The phenotypic reversion of cancer: Experimental evidences on cancer reversibility through epigenetic mechanisms (Review)
- Authors:
- Andrea Pensotti
- Mariano Bizzarri
- Marta Bertolaso
-
Affiliations: Research Unit of Philosophy of Science and Human Development, University Campus Bio‑Medico of Rome, I‑00128 Rome, Italy, Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University, I‑00185 Rome, Italy - Published online on: January 23, 2024 https://doi.org/10.3892/or.2024.8707
- Article Number: 48
-
Copyright: © Pensotti et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Recamier JCA: Recherches sur le Traitement du Cancer, etc. Chez Gabo; Paris: 1829 | |
Oberling CH: The Riddle of Cancer. Yale University Press; New Haven: pp. p1961944 | |
Oberling C: The riddle of cancer. Yale University Press; New Haven: pp. 26–27. 1946 | |
Müller J: Über den feinern Bau und die Formen der krankhaften Geschwülste. G. Reimer, Berlin. Nat Cancer Inst Mnogr Spontaneous Regression Cancer. 1976:441838. | |
Virchow R: Editoral Archiv fuer pathologische Anatomie und Physiologie und fuer klinische. Medizin. 8:231855. | |
Virchow R: Cellular Pathology. Hirschwald A: August Hirschwald; Berlin: 1858, PubMed/NCBI | |
Durante F: Nesso fisiopatologico tra la struttura dei nei materni e la genesi di alcuni tumori maligni. Arch Memorie ed Osservazioni di Chirurgia Pratica. 1874:217–226. 1874. | |
Cohnheim J: Congenitales, quergestreiftes muskelsarkon der nireren. Virchows Arch. 65:64–69. 1875. View Article : Google Scholar | |
Wilms M: Die Mischgeschwuelste. Leipzing; Arthur Georgi: 1899 | |
Ribbert H: Ueber Rückbildung an Zellen und Geweben und über die Entstehung der Geschwülste. Erwin Nägele; Stuttgart: 1897 | |
Ribbert, op. cit., Rückbildung (note 51). pp42–43, idem, op. cit., Beiträge (note 51). pp8–13, See also Johach, op. cit. (note 11). pp246–267 | |
Soto AM, Maffini MV and Sonnenschein C: Neoplasia as development gone awry: The role of endocrine disruptors. Int J Androl. 31:288–293. 2008. View Article : Google Scholar : PubMed/NCBI | |
Askanazy M: Die Teratome nach ihrem Bau, ihrem Verlauf, ihrer Genese und im Vergleich zum experimentellen Teratoid. Verhandl Deutsch Pathol. 11:39–82. 1907. | |
Stevens LC and Little CC: Spontaneous testicular teratomas in an inbred strain of mice. Proc Natl Acad Sci USA. 40:1080–1087. 1954. View Article : Google Scholar : PubMed/NCBI | |
Pierce GB and Dixon FJ: Testicular teratomas: I. The demonstration of teratogenesis by metamorphosis of multipotent cells. Cancer. 12:573–583. 1959. View Article : Google Scholar : PubMed/NCBI | |
Pierce GB and Verney EL: An in vitro and in vivo study of differentiation in teratocarcinomas. Cancer. 14:1017–1029. 1961. View Article : Google Scholar : PubMed/NCBI | |
Brinster RL: The effect of cells transferred into the mouse blastocyst on subsequent development. J Exp Med. 140:1049–1056. 1974. View Article : Google Scholar : PubMed/NCBI | |
Mintz B and Illmensee K: Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci USA. 72:3585–3589. 1975. View Article : Google Scholar : PubMed/NCBI | |
Grobstein C: The differentiation of such tissues may depend on inductive interactions between embryonic components. 13th Symposium of the Society for Development and Growth. Rudnick D: Princeton University Press; Princeton, NJ: pp. 233–256. 1954 | |
Rous P: A Sarcoma of the Fowl Transmissible by an Agent Separable from the Tumor Cells. J Exp Med. 13:397–411. 1911. View Article : Google Scholar : PubMed/NCBI | |
Macpherson I: Reversion in hamster cells transformed by Rous sarcoma virus. Science. 148:1731–1733. 1965. View Article : Google Scholar : PubMed/NCBI | |
Pollack RE, Green H and Todaro GJ: Growth control in cultured cells: Selection of sublines with increased sensitivity to contact inhibition and decreased tumor-producing ability. Proc Natl Acad Sci USA. 60:126–133. 1968. View Article : Google Scholar : PubMed/NCBI | |
