. View Article : Google Scholar : PubMed/NCBI | |
Singh Y, Garden OA, Lang F and Cobb BS: MicroRNA-15b/16 enhances the induction of regulatory T cells by regulating the expression of Rictor and mTOR. J Immunol. 195:5667–5677. 2015. View Article : Google Scholar : PubMed/NCBI | |
Moore KN, Hong DS, Patel MR, Pant S, Ulahannan SV, Jones S, Meric-Bernstam F, Wang JS, Aljumaily R, Hamilton EP, et al: A Phase 1b trial of prexasertib in combination with Standard-of-Care agents in advanced or metastatic cancer. Target Oncol. 16:569–589. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu AX, Kudo M, Assenat E, Cattan S, Kang YK, Lim HY, Poon RT, Blanc JF, Vogel A, Chen CL, et al: Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: The EVOLVE-1 randomized clinical trial. JAMA. 312:57–67. 2014. View Article : Google Scholar : PubMed/NCBI | |
Geissler EK, Schnitzbauer AA, Zülke C, Lamby PE, Proneth A, Duvoux C, Burra P, Jauch KW, Rentsch M, Ganten TM, et al: Sirolimus use in liver transplant recipients with hepatocellular carcinoma: A randomized, multicenter, open-label phase 3 trial. Transplantation. 100:116–125. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chung V, Frankel P, Lim D, Yeon C, Leong L, Chao J, Ruel N, Luevanos E, Koehler S, Chung S, et al: Phase Ib trial of mFOLFOX6 and Everolimus (NSC-733504) in patients with metastatic gastroesophageal adenocarcinoma. Oncology. 90:307–312. 2016. View Article : Google Scholar : PubMed/NCBI | |
Joka M, Boeck S, Zech CJ, Seufferlein T, Wichert Gv, Licht T, Krause A, Jauch KW, Heinemann V and Bruns CJ: Combination of antiangiogenic therapy using the mTOR-inhibitor everolimus and low-dose chemotherapy for locally advanced and/or metastatic pancreatic cancer: A dose-finding study. Anticancer Drugs. 25:1095–1101. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, Kim J, Verheijen J, Curran K, Malwitz DJ, et al: Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res. 69:6232–6240. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y, Liu P, Wei J, Zhang X, Guo J and Lin Y: Recent progress in targeted therapy for non-small cell lung cancer. Front Pharmacol. 14:11255472023. View Article : Google Scholar : PubMed/NCBI |