Interplay between Wnt signaling molecules and exosomal miRNAs in breast cancer (Review)
- Authors:
- Hailong Li
- Xia Li
- Wei Du
-
Affiliations: Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan 415003, P.R. China - Published online on: June 28, 2024 https://doi.org/10.3892/or.2024.8766
- Article Number: 107
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J and Cardoso F: Breast cancer. Nat Rev Dis Primers. 5:662019. View Article : Google Scholar : PubMed/NCBI | |
Hachey SJ, Hatch CJ, Gaebler D, Mocherla A, Nee K, Kessenbrock K and Hughes CCW: Targeting tumor-stromal interactions in triple-negative breast cancer using a human vascularized micro-tumor model. Breast Cancer Res. 26:52024. View Article : Google Scholar : PubMed/NCBI | |
Abeni E, Grossi I, Marchina E, Coniglio A, Incardona P, Cavalli P, Zorzi F, Chiodera PL, Paties CT, Crosatti M, et al: DNA methylation variations in familial female and male breast cancer. Oncol Lett. 21:4682021. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021. View Article : Google Scholar : PubMed/NCBI | |
McDonald ES, Clark AS, Tchou J, Zhang P and Freedman GM: Clinical diagnosis and management of breast cancer. J Nucl Med. 57 (Suppl 1):9S–16S. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rim EY, Clevers H and Nusse R: The wnt pathway: From signaling mechanisms to synthetic modulators. Annu Rev Biochem. 91:571–598. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Lin X, Wei L, Wu Y, Xu L, Wu L, Wei X, Zhao S, Zhu X and Xu F: A framework for Frizzled-G protein coupling and implications to the PCP signaling pathways. Cell Discov. 10:32024. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Ma F, Arai S, Wang Y, Varkaris A, Poluben L, Voznesensky O, Xie F, Zhang X, Yuan X and Balk SP: WNT5a signaling through ROR2 activates the hippo pathway to suppress YAP1 activity and tumor growth. Cancer Res. 83:1016–1030. 2023. View Article : Google Scholar : PubMed/NCBI | |
Neiheisel A, Kaur M, Ma N, Havard P and Shenoy AK: Wnt pathway modulators in cancer therapeutics: An update on completed and ongoing clinical trials. Int J Cancer. 150:727–740. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nusse R and Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 31:99–109. 1982. View Article : Google Scholar : PubMed/NCBI | |
van Ooyen A and Nusse R: Structure and nucleotide sequence of the putative mammary oncogene int-1; proviral insertions leave the protein-encoding domain intact. Cell. 39:233–240. 1984. View Article : Google Scholar : PubMed/NCBI | |
Wend P, Runke S, Wend K, Anchondo B, Yesayan M, Jardon M, Hardie N, Loddenkemper C, Ulasov I, LesniakM S, et al: WNT10B/β-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer. EMBO Mol Med. 5:264–279. 2013. View Article : Google Scholar : PubMed/NCBI | |
Katkat E, Demirci Y, Heger G, Karagulle D, Papatheodorou I, Brazma A and Ozhan G: Canonical Wnt and TGF-β/BMP signaling enhance melanocyte regeneration but suppress invasiveness, migration, and proliferation of melanoma cells. Front Cell Dev Biol. 11:12979102023. View Article : Google Scholar : PubMed/NCBI | |
Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M and Wrana JL: Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 151:1542–1556. 2012. View Article : Google Scholar : PubMed/NCBI | |
Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF, Nobre R, Avivar-Valderas A, Nagi C, Girnius N, Davis RJ, et al: Mechanism of early dissemination and metastasis in Her2(+) mammary cancer. Nature. 540:588–592. 2016. View Article : Google Scholar : PubMed/NCBI | |
Malladi S, Macalinao DG, Jin X, He L, Basnet H, Zou Y, de Stanchina E and Massagué J: Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell. 165:45–60. 2016. View Article : Google Scholar : PubMed/NCBI | |
Leung CON, Yang Y, Leung RWH, So KKH, Guo HJ, Lei MML, Muliawan GK, Gao Y, Yu QQ, Yun JP, et al: Broad-spectrum kinome profiling identifies CDK6 upregulation as a driver of lenvatinib resistance in hepatocellular carcinoma. Nat Commun. 14:66992023. View Article : Google Scholar : PubMed/NCBI | |