Duran-Reynals F and Milford JJF: Growth of a chicken sarcoma virus in the chick embryo in the absence of neoplasia. Cancer Res. 3:578–584. 1943. | |
Dolberg DS and Bissell MJ: Inability of Rous sarcoma virus to cause sarcomas in the avian embryo. Nature. 309:552–556. 1984. View Article : Google Scholar : PubMed/NCBI | |
Braun AC: Bacterial and host factors concerned in determining tumor morphology in crown gall. Bot Gaz. 114:363–371. 1953. View Article : Google Scholar | |
Braun AC: A Demonstration of the recovery of the crown-gall tumor cell with the use of complex tumors of single-cell origin. Proc Natl Acad Sci USA. 45:932–938. 1959. View Article : Google Scholar : PubMed/NCBI | |
Rose SM: Epidermal dedifferentiation during blastema formation in regeneration limbs of Triturus viridescens. J Exp Zool. 108:337–362. 1948. View Article : Google Scholar : PubMed/NCBI | |
Wallingford HM: Transformations of renal tumors to normal tissue in regenerating limbs of salamanders. Science. 107:4571948.PubMed/NCBI | |
Gersch M: Zellentartung und Zellwucherung bei wirbellosen Tieren. Arch. Geschwulst-Forschung. 3:1–18. 1951. | |
Waddington CH: Cancer and the theory of organizers. Nature. 135:606–608. 1935. View Article : Google Scholar | |
Needham J: New advances in the chemistry and biology of organized growth. Proc R Soc London B Biol Sci. 29:1577–1626. 1936.PubMed/NCBI | |
Seilern-Aspang F and Kratochwil K: Induction and differentiation of an epithelial tumour in the newt (Triturus cristatus). J Embryol Exp Morphol. 10:337–356. 1962.PubMed/NCBI | |
McMichael H: Inhibition of growth of Shope rabbit papilloma by hypervitaminosis A. Cancer Res. 25:947–955. 1965.PubMed/NCBI | |
Saffiotti J, Montesano R, Sellakumar AR and Borg SA: Experimental cancer of the lung, inhibition by vitamin a of the induction of tracheobronchial squamous metaplasia and squamous cell tumors. Cancer. 20:857–864. 1967. View Article : Google Scholar : PubMed/NCBI | |
Davies RE: Effect of vitamin A on 7, 12-di-methylbenz(alpha) anthracene-induced papillomas in rhino mouse skin. Cancer Res. 27:237–241. 1967.PubMed/NCBI | |
Coleman WB, Wennerberg AE, Smith GJ and Grisham JW: Regulation of the differentiation of diploid and some aneuploid rat liver epithelial (stemlike) cells by the hepatic microenvironment. Am J Pathol. 142:1373–1382. 1993.PubMed/NCBI | |
Pierce GB: The cancer cell and its control by the embryo. Rous-Whipple Award lecture. Am J Pathol. 113:115–124. 1983. | |
Pierce GB, Lewis SH, Miller GJ, Moritz E and Miller P: Tumorigenicity of embryonal carcinoma as an assay to study control of malignancy by the murine blastocyst. Proc Natl Acad Sci USA. 76:6649–6651. 1979. View Article : Google Scholar : PubMed/NCBI | |
Pierce GB, Pantazis CG, Caldwell JE and Wells RS: Specificity of tumor formation by the blastocyst. Cancer Res. 42:1082–1087. 1982.PubMed/NCBI | |
Wells RS: An in vitro assay for regulation of embryonal carcinoma by the blastocyst. Cancer Res. 42:2736–2741. 1982.PubMed/NCBI | |
Podesta A, Beddington RSP, Wells RS and Pierce GB: The neurula stage mouse embryo in control of neuroblastoma. Proc Natl Acad Sci USA. 81:7608–7611. 1984. View Article : Google Scholar : PubMed/NCBI | |
Podesta AN, Mullins J, Pierce GB and Sells RS: The neurula state mouse embryos in control of neuroblastomas. Proc Natl Acad Sci USA. 81:7608–7611. 1984. View Article : Google Scholar : PubMed/NCBI | |
Gootwine E, Webb CG and Sachs L: Participation of myeloid leukaemia cells injected into embryos in haematopoietic differentiation in adult mice. Nature. 299:63–65. 1982. View Article : Google Scholar : PubMed/NCBI | |
Gerschenson M, Graves K, Carson SD, Wells RS and Pierce GB: Regulation of melanoma by the embryonic skin. Proc Natl Acad Sci USA. 83:7307–7310. 1986. View Article : Google Scholar : PubMed/NCBI | |
Pierce GB, Aguilar D, Hood G and Wells RS: Trophectoderm in control of murine embryonal carcinoma. Cancer Res. 44:3987–3996. 1984.PubMed/NCBI | |
DeCosse JJ, Gossens CL, Kuzma JF and Unsworth BR: Breast cancer: Induction of differentiation by embryonic tissue. Science. 181:1057–1058. 1973. View Article : Google Scholar : PubMed/NCBI | |
