
Cetuximab chemotherapy resistance: Insight into the homeostatic evolution of head and neck cancer (Review)
- Authors:
- Carlos Henrique De Paula Diniz
- Tiago Henrique
- Ana Carolina B. Stefanini
- Tialfi Bergamin De Castro
- Eloiza H. Tajara
-
Affiliations: Department of Molecular Biology, School of Medicine of São José do Rio Preto‑FAMERP, São José do Rio Preto, São Paulo, SP 15090‑000, Brazil - Published online on: April 19, 2024 https://doi.org/10.3892/or.2024.8739
- Article Number: 80
-
Copyright: © Diniz et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Figure 1
![]() |
Figure 2
![]() |
Figure 3
![]() |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Leemans CR, Snijders PJF and Brakenhoff RH: The molecular landscape of head and neck cancer. Nat Rev Cancer. 18:269–282. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C and Stuart JM: The cancer genome atlas pan-cancer analysis project. Nat Genet. 45:1113–1120. 2013. View Article : Google Scholar : PubMed/NCBI | |
Leemans CR, Braakhuis BJ and Brakenhoff RH: The molecular biology of head and neck cancer. Nat Rev Cancer. 11:9–22. 2011. View Article : Google Scholar : PubMed/NCBI | |
Puram SV, Mints M, Pal A, Qi Z, Reeb A, Gelev K, Barrett TF, Gerndt S, Liu P, Parikh AS, et al: Cellular states are coupled to genomic and viral heterogeneity in HPV-related oropharyngeal carcinoma. Nat Genet. 55:640–650. 2023. View Article : Google Scholar : PubMed/NCBI | |
Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE and Grandis JR: Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 6:922020. View Article : Google Scholar : PubMed/NCBI | |
Fouad S, Hauton D and D'Angiolella V: E2F1: Cause and consequence of DNA replication stress. Front Mol Biosci. 7:5993322021. View Article : Google Scholar : PubMed/NCBI | |
Lin M, Ji X, Lv Y, Cui D and Xie J: The roles of TRAF3 in immune responses. Dis Markers. 2023:77878032023. View Article : Google Scholar : PubMed/NCBI | |
Hornick EL and Bishop GA: TRAF3: Guardian of T lymphocyte functions. Front Immunol. 14:11292512023. View Article : Google Scholar : PubMed/NCBI | |
Seiwert TY, Zuo Z, Keck MK, Khattri A, Pedamallu CS, Stricker T, Brown C, Pugh TJ, Stojanov P, Cho J, et al: Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res. 21:632–641. 2015. View Article : Google Scholar : PubMed/NCBI | |
Häfner N, Driesch C, Gajda M, Jansen L, Kirchmayr R, Runnebaum IB and Dürst M: Integration of the HPV16 genome does not invariably result in high levels of viral oncogene transcripts. Oncogene. 27:1610–1617. 2008. View Article : Google Scholar : PubMed/NCBI | |
Parfenov M, Pedamallu CS, Gehlenborg N, Freeman SS, Danilova L, Bristow CA, Lee S, Hadjipanayis AG, Ivanova EV, Wilkerson MD, et al: Characterization of HPV and host genome interactions in primary head and neck cancers. Proc Natl Acad Sci USA. 111:15544–15549. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hettmann A, Demcsák A, Decsi G, Bach Á, Pálinkó D, Rovó L, Nagy K, Takács M and Minarovits J: Infectious agents associated with head and neck carcinomas. Adv Exp Med Biol. 897:63–80. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bai X, Cui C, Yin J, Li H, Gong Q, Wei B and Lu Y: The association between oral hygiene and head and neck cancer: A meta-analysis. Acta Odontol Scand. 81:374–395. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kitamura N, Sento S, Yoshizawa Y, Sasabe E, Kudo Y and Yamamoto T: Current trends and future prospects of molecular targeted therapy in head and neck squamous cell carcinoma. Int J Mol Sci. 22:2402020. View Article : Google Scholar : PubMed/NCBI | |
Forman R, Deshpande H, Burtness B and Bhatia AK: Efficacy and toxicity of weekly paclitaxel, carboplatin, and cetuximab as induction chemotherapy or in cases of metastases or relapse for head and neck cancer with a focus on elderly or frail patients. Head Neck. 44:1777–1786. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dokala A and Thakur SS: Extracellular region of epidermal growth factor receptor: A potential target for anti-EGFR drug discovery. Oncogene. 36:2337–2344. 2017. View Article : Google Scholar : PubMed/NCBI | |
Eze N, Lee JW, Yang DH, Zhu F, Neumeister V, Sandoval-Schaefer T, Mehra R, Ridge JA, Forastiere A, Chung CH and Burtness B: PTEN loss is associated with resistance to cetuximab in patients with head and neck squamous cell carcinoma. Oral Oncol. 91:69–78. 2019. View Article : Google Scholar : PubMed/NCBI | |
