The pathogenic response of cytotoxic T‑lymphocytes, a common therapeutic target for cancer, has a direct impact on treatment outcomes (Review)
- Authors:
- Jing Luan
- Yuxin Liu
- Meng Cao
- Xianing Guo
- Na Guo
-
Affiliations: Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China - Published online on: June 17, 2024 https://doi.org/10.3892/or.2024.8757
- Article Number: 98
-
Copyright: © Luan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Restifo NP, Dudley ME and Rosenberg SA: Adoptive immunotherapy for cancer: Harnessing the T cell response. Nat Rev Immunol. 12:269–281. 2012. View Article : Google Scholar : PubMed/NCBI | |
Martínez-Lostao L, Anel A and Pardo J: How do cytotoxic lymphocytes kill cancer cells? Clin Cancer Res. 21:5047–5056. 2015. View Article : Google Scholar : PubMed/NCBI | |
Palucka AK and Coussens LM: The basis of oncoimmunology. Cell. 164:1233–1247. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nagarsheth N, Wicha MS and Zou W: Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 17:559–572. 2017. View Article : Google Scholar : PubMed/NCBI | |
Calzascia T, Pellegrini M, Hall H, Sabbagh L, Ono N, Elford AR, Mak TW and Ohashi PS: TNF-alpha is critical for antitumor but not antiviral T cell immunity in mice. J Clin Invest. 117:3833–3845. 2007.PubMed/NCBI | |
Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L, et al: Mutations associated with acquired resistance to PD-1 blockade in Melanoma. N Engl J Med. 375:819–829. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ngiow SF, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L and Smyth MJ: A threshold level of intratumor CD8+ T-cell PD1 expression dictates therapeutic response to anti-PD1. Cancer Res. 75:3800–3811. 2015. View Article : Google Scholar : PubMed/NCBI | |
Galon J, Angell HK, Bedognetti D and Marincola FM: The continuum of cancer immunosurveillance: Prognostic, predictive, and mechanistic signatures. Immunity. 39:11–26. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shrihari TG: Innate and adaptive immune cells in tumor microenvironment. Gulf J Oncolog. 1:77–81. 2021. | |
Chen DS and Mellman I: Elements of cancer immunity and the cancer-immune set point. Nature. 541:321–330. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE and Rosenberg SA: Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 114:1537–1544. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D, Bacac M, Ries CH, Ailles L, Jewett MAS, Moch H, et al: An immune atlas of clear cell renal cell carcinoma. Cell. 169:736–749.e18. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zitvogel L, Tesniere A and Kroemer G: Cancer despite immunosurveillance: Immunoselection and immunosubversion. Nat Rev Immunol. 6:715–727. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wherry EJ: T cell exhaustion. Nat Immunol. 12:492–499. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL and Ahmed R: Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 27:670–684. 2007. View Article : Google Scholar : PubMed/NCBI | |
Curran MA, Montalvo W, Yagita H and Allison JP: PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA. 107:4275–4280. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jansen CS, Prokhnevska N, Master VA, Sanda MG, Carlisle JW, Bilen MA, Cardenas M, Wilkinson S, Lake R, Sowalsky AG, et al: An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature. 576:465–470. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dolina JS, Van Braeckel-Budimir N, Thomas GD and Salek-Ardakani S: CD8+ T cell exhaustion in cancer. Front Immunol. 12:7152342021. View Article : Google Scholar : PubMed/NCBI | |
Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, et al: Pearce, metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 162:1229–1241. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shimizu S, Hiratsuka H, Koike K, Tsuchihashi K, Sonoda T, Ogi K, Miyakawa A, Kobayashi J, Kaneko T, Igarashi T, et al: Tumor-infiltrating CD8+ T-cell density is an independent prognostic marker for oral squamous cell carcinoma. Cancer Med. 8:80–93. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chaudhary B, Al Samid MA, al-Ramadi BK and Elkord E: Phenotypic alterations, clinical impact and therapeutic potential of regulatory T cells in cancer. Expert Opin Biol Ther. 14:931–945. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hurkat P, Jain S, Jain R and Jain A: Immunology behind tumors: A mini review. Curr Cancer Ther Rev. 15:174–183. 2019. View Article : Google Scholar | |
Saleh R and Elkord E: Treg-mediated acquired resistance to immune checkpoint inhibitors. Cancer Lett. 457:168–179. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Zhang H, Xing Q, Cui J, Li J, Li Y, Tan Y and Wang S: PD-1(+) CD8(+) T cells are exhausted in tumours and functional in draining lymph nodes of colorectal cancer patients. Br J Cancer. 111:1391–1399. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu B, Yuan L, Gao Q, Yuan P, Zhao P, Yuan H, Fan H, Li T, Qin P, Han L, et al: Circulating and tumor-infiltrating Tim-3 in patients with colorectal cancer. Oncotarget. 6:20592–20603. 2015. View Article : Google Scholar : PubMed/NCBI | |
Toor SM, Nair VS, Decock J and Elkord E: Immune checkpoints in the tumor microenvironment. Semin Cancer Biol. 65:1–12. 2020. View Article : Google Scholar : PubMed/NCBI | |
Melero I, Rouzaut A, Motz GT and Coukos G: T-cell and NK-cell infiltration into solid tumors: A key limiting factor for efficacious cancer immunotherapy. Cancer Discov. 4:522–526. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guan L, Wu B, Li T, Beer LA, Sharma G, Li M, Lee CN, Liu S, Yang C, Huang L, et al: HRS phosphorylation drives immunosuppressive exosome secretion and restricts CD8+ T-cell infiltration into tumors. Nat Commun. 13:40782022. View Article : Google Scholar : PubMed/NCBI | |
Rossignol J, Belaid Z, Fouquet G, Guillem F, Rignault R, Milpied P, Renand A, Coman T, D'Aveni M, Dussiot M, et al: Neuropilin-1 cooperates with PD-1 in CD8+ T cells predicting outcomes in melanoma patients treated with anti-PD1. iScience. 25:1043532022. View Article : Google Scholar : PubMed/NCBI | |
Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, Park S, Javinal V, Chiu H, Irving B, et al: The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 26:923–937. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu YH, Zang XY, Wang JC, Huang SS, Xu J and Zhang P: Diagnosis and management of immune related adverse events (irAEs) in cancer immunotherapy. Biomed Pharmacother. 120:1094372019. View Article : Google Scholar : PubMed/NCBI | |
Li L, Li G, Rao B, Dong AH, Liang W, Zhu JX, Qin MP, Huang WW, Lu JM, Li ZF and Wu YZ: Landscape of immune checkpoint inhibitor-related adverse events in Chinese population. Sci Rep. 10:155672020. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Zhu Z, Lan Y, Duan S, Zhu Z, Zhang X, Li G, Qu H, Feng Y, Cai H and Song Z: Development and validation of a CD8+ T cell infiltration-related signature for Melanoma patients. Front Immunol. 12:6594442021. View Article : Google Scholar : PubMed/NCBI | |
Baitsch L, Baumgaertner P, Devêvre E, Raghav SK, Legat A, Barba L, Wieckowski S, Bouzourene H, Deplancke B, Romero P, et al: Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J Clin Invest. 121:2350–2360. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, Wunderlich JR, Mixon A, Farid S, Dudley ME, et al: PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 124:2246–2259. 2014. View Article : Google Scholar : PubMed/NCBI | |
Thelen M, Lechner A, Wennhold K, von Bergwelt-Baildon M and Schlößer HA: CD39 expression defines cell exhaustion in tumor-infiltrating CD8+ T cells-letter. Cancer Res. 78:5173–5174. 2018. View Article : Google Scholar : PubMed/NCBI | |