Biava PM, Fiorito A, Negro C and Mariani M: Effects of treatment with embryonic and uterine tissue homogenates on Lewis lung carcinoma development. Cancer Lett. 41:265–270. 1988. View Article : Google Scholar : PubMed/NCBI | |
Biava PM, Bonsignorio D and Hosha M: Cell proliferation curves of different human tumor lines after in vitro treatment with Zebrafish embryonic extracts. J Tumor Marker Oncol. 16:195–201. 2001. | |
Biava PM and Bonsignorio D: Cancer and cell differentiation: A model to explain malignancy. J Tumor Marker Oncol. 17:47–53. 2002. | |
Lee LM, Seftor EA, Bonde G, Cornell RA and Hendrix MJ: The fate of human malignant melanoma cells transplanted into zebrafish embryos: Assessment of migration and cell division in the absence of tumour formation. Dev Dyn. 233:1560–1570. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cucina A, Biava PM, D'Anselmi F, Coluccia P, Conti F, di Clemente R, Miccheli A, Frati L, Gulino A and Bizzarri M: Zebrafish embryo proteins induce apoptosis in human colon cancer cells (Caco2). Apoptosis. 11:1617–1628. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pierce GB and Johnson LD: Differentiation and cancer. In Vitro. 7:140–145. 1971. View Article : Google Scholar : PubMed/NCBI | |
Pierce GB and Wallace C: Differentiation of malignant to benign cells. Cancer Res. 31:127–134. 1971.PubMed/NCBI | |
Kenny PA and Bissell MJ: Tumor reversion: Correction of malignant behavior by microenvironmental cues. International J Cancer. 107:688–695. 2003. View Article : Google Scholar : PubMed/NCBI | |
Camacho LH: Clinical application of retinoids in cancer medicine. J Biol Regul Homeost Agents. 17:98–114. 2003.PubMed/NCBI | |
Pitha-Rowe I, Petty WJ, Kitareewan S and Dmitrovsky E: Retinoid target genes in acute promyelocytic leukemia. Leukemia. 17:1723–1730. 2003. View Article : Google Scholar : PubMed/NCBI | |
Segalla S, Rinaldi L, Kilstrup-Nielsen C, Badaracco G, Minucci S, Pelicci PG and Landsberger N: Retinoic acid receptor alpha fusion to PML affects in transcriptional and chromatin-remodeling properties. Mol Cell Biol. 23:8795–808. 2003. View Article : Google Scholar : PubMed/NCBI | |
Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, Orleth A, Riganelli D, Sebastiani C, Cappelli E, Casciari C, et al: Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest. 112:1751–1761. 2003. View Article : Google Scholar : PubMed/NCBI | |
Strickland S and Madavi V: The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell. 15:393–403. 1978. View Article : Google Scholar : PubMed/NCBI | |
Trump DL: Retinoids in bladder, testes and prostate cancer: Epidemiologic, preclinical and clinical observations. Leukemia. 8 (Suppl 3):S50–S54. 1994.PubMed/NCBI | |
Breitman TR, Selonick SE and Collins SJ: Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci USA. 77:2936–2940. 1980. View Article : Google Scholar : PubMed/NCBI | |
Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L, Gu LJ and Wang ZY: Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 72:567–572. 1988. View Article : Google Scholar : PubMed/NCBI | |
Dragnev KH, Petty WJ and Dmitrovsky E: Retinoid targets in cancer therapy and chemoprevention. Cancer Biol Ther. 2 (Suppl 1):S150–S156. 2003. View Article : Google Scholar : PubMed/NCBI | |
Melnick A and Licht JD: Deconstruction a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood. 99:3167–3215. 1999. View Article : Google Scholar : PubMed/NCBI | |
Warrell RP Jr, Frankel SR, Miller WH Jr, Scheinberg DA, Itri LM, Hittelman WN, Vyas R, Andreeff M, Tafuri A and Jakubowski A: Differention therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med. 324:1385–1393. 1991. View Article : Google Scholar : PubMed/NCBI | |
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA and Kinzler KW: Cancer genome landscapes. Science. 339:1546–1558. 6127. View Article : Google Scholar : PubMed/NCBI | |