Emran TB, Shahriar A, Mahmud AR, Rahman T, Abir MH, Siddiquee MF, Ahmed H, Rahman N, Nainu F, Wahyudin E, et al: Multidrug resistance in cancer: Understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front Oncol. 12:8916522022. View Article : Google Scholar : PubMed/NCBI | |
Giddings EL, Champagne DP, Wu MH, Laffin JM, Thornton TM, Valenca-Pereira F, Culp-Hill R, Fortner KA, Romero N, East J, et al: Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance. Nat Commun. 12:28042021. View Article : Google Scholar : PubMed/NCBI | |
Ming H, Li B, Jiang J, Qin S, Nice EC, He W, Lang T and Huang C: Protein degradation: Expanding the toolbox to restrain cancer drug resistance. J Hematol Oncol. 16:62023. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Ma T and Yu B: Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther. 8:692023. View Article : Google Scholar : PubMed/NCBI | |
Su S, Chen J, Yao H, Liu J, Yu S, Lao L, Wang M, Luo M, Xing Y, Chen F, et al: CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell. 172:841–856.e16. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ito Y, Tazaki G, Kondo Y, Takahashi G and Sakamaki F: Therapeutic effect of nintedanib on acute exacerbation of interstitial lung diseases. Respir Med Case Rep. 26:317–320. 2019.PubMed/NCBI | |
Hui L and Chen Y: Tumor microenvironment: Sanctuary of the devil. Cancer Lett. 368:7–13. 2015. View Article : Google Scholar : PubMed/NCBI | |
da Cunha BR, Domingos C, Stefanini ACB, Henrique T, Polachini GM, Castelo-Branco P and Tajara EH: Cellular interactions in the tumor microenvironment: The role of secretome. J Cancer. 10:4574–4587. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nia HT, Munn LL and Jain RK: Physical traits of cancer. Science. 370:eaaz08682020. View Article : Google Scholar : PubMed/NCBI | |
Gourmet LE and Walker-Samuel S: The role of physics in multiomics and cancer evolution. Front Oncol. 13:10680532023. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
Stratton MR, Campbell PJ and Futreal PA: The cancer genome. Nature. 458:719–724. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vendramin R, Litchfield K and Swanton C: Cancer evolution: Darwin and beyond. EMBO J. 40:e1083892021. View Article : Google Scholar : PubMed/NCBI | |
Nowell PC: The clonal evolution of tumor cell populations. Science. 194:23–28. 1976. View Article : Google Scholar : PubMed/NCBI | |
Dexter DL, Kowalski HM, Blazar BA, Fligiel Z, Vogel R and Heppner GH: Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res. 38:3174–3181. 1978.PubMed/NCBI | |
Greaves M and Maley CC: Clonal evolution in cancer. Nature. 481:306–313. 2012. View Article : Google Scholar : PubMed/NCBI | |
Swanton C: Intratumor heterogeneity: Evolution through space and time. Cancer Res. 72:4875–4882. 2012. View Article : Google Scholar : PubMed/NCBI | |
Williams MJ, Werner B, Barnes CP, Graham TA and Sottoriva A: Identification of neutral tumor evolution across cancer types. Nat Genet. 48:238–244. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mohan M and Jagannathan N: Oral field cancerization: An update on current concepts. Oncol Rev. 8:2442014.PubMed/NCBI | |
Shen X, Song S, Li C and Zhang J: Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature. 606:725–731. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kristofich J, Morgenthaler AB, Kinney WR, Ebmeier CC, Snyder DJ, Old WM, Cooper VS and Copley SD: Synonymous mutations make dramatic contributions to fitness when growth is limited by a weak-link enzyme. PLoS Genet. 14:e10076152018. View Article : Google Scholar : PubMed/NCBI | |
Li R, Dong J, Zhang H, Zhao Q, Li X, Liu X, Ye Y, Deng S, Lin D, Zheng J and Zuo Z: Clinical and genomic characterization of neutral tumor evolution in head and neck squamous cell carcinoma. Genomics. 112:3448–3454. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cortés-Ciriano I, Lee JJ, Xi R, Jain D, Jung YL, Yang L, Gordenin D, Klimczak LJ, Zhang CZ, Pellman DS, et al: Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet. 52:331–341. 2020. View Article : Google Scholar : PubMed/NCBI | |
Voronina N, Wong JKL, Hübschmann D, Hlevnjak M, Uhrig S, Heilig CE, Horak P, Kreutzfeldt S, Mock A, Stenzinger A, et al: The landscape of chromothripsis across adult cancer types. Nat Commun. 11:23202020. View Article : Google Scholar : PubMed/NCBI | |
Shen MM: Chromoplexy: A new category of complex rearrangements in the cancer genome. Cancer Cell. 23:567–569. 2013. View Article : Google Scholar : PubMed/NCBI | |
Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, Park K, Kitabayashi N, MacDonald TY, Ghandi M, et al: Punctuated evolution of prostate cancer genomes. Cell. 153:666–677. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP, Zhao J, Marjoram P, Siegmund K, Press MF, Shibata D and Curtis C: A Big Bang model of human colorectal tumor growth. Nat Genet. 47:209–216. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sottoriva A, Barnes CP and Graham TA: Catch my drift? Making sense of genomic intra-tumour heterogeneity. Biochim Biophys Acta Rev Cancer. 1867:95–100. 2017. View Article : Google Scholar : PubMed/NCBI | |
Niida A, Mimori K, Shibata T and Miyano S: Modeling colorectal cancer evolution. J Hum Genet. 66:869–878. 2021. View Article : Google Scholar : PubMed/NCBI | |
Laukien FH: The evolution of evolutionary processes in organismal and cancer evolution. Prog Biophys Mol Biol. 165:43–48. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fearon ER and Vogelstein B: A genetic model for colorectal tumorigenesis. Cell. 61:759–767. 1990. View Article : Google Scholar : PubMed/NCBI | |
Caravagna G, Giarratano Y, Ramazzotti D, Tomlinson I, Graham TA, Sanguinetti G and Sottoriva A: Detecting repeated cancer evolution from multi-region tumor sequencing data. Nat Methods. 15:707–714. 2018. View Article : Google Scholar : PubMed/NCBI | |
McGranahan N and Swanton C: Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell. 168:613–628. 2017. View Article : Google Scholar : PubMed/NCBI | |
Niida A, Iwasaki WM and Innan H: Neutral theory in cancer cell population genetics. Mol Biol Evol. 35:1316–1321. 2018. View Article : Google Scholar : PubMed/NCBI | |
Martínez-Jiménez F, Movasati A, Brunner SR, Nguyen L, Priestley P, Cuppen E and Van Hoeck A: Pan-cancer whole-genome comparison of primary and metastatic solid tumours. Nature. 618:333–341. 2023. View Article : Google Scholar : PubMed/NCBI | |
Nguyen B, Fong C, Luthra A, Smith SA, DiNatale RG, Nandakumar S, Walch H, Chatila WK, Madupuri R, Kundra R, et al: Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell. 185:563–575.e11. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, Liu Y, Zheng C and Qu H: dbEMT 2.0: An updated database for epithelial-mesenchymal transition genes with experimentally verified information and precalculated regulation information for cancer metastasis. J Genet Genomics. 46:595–597. 2019. View Article : Google Scholar : PubMed/NCBI | |
Acar A, Nichol D, Fernandez-Mateos J, Cresswell GD, Barozzi I, Hong SP, Trahearn N, Spiteri I, Stubbs M, Burke R, et al: Exploiting evolutionary steering to induce collateral drug sensitivity in cancer. Nat Commun. 11:19232020. View Article : Google Scholar : PubMed/NCBI | |
Tarabichi M, Martincorena I, Gerstung M, Leroi AM, Markowetz F; PCAWG Evolution and Heterogeneity Working Group and Spellman PT, ; Morris QD, Lingjærde OC, Wedge DC and Van Loo P: Neutral tumor evolution? Nat Genet. 50:1630–1633. 2018. View Article : Google Scholar : PubMed/NCBI | |
Persi E, Wolf YI, Horn D, Ruppin E, Demichelis F, Gatenby RA, Gillies RJ and Koonin EV: Mutation-selection balance and compensatory mechanisms in tumour evolution. Nat Rev Genet. 22:251–262. 2021. View Article : Google Scholar : PubMed/NCBI | |
Marine JC, Dawson SJ and Dawson MA: Non-genetic mechanisms of therapeutic resistance in cancer. Nat Rev Cancer. 20:743–756. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, Hartwell K, Onder TT, Gupta PB, Evans KW, et al: Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA. 107:15449–15454. 2010. View Article : Google Scholar : PubMed/NCBI | |
Graves CA, Abboodi FF, Tomar S, Wells J and Pirisi L: The translational significance of epithelial-mesenchymal transition in head and neck cancer. Clin Transl Med. 3:602014. View Article : Google Scholar : PubMed/NCBI | |
Singh A and Settleman J: EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene. 29:4741–4751. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shibue T and Weinberg RA: EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat Rev Clin Oncol. 14:611–629. 2017. View Article : Google Scholar : PubMed/NCBI | |
Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, Luo CL, Mroz EA, Emerick KS, et al: Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 171:1611–1624.e24. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pavón MA, Arroyo-Solera I, León X, Téllez-Gabriel M, Virós D, Gallardo A, Céspedes MV, Casanova I, Lopez-Pousa A, Barnadas A, et al: The combined use of EFS, GPX2, and SPRR1A expression could distinguish favorable from poor clinical outcome among epithelial-like head and neck carcinoma subtypes. Head Neck. 41:1830–1845. 2019. View Article : Google Scholar : PubMed/NCBI | |