Berele BA, Cai Y and Yang G: Prognostic value of tumor infiltrating lymphocytes in nasopharyngeal carcinoma patients: Meta-analysis. Technol Cancer Res Treat. 20:153303382110342652021. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Chen J, Liang H and Yu Y: Nasopharyngeal cancer cell-derived exosomal PD-L1 inhibits CD8+ T-cell activity and promotes immune escape. Cancer Sci. 113:3044–3054. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ono T, Azuma K, Kawahara A, Sasada T, Matsuo N, Kakuma T, Kamimura H, Maeda R, Hattori C, On K, et al: Prognostic stratification of patients with nasopharyngeal carcinoma based on tumor immune microenvironment. Head Neck. 40:2007–2019. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang YL, Li J, Mo HY, Qiu F, Zheng LM, Qian CN and Zeng YX: Different subsets of tumor infiltrating lymphocytes correlate with NPC progression in different ways. Mol Cancer. 9:42010. View Article : Google Scholar : PubMed/NCBI | |
Iams WT, Shiuan E, Meador CB, Roth M, Bordeaux J, Vaupel C, Boyd KL, Summitt IB, Wang LL, Schneider JT, et al: Improved prognosis and increased tumor-infiltrating lymphocytes in patients who have SCLC with neurologic paraneoplastic syndromes. J Thorac Oncol. 14:1970–1981. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hellmann MD, Callahan MK, Awad MM, Calvo E, Ascierto PA, Atmaca A, Rizvi NA, Hirsch FR, Selvaggi G, Szustakowski JD, et al: Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell. 33:853–861.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yoneda K, Kuwata T, Kanayama M, Mori M, Kawanami T, Yatera K, Ohguri T, Hisaoka M, Nakayama T and Tanaka F: Alteration in tumoural PD-L1 expression and stromal CD8-positive tumour-infiltrating lymphocytes after concurrent chemo-radiotherapy for non-small cell lung cancer. Br J Cancer. 121:490–496. 2019. View Article : Google Scholar : PubMed/NCBI | |
Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C, Bercovici N, Guérin M, Biton J, Ouakrim H, et al: Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci USA. 115:E4041–E4050. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li S, Zhang Z, Lai WF, Cui L and Zhu X: How to overcome the side effects of tumor immunotherapy. Biomed Pharmacother. 130:1106392020. View Article : Google Scholar : PubMed/NCBI | |
Choe EA, Cha YJ, Kim JH, Pyo KH, Hong MH, Park SY, Shim HS, Jung I, Lee CY, Cho BC and Kim HR: Dynamic changes in PD-L1 expression and CD8+ T cell infiltration in non-small cell lung cancer following chemoradiation therapy. Lung Cancer. 136:30–36. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Luo H and Xu Y: Transcriptome analysis reveals an important candidate gene involved in both nodal metastasis and prognosis in lung adenocarcinoma. Cell Biosci. 9:922019. View Article : Google Scholar : PubMed/NCBI | |
Brummelman J, Mazza EMC, Alvisi G, Colombo FS, Grilli A, Mikulak J, Mavilio D, Alloisio M, Ferrari F, Lopci E, et al: High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors. J Exp Med. 215:2520–2535. 2018. View Article : Google Scholar : PubMed/NCBI | |
Khaja AS, Toor SM, El Salhat H, Faour I, Ul Haq N, Ali BR and Elkord E: Preferential accumulation of regulatory T cells with highly immunosuppressive characteristics in breast tumor microenvironment. Oncotarget. 8:33159–33171. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xie F, Zhou X, Su P, Li H, Tu Y, Du J, Pan C, Wei X, Zheng M, Jin K, et al: Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nat Commun. 13:44612022. View Article : Google Scholar : PubMed/NCBI | |
Baker K, Lachapelle J, Zlobec I, Bismar TA, Terracciano L and Foulkes WD: Prognostic significance of CD8+ T lymphocytes in breast cancer depends upon both oestrogen receptor status and histological grade. Histopathology. 58:1107–1116. 2011.PubMed/NCBI | |
Gao G, Wang Z, Qu Z and Zhang Z: Prognostic value of tumor-infiltrating lymphocytes in patients with triple-negative breast cancer: A systematic review and meta-analysis. BMC Cancer. 20:1792020. View Article : Google Scholar : PubMed/NCBI | |