Bertolaso M: Philosophy of Cancer-A Dynamic and Relational View. Springer; New York, NY: 2016, PubMed/NCBI | |
Rohdenburg GL: Fluctuations in the growth of malignant tumors in man, with especial reference to spontaneous regression. J Cancer Res. 3:192–221. 1918. | |
Cushing H and Wollbach S: The transformation of malignant paravertebral Sympathicoblastoma into a benign ganglioneuroma. Am J Pathol. 3:203–216.7. 1927.PubMed/NCBI | |
Bumpus HC: The apparent disappearance of pulmonary metastasis in a case of hypernephroma following nephrectomy. J Urol. 20:185–191. 1927. View Article : Google Scholar | |
Everson TC and Cole WH: Spontaneous Regression of Cancer. W.B Saunders; Philadelphia, PA: 1966, PubMed/NCBI | |
Cole WH: Spontaneous regression of cancer and the importance of finding its cause. Nat Cancer Inst Mnogr. 44:5–9. 1976.PubMed/NCBI | |
Challis GB and Stam HJ: The spontaneous regression of cancer. A review of cases from 1900 to 1987. Acta Oncol. 29:545–549. 1990. View Article : Google Scholar : PubMed/NCBI | |
O'Regan B and Hirschberg C: Spontaneous Regression. An Annotated Bibliography Sausalito CA: Institute of Noetic Science; 1993 | |
Papac RJ: Spontaneous regression of cancer: Possible mechanisms. In Vivo. 12:571–578. 1998.PubMed/NCBI | |
Livraghi T, Meloni F, Frosi A, Lazzaroni S, Bizzarri TM, Frati L and Biava PM: Treatment with stem cell differentiation stage factors of intermediate-advanced hepatocellular carcinoma: An open randomized clinical trial. Oncol Res. 15:399–408. 2005. View Article : Google Scholar : PubMed/NCBI | |
Telerman A, Tuynder M, Dupressoir T, Robaye B, Sigaux F, Shaulian E, Oren M, Rommelaere J and Amson R: A model for tumor suppression using H-1 parvovirus. Proc Natl Acad Sci USA. 90:8702–8706. 1993. View Article : Google Scholar : PubMed/NCBI | |
Tuynder M, Susini L, Prieur S, Besse S, Fiucci G, Amson R and Telerman A: Biological models and genes of tumor reversion: Cellular reprogramming through tpt1/TCTP and SIAH-1. Proc Natl Acad Sci USA. 99:14976–1481. 2002. View Article : Google Scholar : PubMed/NCBI | |
Telerman A and Amson R: The molecular programme of tumour reversion: The steps beyond malignant transformation. Nat Rev Cancer. 9:206–216. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tuynder M, Fiucci G, Prieur S, Lespagnol A, Géant A, Beaucourt S, Duflaut D, Besse S, Susini L, Cavarelli J, et al: Translationally controlled tumor protein is a target of tumor reversion. Proc Natl Acad Sci USA. 101:15364–15369. 2004. View Article : Google Scholar : PubMed/NCBI | |
Thaw P, Baxter NJ, Hounslow AM, Price C, Waltho JP and Craven CJ: Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nat Struct Biol. 8:701–704. 2001. View Article : Google Scholar : PubMed/NCBI | |
Proietti S, Cucina A, Pensotti A, Biava PM, Minini M, Monti N, Catizone A, Ricci G, Leonetti E, Harrath AH, et al: Active fraction from embryo fish extracts induces reversion of the malignant invasive phenotype in breast cancer through down-regulation of TCTP and modulation of E-cadherin/β-catenin pathway. Int J Mol Sci. 20:21512019. View Article : Google Scholar : PubMed/NCBI | |
Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C and Bissell MJ: Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol. 137:231–245. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hendrix MJ, Seftor EA, Seftor RE, Kasemeier-Kulesa J, Kulesa PM and Postovit LM: Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer. 7:246–255. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tabibzadeh S and Hemmati-Brivanlou A: Lefty at the crossroads of ‘stemness’ and differentiative events. Stem Cells. 24:1998–2006. 2006. View Article : Google Scholar : PubMed/NCBI | |
Postovit LM, Margaryan NV, Seftor EA, Kirschmann DA, Lipavsky A, Wheaton WW, Abbott DE, Seftor RE and Hendrix MJ: Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells. Proc Natl Acad Sci USA. 105:4329–4334. 2008. View Article : Google Scholar : PubMed/NCBI | |