DeCamp SJ, Tsuda VMK, Ferruzzi J, Koehler SA, Giblin JT, Roblyer D, Zaman MH, Weiss ST, Kılıç A, De Marzio M, et al: Epithelial layer unjamming shifts energy metabolism toward glycolysis. Sci Rep. 10:183022020. View Article : Google Scholar : PubMed/NCBI | |
De Marzio M, Kılıç A, Maiorino E, Mitchel JA, Mwase C, O'Sullivan MJ, McGill M, Chase R, Fredberg JJ, Park JA, et al: Genomic signatures of the unjamming transition in compressed human bronchial epithelial cells. Sci Adv. 7:eabf10882021. View Article : Google Scholar : PubMed/NCBI | |
Kılıç A, Ameli A, Park JA, Kho AT, Tantisira K, Santolini M, Cheng F, Mitchel JA, McGill M, O'Sullivan MJ, et al: Mechanical forces induce an asthma gene signature in healthy airway epithelial cells. Sci Rep. 10:9662020. View Article : Google Scholar : PubMed/NCBI | |
Ataie-Kachoie P, Pourgholami MH, Richardson DR and Morris DL: Gene of the month: Interleukin 6 (IL-6). J Clin Pathol. 67:932–937. 2014. View Article : Google Scholar : PubMed/NCBI | |
Taher MY, Davies DM and Maher J: The role of the interleukin (IL)-6/IL-6 receptor axis in cancer. Biochem Soc Trans. 46:1449–1462. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu Y and Zhou BP: TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 102:639–644. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dongre A and Weinberg RA: New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 20:69–84. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Azmi AS and Mohammad RM: Deregulated transcription factors and poor clinical outcomes in cancer patients. Semin Cancer Biol. 86:122–134. 2022. View Article : Google Scholar : PubMed/NCBI | |
De Craene B and Berx G: Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 13:97–110. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xin W, Zhao C, Jiang L, Pei D, Zhao L and Zhang C: Identification of a novel epithelial-mesenchymal transition gene signature predicting survival in patients with HNSCC. Pathol Oncol Res. 27:5851922021. View Article : Google Scholar : PubMed/NCBI | |
Vallina C, López-Pintor RM, González-Serrano J, de Vicente JC, Hernández G and Lorz C: Genes involved in the epithelial-mesenchymal transition in oral cancer: A systematic review. Oral Oncol. 117:1053102021. View Article : Google Scholar : PubMed/NCBI | |
Okuyama K, Suzuki K and Yanamoto S: Relationship between tumor budding and partial epithelial-mesenchymal transition in head and neck cancer. Cancers (Basel). 15:11112023. View Article : Google Scholar : PubMed/NCBI | |
Tamimi A, Tamimi A, Sorkheh F, Asl SM, Ghafari A, Karimi AG, Erabi G, Pourmontaseri H and Deravi N: Monoclonal antibodies for the treatment of squamous cell carcinoma: A literature review. Cancer Rep (Hoboken). 6:e18022023. View Article : Google Scholar : PubMed/NCBI | |
Byeon HK, Ku M and Yang J: Beyond EGFR inhibition: Multilateral combat strategies to stop the progression of head and neck cancer. Exp Mol Med. 51:1–14. 2019. View Article : Google Scholar : PubMed/NCBI | |
Klein P, Mattoon D, Lemmon MA and Schlessinger J: A structure-based model for ligand binding and dimerization of EGF receptors. Proc Natl Acad Sci USA. 101:929–934. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nair S, Trummell HQ, Rajbhandari R, Thudi NK, Nozell SE, Warram JM, Willey CD, Yang ES, Placzek WJ, Bonner JA and Bredel M: Novel EGFR ectodomain mutations associated with ligand-independent activation and cetuximab resistance in head and neck cancer. PLoS One. 15:e02290772020. View Article : Google Scholar : PubMed/NCBI | |
Purba ER, Saita EI and Maruyama IN: Activation of the EGF receptor by ligand binding and oncogenic mutations: The ‘rotation model’. Cells. 6:132017. View Article : Google Scholar : PubMed/NCBI | |
Kriegs M, Clauditz TS, Hoffer K, Bartels J, Buhs S, Gerull H, Zech HB, Bußmann L, Struve N, Rieckmann T, et al: Analyzing expression and phosphorylation of the EGF receptor in HNSCC. Sci Rep. 9:135642019. View Article : Google Scholar : PubMed/NCBI | |
Kalyankrishna S and Grandis JR: Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol. 24:2666–2672. 2006. View Article : Google Scholar : PubMed/NCBI | |