Blok EJ, Engels CC, Dekker-Ensink G, Kranenbarg EMK, Putter H, Smit V, Liefers GJ, Morden JP, Bliss JM, Coombes RC, et al: Exploration of tumour-infiltrating lymphocytes as a predictive biomarker for adjuvant endocrine therapy in early breast cancer. Breast Cancer Res Treat. 171:65–74. 2018. View Article : Google Scholar : PubMed/NCBI | |
Heppner BI, Untch M, Denkert C, Pfitzner BM, Lederer B, Schmitt W, Eidtmann H, Fasching PA, Tesch H, Solbach C, et al: Tumor-infiltrating lymphocytes: a predictive and prognostic biomarker in neoadjuvant-treated HER2-positive breast cancer. Clin Cancer Res. 22:5747–5754. 2016. View Article : Google Scholar : PubMed/NCBI | |
West NR, Panet-Raymond V, Truong PT, Alexander C, Babinszky S, Milne K, Ross LA, Loken S and Watson PH: Intratumoral immune responses can distinguish new primary and true recurrence types of ipsilateral breast tumor recurrences (IBTR). Breast Cancer (Auckl). 5:105–115. 2011.PubMed/NCBI | |
de Ruiter EJ, Ooft ML, Devriese LA and Willems SM: The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: A systematic review and meta-analysis. Oncoimmunology. 6:e13561482017. View Article : Google Scholar : PubMed/NCBI | |
Nguyen N, Bellile E, Thomas D, McHugh J, Rozek L, Virani S, Peterson L, Carey TE, Walline H, Moyer J, et al: Tumor infiltrating lymphocytes and survival in patients with head and neck squamous cell carcinoma. Head Neck. 38:1074–1084. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hartman DJ, Ahmad F, Ferris RL, Rimm DL and Pantanowitz L: Utility of CD8 score by automated quantitative image analysis in head and neck squamous cell carcinoma. Oral Oncol. 86:278–287. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y, Li H, Mao L, Yang QC, Fu LQ, Wu CC, Liu B and Sun ZJ: CD103+ T and dendritic cells indicate a favorable prognosis in oral cancer. J Dent Res. 98:1480–1487. 2019. View Article : Google Scholar : PubMed/NCBI | |
Stravodimou A, Tzelepi V, Papadaki H, Mouzaki A, Georgiou S, Melachrinou M and Kourea EP: Evaluation of T-lymphocyte subpopulations in actinic keratosis, in situ and invasive squamous cell carcinoma of the skin. J Cutan Pathol. 45:337–347. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tavaré R, Danton M, Giurleo JT, Makonnen S, Hickey C, Arnold TC, Kelly MP, Fredriksson F, Bruestle K, Hermann A, et al: Immuno-PET monitoring of lymphocytes using the CD8-specific antibody REGN5054. Cancer Immunol Res. 4:1190–1209. 2022. View Article : Google Scholar : PubMed/NCBI | |
Noh BJ, Kwak JY and Eom DW: Immune classification for the PD-L1 expression and tumour-infiltrating lymphocytes in colorectal adenocarcinoma. BMC Cancer. 20:582020. View Article : Google Scholar : PubMed/NCBI | |
Alsalman A, Al-Mterin MA, Murshed K, Alloush F, Al-Shouli ST, Toor SM and Elkord E: Circulating and tumor-infiltrating immune checkpoint-expressing CD8+ Treg/T cell subsets and their associations with disease-free survival in colorectal Cancer patients. Cancers (Basel). 14:31942022. View Article : Google Scholar : PubMed/NCBI | |
Lee IK, Song H, Kim H, Kim IS, Tran NL, Kim SH, Oh SJ and Lee JM: RORα regulates cholesterol metabolism of CD8+ T cells for anticancer immunity. Cancers. 12:17332020. View Article : Google Scholar : PubMed/NCBI | |
Cai XY, Gao Q, Qiu SJ, Ye SL, Wu ZQ, Fan J and Tang ZY: Dendritic cell infiltration and prognosis of human hepatocellular carcinoma. J Cancer Res Clin Oncol. 132:293–301. 2006. View Article : Google Scholar : PubMed/NCBI | |
Moreno-Cubero E and Larrubia JR: Specific CD8(+) T cell response immunotherapy for hepatocellular carcinoma and viral hepatitis. World J Gastroenterol. 22:6469–6483. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guo M, Yuan F, Qi F, Sun J, Rao Q, Zhao Z, Huang P, Fang T, Yang B and Xia J: Expression and clinical significance of LAG-3, FGL1, PD-L1 and CD8+T cells in hepatocellular carcinoma using multiplex quantitative analysis. J Transl Med. 18:3062020. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y, Qiao G, Tang J, Tang R, Guo H, Warwar S, Langdon WY, Tao L and Zhang J: Protein tyrosine phosphatase SHP-1 modulates T cell responses by controlling Cbl-b degradation. J Immunol. 195:4218–4227. 1950. View Article : Google Scholar : PubMed/NCBI | |