Topczewska JM, Postovit LM, Margaryan NV, Sam A, Hess AR, Wheaton WW, Nickoloff BJ, Topczewski J and Hendrix MJ: Embryonic and tumorigenic pathways converge via Nodal signaling: Role in melanoma aggressiveness. Nat Med. 12:925–932. 2006. View Article : Google Scholar : PubMed/NCBI | |
Costa FF: Non-coding RNAs: Lost in translation? Gene. 386:1–10. 2007. View Article : Google Scholar : PubMed/NCBI | |
Garzon R, Fabbri M, Cimmino A, Calin GA and Croce CM: MicroRNA expression and function in cancer. Trends Mol Med. 12:580–587. 2006. View Article : Google Scholar : PubMed/NCBI | |
Costa FF, Seftor EA, Bischof JM, Kirschmann DA, Strizzi L, Arndt K, Bonaldo Mde F, Soares MB and Hendrix MJ: Epigenetically reprogramming metastatic tumor cells with an embryonic microenvironment. Epigenomics. 1:387–398. 2009. View Article : Google Scholar : PubMed/NCBI | |
Card DA, Hebbar PB, Li L, Trotter KW, Komatsu Y, Mishina Y and Archer TK: Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol. 28:6426–6438. 2008. View Article : Google Scholar : PubMed/NCBI | |
Krebs LT, Iwai N, Nonaka S, Welsh IC, Lan Y, Jiang R, Saijoh Y, O'Brien TP, Hamada H and Gridley T: Notch signaling regulates left-right asymmetry determination by inducing Nodal expression. Genes Dev. 17:1207–1212. 2003. View Article : Google Scholar : PubMed/NCBI | |
Morgan DO: Cyclin-dependent kinases: Engines, clocks, and microprocessors. Annu Rev Cell Dev Biol. 13:261–291. 1997. View Article : Google Scholar : PubMed/NCBI | |
Giuffrida D, Rogers IM, Nagy A, Calogero AE, Brown TJ and Casper RF: Human embryonic stem cells secrete soluble factors that inhibit cancer cell growth. Cell Prolif. 42:788–798. 2009. View Article : Google Scholar : PubMed/NCBI | |
Novak P, Jensen TJ, Garbe JC, Stampfer MR and Futscher BW: Stepwise DNA methylation changes are linked to escape from defined proliferation barriers and mammary epithelial cell immortalization. Cancer Res. 69:5251–5258. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hinshelwood RA and Clark SJ: Breast cancer epigenetics: Normal human mammary epithelial cells as a model system. J Mol Med. 86:1315–1328. 2008. View Article : Google Scholar : PubMed/NCBI | |
Allegrucci C, Rushton MD, Dixon JE, Sottile V, Shah M, Kumari R, Watson S, Alberio R and Johnson AD: Epigenetic reprogramming of breast cancer cells with oocyte extracts. Mol Cancer. 10:72011. View Article : Google Scholar : PubMed/NCBI | |
Saad N, Alberio R, Johnson AD, Emes RD, Giles TC, Clarke P, Grabowska AM and Allegrucci C: Cancer reversion with oocyte extracts is mediated by cell cycle arrest and induction of tumour dormancy. Oncotarget. 9:16008–16027. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tripathi A, Kashyap A, Tripathi G, Yadav J, Bibban R, Aggarwal N, Thakur K, Chhokar A, Jadli M, Sah AK, et al: Tumor reversion: A dream or a reality. Biomark Res. 9:312021. View Article : Google Scholar : PubMed/NCBI | |
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. 2007. View Article : Google Scholar : PubMed/NCBI | |
Feinberg AP: Phenotypic plasticity and the epigenetics of human disease. Nature. 447:433–440. 2007. View Article : Google Scholar : PubMed/NCBI | |
Redmer T, Diecke S, Grigoryan T, Quiroga-Negreira A, Birchmeier W and Besser D: E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep. 12:720–726. 2011. View Article : Google Scholar : PubMed/NCBI | |
Feng B, Ng JH, Heng JC and Ng HH: Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell. 4:301–312. 2009. View Article : Google Scholar : PubMed/NCBI | |
Smith ZD, Sindhu C and Meissner A: Molecular features of cellular reprogramming and development. Nat Rev Mol Cell Biol. 17:139–154. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yoo J and Kim J, Baek S, Park Y, Im H and Kim J: Cell reprogramming into the pluripotent state using graphene based substrates. Biomaterials. 35:8321–8329. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bizzarri M, Palombo A and Cucina A: Theoretical aspects of systems biology. Prog Biophys Mol Biol. 112:33–43. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nieto MA, Huang RY, Jackson RA and Thiery JP: EMT: 2016. Cell. 166:21–45. 2016. View Article : Google Scholar : PubMed/NCBI | |