Najafi M, Ahmadi A and Mortezaee K: Extracellular-signal-regulated kinase/mitogen-activated protein kinase signaling as a target for cancer therapy: An updated review. Cell Biol Int. 43:1206–1222. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nishihara S, Yamaoka T, Ishikawa F, Higuchi K, Hasebe Y, Manabe R, Kishino Y, Kusumoto S, Ando K, Kuroda Y, et al: Mechanisms of EGFR-TKI-induced apoptosis and strategies targeting apoptosis in EGFR-mutated non-small cell lung cancer. Genes (Basel). 13:21832022. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Mei W, Zhang P and Zeng C: PIK3CA mutation as an acquired resistance driver to EGFR-TKIs in non-small cell lung cancer: Clinical challenges and opportunities. Pharmacol Res. 202:1071232024. View Article : Google Scholar : PubMed/NCBI | |
Lai SY and Johnson FM: Defining the role of the JAK-STAT pathway in head and neck and thoracic malignancies: Implications for future therapeutic approaches. Drug Resist Updat. 13:67–78. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li L, Ji S, Shrestha C, Jiang Y, Liao L, Xu F, Liu Z, Bikle DD and Xie Z: p120-catenin suppresses proliferation and tumor growth of oral squamous cell carcinoma via inhibiting nuclear phospholipase C-γ1 signaling. J Cell Physiol. 235:9399–9413. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mittal S, Kamath A, Joseph AM and Rajala MS: PLCγ1-dependent invasion and migration of cells expressing NSCLC-associated EGFR mutants. Int J Oncol. 57:989–1000. 2020.PubMed/NCBI | |
Li Q, Tie Y, Alu A, Ma X and Shi H: Targeted therapy for head and neck cancer: Signaling pathways and clinical studies. Signal Transduct Target Ther. 8:312023. View Article : Google Scholar : PubMed/NCBI | |
Silva-Oliveira RJ, Melendez M, Martinho O, Zanon MF, de Souza Viana L, Carvalho AL and Reis RM: AKT can modulate the in vitro response of HNSCC cells to irreversible EGFR inhibitors. Oncotarget. 8:53288–53301. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kordbacheh F and Farah CS: Current and emerging molecular therapies for head and neck squamous cell carcinoma. Cancers (Basel). 13:54712021. View Article : Google Scholar : PubMed/NCBI | |
Ebrahimi N, Fardi E, Ghaderi H, Palizdar S, Khorram R, Vafadar R, Ghanaatian M, Rezaei-Tazangi F, Baziyar P, Ahmadi A, et al: Receptor tyrosine kinase inhibitors in cancer. Cell Mol Life Sci. 80:1042023. View Article : Google Scholar : PubMed/NCBI | |
Lacas B, Carmel A, Landais C, Wong SJ, Licitra L, Tobias JS, Burtness B, Ghi MG, Cohen EEW, Grau C, et al: Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 107 randomized trials and 19,805 patients, on behalf of MACH-NC group. Radiother Oncol. 156:281–293. 2021. View Article : Google Scholar : PubMed/NCBI | |
Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, Erfan J, Zabolotnyy D, Kienzer HR, Cupissol D, et al: Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 359:1116–1127. 2008. View Article : Google Scholar : PubMed/NCBI | |
Guigay J, Aupérin A, Fayette J, Saada-Bouzid E, Lafond C, Taberna M, Geoffrois L, Martin L, Capitain O, Cupissol D, et al: Cetuximab, docetaxel, and cisplatin versus platinum, fluorouracil, and cetuximab as first-line treatment in patients with recurrent or metastatic head and neck squamous-cell carcinoma (GORTEC 2014-01 TPExtreme): A multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 22:463–475. 2021. View Article : Google Scholar : PubMed/NCBI | |
Eggers H, Häbel L, Ganser A, Grünwald V, Merten R, Warnecke A, Durisin M and Ivanyi P: Anti-EGFR-based therapy in recurrent or metastatic HNSCC-what difference does it make? Cancer Invest. 41:93–100. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dasari S and Tchounwou PB: Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 740:364–378. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rich TA, Shepard RC and Mosley ST: Four decades of continuing innovation with fluorouracil: Current and future approaches to fluorouracil chemoradiation therapy. J Clin Oncol. 22:2214–2232. 2004. View Article : Google Scholar : PubMed/NCBI | |
Muraro E, Fanetti G, Lupato V, Giacomarra V, Steffan A, Gobitti C, Vaccher E and Franchin G: Cetuximab in locally advanced head and neck squamous cell carcinoma: Biological mechanisms involved in efficacy, toxicity and resistance. Crit Rev Oncol Hematol. 164:1034242021. View Article : Google Scholar : PubMed/NCBI | |
Okada Y, Kimura T, Nakagawa T, Okamoto K, Fukuya A, Goji T, Fujimoto S, Sogabe M, Miyamoto H, Muguruma N, et al: EGFR downregulation after Anti-EGFR therapy predicts the antitumor effect in colorectal cancer. Mol Cancer Res. 15:1445–1454. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kang JJ, Ko A, Kil SH, Mallen-St Clair J, Shin DS, Wang MB and Srivatsan ES: EGFR pathway targeting drugs in head and neck cancer in the era of immunotherapy. Biochim Biophys Acta Rev Cancer. 1878:1888272023. View Article : Google Scholar : PubMed/NCBI | |