Kroy DC, Ciuffreda D, Cooperrider JH, Tomlinson M, Hauck GD, Aneja J, Berger C, Wolski D, Carrington M, Wherry EJ, et al: Liver environment and HCV replication affect human T-cell phenotype and expression of inhibitory receptors. Gastroenterology. 146:550–561. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK and Anderson AC: Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 207:2187–2194. 2010. View Article : Google Scholar : PubMed/NCBI | |
Viganò S, Banga R, Bellanger F, Pellaton C, Farina A, Comte D, Harari A and Perreau M: CD160-associated CD8 T-cell functional impairment is independent of PD-1 expression. PLoS Pathog. 10:e10043802014. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Zheng B, Goswami S, Meng L, Zhang D, Cao C, Li T, Zhu F, Ma L, Zhang Z, et al: PD1Hi CD8+ T cells correlate with exhausted signature and poor clinical outcome in hepatocellular carcinoma. J Immunother Cancer. 7:3312019. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Wu L, Zhong Y, Zhou K, Hou Y, Wang Z, Zhang Z, Xie J, Wang C, Chen D, et al: Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell. 184:404–421.e16. 2021. View Article : Google Scholar : PubMed/NCBI | |
Peng R, Liu S, You W, Huang Y, Hu C, Gao Y, Jia X, Li G, Xu Z and Chen Y: Gastric microbiome alterations are associated with decreased CD8+ tissue-resident memory T cells in the tumor microenvironment of gastric cancer. Cancer Immunol Res. 10:1224–1240. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Zhang J, Fan X, Zheng Z, Jiang X, Chen D, Lu Y, Li Y, Wang M, Hu M, et al: Immune profiling in gastric cancer reveals the dynamic landscape of immune signature underlying tumor progression. Front Immunol. 13:9355522022. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Fang D, Liu H, Ou X, Zhang C, Zhao Z, Zhao S, Peng J, Cai S, He Y and Xu J: PMN-MDSCs accumulation induced by CXCL1 promotes CD8+ T cells exhaustion in gastric cancer. Cancer Lett. 532:2155982022. View Article : Google Scholar : PubMed/NCBI | |
Yagi T, Baba Y, Ishimoto T, Iwatsuki M, Miyamoto Y, Yoshida N, Watanabe M and Baba H: PD-L1 expression, tumor-infiltrating lymphocytes, and clinical outcome in patients with surgically resected esophageal cancer. Ann Surg. 269:471–478. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tanaka R, Kimura K, Eguchi S, Tauchi J, Shibutani M, Shinkawa H, Ohira GO, Yamazoe S, Tanaka S, Amano R, et al: Preoperative neutrophil-to-lymphocyte ratio predicts tumor-infiltrating CD8+ T cells in biliary tract cancer. Anticancer Res. 40:2881–2887. 2020. View Article : Google Scholar : PubMed/NCBI | |
Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KWW, Yeong JPS, Nahar R, Zhang T, Kared H, et al: Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 557:575–579. 2018. View Article : Google Scholar : PubMed/NCBI | |
Carlisle JW, Jansen CS, Cardenas MA, Sobierajska E, Reyes AM, Greenwald R, Del Balzo L, Prokhnevska N, Kucuk O, Carthon BC, et al: Clinical outcome following checkpoint therapy in renal cell carcinoma is associated with a burst of activated CD8 T cells in blood. J Immunother Cancer. 10:e0048032022. View Article : Google Scholar : PubMed/NCBI | |
Giese MA, Hind LE and Huttenlocher A: Neutrophil plasticity in the tumor microenvironment. Blood. 133:2159–2167. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gómez-Aleza C, Nguyen B, Yoldi G, Ciscar M, Barranco A, Hernández-Jiménez E, Maetens M, Salgado R, Zafeiroglou M, Pellegrini P, et al: Inhibition of RANK signaling in breast cancer induces an anti-tumor immune response orchestrated by CD8+ T cells. Nat Commun. 11:63352020. View Article : Google Scholar : PubMed/NCBI | |