Piva M, Domenici G, Iriondo O, Rábano M, Simões BM, Comaills V, Barredo I, López-Ruiz JA, Zabalza I, Kypta R and Vivanco M: Sox2 promotes tamoxifen resistance in breast cancer cells. EMBO Mol Med. 6:66–79. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Wang Y, Zeng L, Wu Y, Deng J, Zhang Q, Lin Y, Li J, Kang T, Tao M, et al: Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell. 25:210–225. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kahn M: Can we safely target the WNT pathway? Nat Rev Drug Discov. 13:513–532. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pegtel DM and Gould SJ: Exosomes. Annu Rev Biochem. 88:487–514. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen XJ, Guo CH, Wang ZC, Yang Y, Pan YH, Liang JY, Sun MG, Fan LS, Liang L and Wang W: Hypoxia-induced ZEB1 promotes cervical cancer immune evasion by strengthening the CD47-SIRPα axis. Cell Commun Signal. 22:152024. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Odenthal M and Fries JW: Exosomes as miRNA carriers: Formation-function-future. Int J Mol Sci. 17:20282016. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Sun HT, Wang S, Huang SL, Zheng Y, Wang CQ, Hu BY, Qin W, Zou TT, Fu Y, et al: Isolation and characterization of exosomes for cancer research. J Hematol Oncol. 13:1522020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Han Y, Meng Y and Yin L: Small RNA-big impact: Exosomal miRNAs in mitochondrial dysfunction in various disease. RNA Biol. 21:1–20. 2024. View Article : Google Scholar | |
Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, Song J, Li Z, Zhang Z and Yuan W: Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 17:1472018. View Article : Google Scholar : PubMed/NCBI | |
Lakshmi S, Hughes TA and Priya S: Exosomes and exosomal RNAs in breast cancer: A status update. Eur J Cancer. 144:252–268. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Jin LJ and Zhang XY: Exosomal miRNA-205 promotes breast cancer chemoresistance and tumorigenesis through E2F1. Aging (Albany NY). 13:18498–18514. 2021. View Article : Google Scholar : PubMed/NCBI | |
Scognamiglio I, Cocca L, Puoti I, Palma F, Ingenito F, Quintavalle C, Affinito A, Roscigno G, Nuzzo S, Chianese RV, et al: Exosomal microRNAs synergistically trigger stromal fibroblasts in breast cancer. Mol Ther Nucleic Acids. 28:17–31. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhan T, Rindtorff N and Boutros M: Wnt signaling in cancer. Oncogene. 36:1461–1473. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wellenstein MD, Coffelt SB, Duits DEM, van Miltenburg MH, Slagter M, de Rink I, Henneman L, Kas SM, Prekovic S, Hau CS, et al: Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature. 572:538–542. 2019. View Article : Google Scholar : PubMed/NCBI | |
Staal FJ and Clevers HC: WNT signalling and haematopoiesis: A WNT-WNT situation. Nat Rev Immunol. 5:21–30. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sidaway P: Prostate cancer: Wnt signalling induces resistance. Nat Rev Urol. 12:5972015. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Zhang M, Xu F and Jiang S: Wnt signaling in breast cancer: Biological mechanisms, challenges and opportunities. Mol Cancer. 19:1652020. View Article : Google Scholar : PubMed/NCBI | |
Xiao Q and Chen Z, Jin X, Mao R and Chen Z: The many postures of noncanonical Wnt signaling in development and diseases. Biomed Pharmacother. 93:359–369. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ozawa M, Baribault H and Kemler R: The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 8:1711–1717. 1989. View Article : Google Scholar : PubMed/NCBI | |
McCrea PD and Gumbiner BM: Purification of a 92-kDa cytoplasmic protein tightly associated with the cell-cell adhesion molecule E-cadherin (uvomorulin). Characterization and extractability of the protein complex from the cell cytostructure. J Biol Chem. 266:4514–4520. 1991. View Article : Google Scholar : PubMed/NCBI | |