Chaudhary R, Slebos RJC, Noel LC, Song F, Poole MI, Hoening DS, Hernandez-Prera JC, Conejo-Garcia JR, Guevara-Patino JA, Wang X, et al: EGFR inhibition by cetuximab modulates hypoxia and IFN response genes in head and neck squamous cell carcinoma. Cancer Res Commun. 3:896–907. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bugaj LJ, Sabnis AJ, Mitchell A, Garbarino JE, Toettcher JE, Bivona TG and Lim WA: Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway. Science. 361:eaao30482018. View Article : Google Scholar : PubMed/NCBI | |
Jie HB, Schuler PJ, Lee SC, Srivastava RM, Argiris A, Ferrone S, Whiteside TL and Ferris RL: CTLA-4+ regulatory T cells increased in cetuximab-treated head and neck cancer patients suppress NK cell cytotoxicity and correlate with poor prognosis. Cancer Res. 75:2200–2210. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kagohara LT, Zamuner F, Davis-Marcisak EF, Sharma G, Considine M, Allen J, Yegnasubramanian S, Gaykalova DA and Fertig EJ: Integrated single-cell and bulk gene expression and ATAC-seq reveals heterogeneity and early changes in pathways associated with resistance to cetuximab in HNSCC-sensitive cell lines. Br J Cancer. 123:101–113. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ryman JT and Meibohm B: Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 6:576–588. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tathineni P, Joshi N and Jelinek MJ: Current state and future directions of EGFR-directed therapy in head and neck cancer. Curr Treat Options Oncol. 24:680–692. 2023. View Article : Google Scholar : PubMed/NCBI | |
de Castro G Jr, Alves GV, Castro AF, Chaves ALF, De Marchi P, de Oliveira TB, Dias FL, Guindalini RSC, Nicolau UR, Soares A and Mora PAR: Criteria for eligibility to cisplatin in the curative treatment of head and neck cancer: Consensus opinion from a panel of experts. Crit Rev Oncol Hematol. 131:30–34. 2018. View Article : Google Scholar : PubMed/NCBI | |
Carinato H, Burgy M, Ferry R, Fischbach C, Kalish M, Guihard S, Brahimi Y, Flesch H, Bronner G, Schultz P, et al: Weekly paclitaxel, carboplatin, and cetuximab as first-line treatment of recurrent and/or metastatic head and neck squamous cell carcinoma for patients ineligible to cisplatin-based chemotherapy: A retrospective monocentric study in 60 patients. Front Oncol. 11:7145512021. View Article : Google Scholar : PubMed/NCBI | |
Abdulla M, Belal AA, Sakr A, El Arab LE, Mokhtar M, Allahloubi N, Ghali R, Hashem T and Arafat W: Eligibility criteria to cisplatin in head and neck squamous cell carcinoma: Egyptian expert opinion. Health Sci Rep. 6:e10372023. View Article : Google Scholar : PubMed/NCBI | |
Guigay J, Fayette J, Dillies AF, Sire C, Kerger JN, Tennevet I, Machiels JP, Zanetta S, Pointreau Y, Bozec Le Moal L, et al: Cetuximab, docetaxel, and cisplatin as first-line treatment in patients with recurrent or metastatic head and neck squamous cell carcinoma: A multicenter, phase II GORTEC study. Ann Oncol. 26:1941–1947. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mehanna H, Robinson M, Hartley A, Kong A, Foran B, Fulton-Lieuw T, Dalby M, Mistry P, Sen M, O'Toole L, et al: Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): An open-label randomised controlled phase 3 trial. Lancet. 393:51–60. 2019. View Article : Google Scholar : PubMed/NCBI | |
Silver JA, Turkdogan S, Roy CF, Subramaniam T, Henry M and Sadeghi N: De-escalation strategies for human papillomavirus-associated oropharyngeal squamous cell carcinoma-where are we now? Curr Oncol. 29:3668–3697. 2022. View Article : Google Scholar : PubMed/NCBI | |
Willey CD, Anderson JC, Trummell HQ, Naji F, de Wijn R, Yang ES, Bredel M, Thudi NK and Bonner JA: Differential escape mechanisms in cetuximab-resistant head and neck cancer cells. Biochem Biophys Res Commun. 517:36–42. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yonesaka K, Tanaka K, Kitano M, Kawakami H, Hayashi H, Takeda M, Sakai K, Nishio K, Doi K and Nakagawa K: Aberrant HER3 ligand heregulin-expressing head and neck squamous cell carcinoma is resistant to anti-EGFR antibody cetuximab, but not second-generation EGFR-TKI. Oncogenesis. 8:542019. View Article : Google Scholar : PubMed/NCBI | |
Picon H and Guddati AK: Mechanisms of resistance in head and neck cancer. Am J Cancer Res. 10:2742–2751. 2020.PubMed/NCBI | |