Abad M, Mosteiro L, Pantoja C, Cañamero M, Rayon T, Ors I, Graña O, Megías D, Domínguez O, Martínez D, et al: Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. 502:340–345. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ohnishi K, Semi K, Yamamoto T, Shimizu M, Tanaka A, Mitsunaga K, Okita K, Osafune K, Arioka Y, Maeda T, et al: Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell. 156:663–677. 2014. View Article : Google Scholar : PubMed/NCBI | |
Inman JL, Robertson C, Mott JD and Bissell MJ: Mammary gland development: Cell fate specification, stem cells and the microenvironment. Development. 142:1028–1042. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bizzarri M and Giuliani A: Representing cancer cell trajectories in a phase-space diagram: Switching cellular states by biological phase transitions. Applied Statistics for Network Biology: Methods in Systems Biology. Dehmer M, Emmert-Streib F, Graber A and Salvador A: Wiley-VCH Verlag GmbH & Co.; pp. 377–403. 2011, View Article : Google Scholar | |
Lin SL, Chang DC, Chang-Lin S, Lin CH, Wu DT, Chen DT and Ying SY: Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA. 14:2115–2124. 2008. View Article : Google Scholar : PubMed/NCBI | |
Utikal J, Maherali N, Kulalert W and Hochedlinger K: Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci. 122:3502–3510. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rapino F, Robles EF, Richter-Larrea JA, Kallin EM, Martinez-Climent JA and Graf T: C/EBPα induces highly efficient macrophage transdifferentiation of B lymphoma and leukemia cell lines and impairs their tumorigenicity. Cell Rep. 3:1153–1163. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang P, Zhang L, Gao Y, He Z, Yao D, Wu Z, Cen J, Chen X, Liu C, Hu Y, et al: Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell. 14:370–384. 2014. View Article : Google Scholar : PubMed/NCBI | |
McClellan JS, Dove C, Gentles AJ, Ryan CE and Majeti R: Reprogramming of primary human Philadelphia chromosome-positive B cell acute lymphoblastic leukemia cells into nonleukemic macrophages. Proc Natl Acad Sci USA. 112:4074–4079. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Abdouh M, Arena V, Arena M and Arena GO: Reprogramming malignant cancer cells toward a benign phenotype following expo-sure to human embryonic stem cell microenvironment. PLoS One. 12:e01698992017. View Article : Google Scholar : PubMed/NCBI | |
Ishay-Ronen D, Diepenbruck M, Kalathur RKR, Sugiyama N, Tiede S, Ivanek R, Bantug G, Morini MF, Wang J, Hess C and Christofori G: Gain fat-lose metastasis: Converting invasive breast cancer cells into adipocytes inhibits cancer metastasis. Cancer Cell. 35:17–32.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheng Z, He Z, Cai Y, Zhang C, Fu G, Li H, Sun W, Liu C, Cui X, Ning B, et al: Conversion of hepatoma cells to hepatocyte-like cells by defined hepatocyte nuclear factors. Cell Res. 29:124–135. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Agrawal I and Gong Z: Reversion of tumor hepatocytes to normal hepatocytes during liver tumor regression in an oncogene-expressing transgenic zebrafish model. Dis Model Mech. 12:dmm0395782019. View Article : Google Scholar : PubMed/NCBI | |
Pensotti A, Bertolaso M and Bizzarri M: Is cancer reversible? Rethinking carcinogenesis models-a new epistemological tool. Biomolecules. 13:7332023. View Article : Google Scholar : PubMed/NCBI | |
Longo G, Miquel PA, Sonnenschein C and Soto AM: Is information a proper observable for biological organization? Prog Biophys Mol Biol. 109:108–114. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kholodenko BN, Kolch W and Rukhlenko OS: Reversing pathological cell states: The road less travelled can extend the therapeutic horizon. Trends Cell Biol. 33:913–923. 2023. View Article : Google Scholar : PubMed/NCBI |