Zhan T, Chen M, Liu W, Han Z, Zhu Q, Liu M, Tan J, Liu J, Chen X, Tian X and Huang X: MiR-455-3p inhibits gastric cancer progression by repressing Wnt/β-catenin signaling through binding to ARMC8. BMC Med Genomics. 16:1552023. View Article : Google Scholar : PubMed/NCBI | |
Yang Y and Mlodzik M: Wnt-Frizzled/planar cell polarity signaling: Cellular orientation by facing the wind (Wnt). Annu Rev Cell Dev Biol. 31:623–646. 2015. View Article : Google Scholar : PubMed/NCBI | |
Katoh M: WNT/PCP signaling pathway and human cancer (review). Oncol Rep. 14:1583–1588. 2005.PubMed/NCBI | |
Saneyoshi T, Kume S, Amasaki Y and Mikoshiba K: The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature. 417:295–299. 2002. View Article : Google Scholar : PubMed/NCBI | |
Liang H, Chen Q, Coles AH, Anderson SJ, Pihan G, Bradley A, Gerstein R, Jurecic R and Jones SN: Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell. 4:349–360. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhuang X, Zhang H, Li X, Li X, Cong M, Peng F, Yu J, Zhang X, Yang Q and Hu G: Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat Cell Biol. 19:1274–1285. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mahdi T, Hänzelmann S, Salehi A, Muhammed SJ, Reinbothe TM, Tang Y, Axelsson AS, Zhou Y, Jing X, Almgren P, et al: Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes. Cell Metab. 16:625–633. 2012. View Article : Google Scholar : PubMed/NCBI | |
Slusarski DC, Corces VG and Moon RT: Interaction of wnt and a frizzled homologue triggers g-protein-linked phosphatidylinositol signalling. Nature. 390:410–413. 1997. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Xiao X, Wang J, Dasari S, Pepin D, Nephew KP, Zamarin D and Mitra AK: Cancer associated fibroblasts serve as an ovarian cancer stem cell niche through noncanonical Wnt5a signaling. NPJ Precis Oncol. 8:72024. View Article : Google Scholar : PubMed/NCBI | |
Ge J, Yu YJ, Li JY, Li MY, Xia SM, Xue K, WangS Y and Yang C: Activating Wnt/β-catenin signaling by autophagic degradation of APC contributes to the osteoblast differentiation effect of soy isoflavone on osteoporotic mesenchymal stem cells. Acta Pharmacol Sin. 44:1841–1855. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Zhang E, Gao H, Shang C, Yin M, Ma M, Liu Y, Zhang X and Li X: Resistomycin inhibits Wnt/β-catenin signaling to induce the apoptotic death of human colorectal cancer cells. Mar Drugs. 21:6222023. View Article : Google Scholar : PubMed/NCBI | |
Rui Q, Dong S, Jiang W and Wang D: Response of canonical Wnt/β-catenin signaling pathway in the intestine to microgravity stress in Caenorhabditis elegans. Ecotoxicol Environ Saf. 186:1097822019. View Article : Google Scholar : PubMed/NCBI | |
Šopin T, Liška F, Kučera T, Cmarko D and Vacík T: Lysine demethylase KDM2A promotes proteasomal degradation of TCF/LEF transcription factors in a neddylation-dependent manner. Cells. 12:26202023. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Yang Z, Yuan H, Li Z, Li Y, Liu Q and Chen J: PCDH10 inhibits cell proliferation of multiple myeloma via the negative regulation of the Wnt/β-catenin/BCL-9 signaling pathway. Oncol Rep. 34:747–754. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Zhang R, Wang X, Zheng Y, Jia H, Li H, Wang J, Wang N, Xiang F and Li Y: Silencing of KIF3B suppresses breast cancer progression by regulating EMT and Wnt/β-catenin signaling. Front Oncol. 10:5974642020. View Article : Google Scholar : PubMed/NCBI | |
Malla RR and Kiran P: Tumor microenvironment pathways: Cross regulation in breast cancer metastasis. Genes Dis. 9:310–324. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Jin Z, Master RP, Maharjan CK, Carelock ME, Reccoppa TBA, Kim MC, Kolb R and Zhang W: Breast cancer stem cells: Signaling pathways, cellular interactions, and therapeutic implications. Cancers (Basel). 14:32872022. View Article : Google Scholar : PubMed/NCBI | |