Ortiz-Cuaran S, Bouaoud J, Karabajakian A, Fayette J and Saintigny P: Precision medicine approaches to overcome resistance to therapy in head and neck cancers. Front Oncol. 11:6143322021. View Article : Google Scholar : PubMed/NCBI | |
Cheng H, Fertig EJ, Ozawa H, Hatakeyama H, Howard JD, Perez J, Considine M, Thakar M, Ranaweera R, Krigsfeld G and Chung CH: Decreased SMAD4 expression is associated with induction of epithelial-to-mesenchymal transition and cetuximab resistance in head and neck squamous cell carcinoma. Cancer Biol Ther. 16:1252–1258. 2015. View Article : Google Scholar : PubMed/NCBI | |
Boeckx C, Blockx L, Op de Beeck K, Limame R, Camp GV, Peeters M, Vermorken JB, Specenier P, Wouters A, Baay M and Lardon F: Establishment and characterization of cetuximab resistant head and neck squamous cell carcinoma cell lines: Focus on the contribution of the AP-1 transcription factor. Am J Cancer Res. 5:1921–1938. 2015.PubMed/NCBI | |
Citron F, Segatto I, Musco L, Pellarin I, Rampioni Vinciguerra GL, Franchin G, Fanetti G, Miccichè F, Giacomarra V, Lupato V, et al: miR-9 modulates and predicts the response to radiotherapy and EGFR inhibition in HNSCC. EMBO Mol Med. 13:e128722021. View Article : Google Scholar : PubMed/NCBI | |
Morvan VL, Richard É, Cadars M, Fessart D, Broca-Brisson L, Auzanneau C, Pasquies A, Modesto A, Lusque A, Mathoulin-Pélissier S, et al: Cytochrome P450 1B1 polymorphism drives cancer cell stemness and patient outcome in head-and-neck carcinoma. Br J Cancer. 123:772–784. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wheeler DL, Huang S, Kruser TJ, Nechrebecki MM, Armstrong EA, Benavente S, Gondi V, Hsu KT and Harari PM: Mechanisms of acquired resistance to cetuximab: Role of HER (ErbB) family members. Oncogene. 27:3944–3956. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nelhűbel GA, Cserepes M, Szabó B, Türk D, Kárpáti A, Kenessey I, Rásó E, Barbai T, Hegedűs Z, László V, et al: EGFR alterations influence the cetuximab treatment response and c-MET tyrosine-kinase inhibitor sensitivity in experimental head and neck squamous cell carcinomas. Pathol Oncol Res. 27:6202562021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan C, Wu Y, Li X, Li X, Li G, et al: Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer. 17:452018. View Article : Google Scholar : PubMed/NCBI | |
Cortesina G, Martone T, Galeazzi E, Olivero M, De Stefani A, Bussi M, Valente G, Comoglio PM and Di Renzo MF: Staging of head and neck squamous cell carcinoma using the MET oncogene product as marker of tumor cells in lymph node metastases. Int J Cancer. 89:286–292. 2000. View Article : Google Scholar : PubMed/NCBI | |
Slomiany MG, Black LA, Kibbey MM, Tingler MA, Day TA and Rosenzweig SA: Insulin-like growth factor-1 receptor and ligand targeting in head and neck squamous cell carcinoma. Cancer Lett. 248:269–279. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gonzales CB, De La Chapa JJ, Saikumar P, Singha PK, Dybdal-Hargreaves NF, Chavez J, Horning AM, Parra J and Kirma NB: Co-targeting ALK and EGFR parallel signaling in oral squamous cell carcinoma. Oral Oncol. 59:12–19. 2016. View Article : Google Scholar : PubMed/NCBI | |
Iyer G, Price J, Bourgeois S, Armstrong E, Huang S and Harari PM: Insulin-like growth factor 1 receptor mediated tyrosine 845 phosphorylation of epidermal growth factor receptor in the presence of monoclonal antibody cetuximab. BMC Cancer. 16:7732016. View Article : Google Scholar : PubMed/NCBI | |
Krumbach R, Schüler J, Hofmann M, Giesemann T, Fiebig HH and Beckers T: Primary resistance to cetuximab in a panel of patient-derived tumour xenograft models: Activation of MET as one mechanism for drug resistance. Eur J Cancer. 47:1231–1243. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ouyang X, Barling A, Lesch A, Tyner JW, Choonoo G, Zheng C, Jeng S, West TM, Clayburgh D, Courtneidge SA, et al: Induction of anaplastic lymphoma kinase (ALK) as a novel mechanism of EGFR inhibitor resistance in head and neck squamous cell carcinoma patient-derived models. Cancer Biol Ther. 19:921–933. 2018. View Article : Google Scholar : PubMed/NCBI | |
Umemori K, Ono K, Eguchi T, Kawai H, Nakamura T, Ogawa T, Yoshida K, Kanemoto H, Sato K, Obata K, et al: EpEX, the soluble extracellular domain of EpCAM, resists cetuximab treatment of EGFR-high head and neck squamous cell carcinoma. Oral Oncol. 142:1064332023. View Article : Google Scholar : PubMed/NCBI | |