Kaltenmeier C, Yazdani HO, Morder K, Geller DA, Simmons RL and Tohme S: Neutrophil extracellular traps promote T cell exhaustion in the tumor microenvironment. Front Immunol. 12:7852222021. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Huang F, Zhao J, Huang P, Tan J, Huang M, Ma R, Xiao Y, He S, Wang Z, et al: Tumor-infiltrated CD8+ T cell 10-gene signature related to clear cell renal cell carcinoma prognosis. Front Immunol. 13:9309212022. View Article : Google Scholar : PubMed/NCBI | |
Sommer U, Ebersbach C, Beier AK, Baretton GB, Thomas C, Borkowetz A and Erb HHH: Influence of androgen deprivation therapy on the PD-L1 expression and immune activity in prostate cancer tissue. Front Mol Biosci. 9:8783532022. View Article : Google Scholar : PubMed/NCBI | |
Laumont CM, Wouters MCA, Smazynski J, Gierc NS, Chavez EA, Chong LC, Thornton S, Milne K, Webb JR, Steidl C and Nelson BH: Single-cell profiles and prognostic impact of tumor-infiltrating lymphocytes coexpressing CD39, CD103, and PD-1 in ovarian cancer. Clin Cancer Res. 27:4089–4100. 2021. View Article : Google Scholar : PubMed/NCBI | |
Goode EL, Block MS, Kalli KR, Vierkant RA, Chen W, Fogarty ZC, Gentry-Maharaj A, Tołoczko A, Hein A, Bouligny AL, et al: Dose-response association of CD8+ tumor-infiltrating lymphocytes and survival time in high-grade serous ovarian cancer. JAMA Oncol. 3:e1732902017. View Article : Google Scholar : PubMed/NCBI | |
Wan C, Keany MP, Dong H, Al-Alem LF, Pandya UM, Lazo S, Boehnke K, Lynch KN, Xu R, Zarrella DT, et al: Enhanced efficacy of simultaneous PD-1 and PD-L1 immune checkpoint blockade in high-grade serous ovarian cancer. Cancer Res. 81:158–173. 2021. View Article : Google Scholar : PubMed/NCBI | |
Krieg C, Nowicka M, Guglietta S, Schindler S, Hartmann FJ, Weber LM, Dummer R, Robinson MD, Levesque MP and Becher B: High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med. 24:144–153. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jacquelot N, Roberti MP, Enot DP, Rusakiewicz S, Ternès N, Jegou S, Woods DM, Sodré AL, Hansen M, Meirow Y, et al: Predictors of responses to immune checkpoint blockade in advanced melanoma. Nat Commun. 8:5922017. View Article : Google Scholar : PubMed/NCBI | |
Hegde PS and Chen DS: Top 10 challenges in cancer immunotherapy. Immunity. 52:17–35. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kalbasi A and Ribas A: Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol. 20:25–39. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD and Ahmed R: Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 188:2205–2213. 1998. View Article : Google Scholar : PubMed/NCBI | |
Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ and Ahmed R: Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 439:682–687. 2006. View Article : Google Scholar : PubMed/NCBI | |
Blackburn SD, Shin H, Freeman GJ and Wherry EJ: Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade. Proc Natl Acad Sci USA. 105:15016–15021. 2008. View Article : Google Scholar : PubMed/NCBI | |
Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA and Wherry EJ: Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 10:29–37. 2009. View Article : Google Scholar : PubMed/NCBI | |
Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, Shan Q, Hale JS, Lee J, Nasti TH, et al: Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. 537:417–421. 2016. View Article : Google Scholar : PubMed/NCBI | |
Beltra JC, Manne S, Abdel-Hakeem MS, Kurachi M, Giles JR, Chen Z, Casella V, Ngiow SF, Khan O, Huang YJ, et al: Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. Immunity. 52:825–841.e8. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zander R, Schauder D, Xin G, Nguyen C, Wu X, Zajac A and Cui W: CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer. Immunity. 51:1028–1042.e4. 2019. View Article : Google Scholar : PubMed/NCBI |