Pastushenko I and Blanpain C: EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dri A, Arpino G, Bianchini G, Curigliano G, Danesi R, De Laurentiis M, Del Mastro L, Fabi A, Generali D, Gennari A, et al: Puglisi, Breaking barriers in triple negative breast cancer (TNBC)-Unleashing the power of antibody-drug conjugates (ADCs). Cancer Treat Rev. 123:1026722024. View Article : Google Scholar : PubMed/NCBI | |
Park M, Kim D, Ko S, Kim A, Mo K and Yoon H: Breast cancer metastasis: Mechanisms and therapeutic implications. Int J Mol Sci. 23:68062022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Jin K, van Pelt GW, van Dam H, Yu X, Mesker WE, Dijke PT, Zhou F and Zhang L: c-Myb enhances breast cancer invasion and metastasis through the Wnt/β-catenin/Axin2 pathway. Cancer Res. 76:3364–3375. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A and Weinberg RA: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 117:927–939. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, Kaplan JB, Chae YK and Giles FJ: Wnt/beta-catenin pathway: Modulating anticancer immune response. J Hematol Oncol. 10:1012017. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Chen F, Yang N, Xu L, Yu X, Wu M and Zhou Y: DEPDC1B-mediated USP5 deubiquitination of β-catenin promotes breast cancer metastasis by activating the wnt/β-catenin pathway. Am J Physiol Cell Physiol. 325:C833–C848. 2023. View Article : Google Scholar : PubMed/NCBI | |
Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, Krishnan V, Hatakeyama J, Dorigo O, Barkal LJ and Weissman IL: CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 572:392–396. 2019. View Article : Google Scholar : PubMed/NCBI | |
Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD and Lindberg FP: Role of CD47 as a marker of self on red blood cells. Science. 288:2051–2054. 2000. View Article : Google Scholar : PubMed/NCBI | |
Shulewitz M, Soloviev I, Wu T, Koeppen H, Polakis P and Sakanaka C: Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer. Oncogene. 25:4361–4369. 2006. View Article : Google Scholar : PubMed/NCBI | |
Noman MZ, Van Moer K, Marani V, Gemmill RM, Tranchevent LC, Azuaje F, Muller A, Chouaib S, Thiery JP, Berchem G and Janji B: CD47 is a direct target of SNAI1 and ZEB1 and its blockade activates the phagocytosis of breast cancer cells undergoing EMT. Oncoimmunology. 7:e13454152018. View Article : Google Scholar : PubMed/NCBI | |
Blondeaux E, Arecco L, Punie K, Graffeo R, Toss A, De Angelis C, Trevisan L, Buzzatti G, Linn SC, Dubsky P, et al: Germline TP53 pathogenic variants and breast cancer: A narrative review. Cancer Treat Rev. 114:1025222023. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Shi D, Zou X, Wu X, Huang S, Kong L, Yang M, Xiao Y, Chen B, Chen X, et al: BAG2 drives chemoresistance of breast cancer by exacerbating mutant p53 aggregate. Theranostics. 13:339–354. 2023. View Article : Google Scholar : PubMed/NCBI | |
Grote I, Bartels S, Kandt L, Bollmann L, Christgen H, Gronewold M, Raap M, Lehmann U, Gluz O, Nitz U, et al: TP53 mutations are associated with primary endocrine resistance in luminal early breast cancer. Cancer Med. 10:8581–8594. 2021. View Article : Google Scholar : PubMed/NCBI | |
Vasan N, Baselga J and Hyman DM: A view on drug resistance in cancer. Nature. 575:299–309. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bai X, Ni J, Beretov J, Graham PA and Li Y: Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev. 69:152–163. 2018. View Article : Google Scholar : PubMed/NCBI | |
VanderVorst K, Dreyer CA, Hatakeyama J, Bell GRR, Learn JA, Berg AL, Hernandez M, Lee H, Collins SR and Carraway KL III: Vangl-dependent Wnt/planar cell polarity signaling mediates collective breast carcinoma motility and distant metastasis. Breast Cancer Res. 25:522023. View Article : Google Scholar : PubMed/NCBI | |