Gires O, Pan M, Schinke H, Canis M and Baeuerle PA: Expression and function of epithelial cell adhesion molecule EpCAM: Where are we after 40 years? Cancer Metastasis Rev. 39:969–987. 2020. View Article : Google Scholar : PubMed/NCBI | |
Went PT, Lugli A, Meier S, Bundi M, Mirlacher M, Sauter G and Dirnhofer S: Frequent EpCam protein expression in human carcinomas. Hum Pathol. 35:122–128. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mignion L, Acciardo S, Gourgue F, Joudiou N, Caignet X, Goebbels RM, Corbet C, Feron O, Bouzin C, Cani PD, et al: Metabolic imaging using hyperpolarized pyruvate-lactate exchange assesses response or resistance to the EGFR inhibitor cetuximab in patient-derived HNSCC xenografts. Clin Cancer Res. 26:1932–1943. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bae T, Hallis SP and Kwak MK: Hypoxia, oxidative stress, and the interplay of HIFs and NRF2 signaling in cancer. Exp Mol Med. 56:501–514. 2024. View Article : Google Scholar : PubMed/NCBI | |
Deng L, Wang L, Zhang J, Zhao L, Meng Y, Zheng J, Xu W, Zhu Z and Huang H: The mechanism of action and biodistribution of a novel EGFR/VEGF bispecific fusion protein that exhibited superior antitumor activities. Heliyon. 9:e169222023. View Article : Google Scholar : PubMed/NCBI | |
Liang W, Zheng Y, Zhang J and Sun X: Multiscale modeling reveals angiogenesis-induced drug resistance in brain tumors and predicts a synergistic drug combination targeting EGFR and VEGFR pathways. BMC Bioinformatics. 20 (Suppl 7):S2032019. View Article : Google Scholar : PubMed/NCBI | |
Wiechec E, Hansson KT, Alexandersson L, Jönsson JI and Roberg K: Hypoxia mediates differential response to anti-EGFR therapy in HNSCC cells. Int J Mol Sci. 18:9432017. View Article : Google Scholar : PubMed/NCBI | |
Ge H, Ferris RL and Wang JH: Cetuximab responses in patients with HNSCC correlate to clonal expansion feature of peripheral and tumor-infiltrating T cells with Top T-cell receptor clonotypes. Clin Cancer Res. 29:647–658. 2023. View Article : Google Scholar : PubMed/NCBI | |
Parikh AS, Yu VX, Flashner S, Okolo OB, Lu C, Henick BS, Momen-Heravi F, Puram SV, Teknos T, Pan Q and Nakagawa H: Patient-derived three-dimensional culture techniques model tumor heterogeneity in head and neck cancer. Oral Oncol. 138:1063302023. View Article : Google Scholar : PubMed/NCBI | |
Cree IA and Charlton P: Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer. 17:102017. View Article : Google Scholar : PubMed/NCBI | |
Shirani-Bidabadi S, Tabatabaee A, Tavazohi N, Hariri A, Aref AR, Zarrabi A, Casarcia N, Bishayee A and Mirian M: CRISPR technology: A versatile tool to model, screen, and reverse drug resistance in cancer. Eur J Cell Biol. 102:1512992023. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Wang R and Fang J: Exploring the frontiers: Tumor immune microenvironment and immunotherapy in head and neck squamous cell carcinoma. Discov Oncol. 15:222024. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Huang Y, Ren H, Huang H, Lai C, Wang W, Tong Z, Zhang H, Wu W, Liu C, et al: Nano-enhanced immunotherapy: Targeting the immunosuppressive tumor microenvironment. Biomaterials. 305:1224632024. View Article : Google Scholar : PubMed/NCBI | |
Avgoustakis K and Angelopoulou A: Biomaterial-based responsive nanomedicines for targeting solid tumor microenvironments. Pharmaceutics. 16:1792024. View Article : Google Scholar : PubMed/NCBI | |
Harrer DC, Lüke F, Pukrop T, Ghibelli L, Reichle A and Heudobler D: Addressing genetic tumor heterogeneity, post-therapy metastatic spread, cancer repopulation, and development of acquired tumor cell resistance. Cancers (Basel). 16:1802023. View Article : Google Scholar : PubMed/NCBI | |
Derbal Y: Cell adaptive fitness and cancer evolutionary dynamics. Cancer Inform. 22:117693512311546792023. View Article : Google Scholar : PubMed/NCBI | |
Parseghian CM, Napolitano S, Loree JM and Kopetz S: Mechanisms of innate and acquired resistance to anti-EGFR therapy: A review of current knowledge with a focus on rechallenge therapies. Clin Cancer Res. 25:6899–6908. 2019. View Article : Google Scholar : PubMed/NCBI | |
Walens A, Lin J, Damrauer JS, McKinney B, Lupo R, Newcomb R, Fox DB, Mabe NW, Gresham J, Sheng Z, et al: Adaptation and selection shape clonal evolution of tumors during residual disease and recurrence. Nat Commun. 11:50172020. View Article : Google Scholar : PubMed/NCBI | |
Fittall MW and Van Loo P: Translating insights into tumor evolution to clinical practice: Promises and challenges. Genome Med. 11:202019. View Article : Google Scholar : PubMed/NCBI |