Puvirajesinghe TM, Bertucci F, Jain A, Scerbo P, Belotti E, Audebert S, Sebbagh M, Lopez M, Brech A, Finetti P, et al: Identification of p62/SQSTM1 as a component of non-canonical Wnt VANGL2-JNK signalling in breast cancer. Nat Commun. 7:103182016. View Article : Google Scholar : PubMed/NCBI | |
Courtwright A, Siamakpour-Reihani S, Arbiser JL, Banet N, Hilliard E, Fried L, Livasy C, Ketelsen D, Nepal DB, Perou CM, et al: Secreted frizzle-related protein 2 stimulates angiogenesis via a calcineurin/NFAT signaling pathway. Cancer Res. 69:4621–4628. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020. View Article : Google Scholar : PubMed/NCBI | |
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al: CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 18:912019. View Article : Google Scholar : PubMed/NCBI | |
Li BL, Lu W, Qu JJ, Ye L, Du GQ and Wan XP: Loss of exosomal miR-148b from cancer-associated fibroblasts promotes endometrial cancer cell invasion and cancer metastasis. J Cell Physiol. 234:2943–2953. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim CK and Pak TR: miRNA degradation in the mammalian brain. Am J Physiol Cell Physiol. 319:C624–C629. 2020. View Article : Google Scholar : PubMed/NCBI | |
Califf RM: Biomarker definitions and their applications. Exp Biol Med (Maywood). 243:213–221. 2018. View Article : Google Scholar : PubMed/NCBI | |
Petroušková P, Hudáková N, Maloveská M, Humeník F and Cizkova D: Non-Exosomal and exosome-derived miRNAs as promising biomarkers in canine mammary cancer. Life (Basel). 12:5242022.PubMed/NCBI | |
Li H and Tie XJ: Exploring research progress in studying serum exosomal miRNA-21 as a molecular diagnostic marker for breast cancer. Clin Transl Oncol. 11:10.1007/s12094–024-03454-z. 2024. | |
Liu M, Mo F, Song X, He Y, Yuan Y, Yan J, Yang Y, Huang J and Zhang S: Exosomal hsa-miR-21-5p is a biomarker for breast cancer diagnosis. PeerJ. 9:e121472021. View Article : Google Scholar : PubMed/NCBI | |
Li S, Zhang M, Xu F, Wang Y and Leng D: Detection significance of miR-3662, miR-146a, and miR-1290 in serum exosomes of breast cancer patients. J Cancer Res Ther. 17:749–755. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang W and Luo YP: MicroRNAs in breast cancer: Oncogene and tumor suppressors with clinical potential. J Zhejiang Univ Sci B. 16:18–31. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Mao JH, Wang BY, Wang LX, Wen HY, Xu LJ, Fu JX and Yang H: Exosomal miR-1910-3p promotes proliferation, metastasis, and autophagy of breast cancer cells by targeting MTMR3 and activating the NF-κB signaling pathway. Cancer Lett. 489:87–99. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Li M, Cui S, Wang D, Zhang CY, Zen K and Li L: Shikonin inhibits the proliferation of human breast cancer cells by reducing tumor-derived exosomes. Molecules. 21:7772016. View Article : Google Scholar : PubMed/NCBI | |
Viallard C and Larrivée B: Tumor angiogenesis and vascular normalization: Alternative therapeutic targets. Angiogenesis. 20:409–426. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jung KO, Youn H, Lee CH, Kang KW and Chung JK: Visualization of exosome-mediated miR-210 transfer from hypoxic tumor cells. Oncotarget. 8:9899–9910. 2017. View Article : Google Scholar : PubMed/NCBI | |
Baroni S, Romero-Cordoba S, Plantamura I, Dugo M, D'Ippolito E, Cataldo A, Cosentino G, Angeloni V, Rossini A, Daidone MG and Iorio MV: Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis. 7:e23122016. View Article : Google Scholar : PubMed/NCBI | |
Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J, Lancaster JM, Coppola D, Sellers TA, Djeu JY and Cheng JQ: Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene. 33:679–689. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kontomanolis E, Mitrakas A, Giatromanolaki A, Kareli D, Panteliadou M, Pouliliou S and Koukourakis MI: A pilot study on plasma levels of micro-RNAs involved in angiogenesis and vascular maturation in patients with breast cancer. Med Oncol. 34:202017. View Article : Google Scholar : PubMed/NCBI | |
Luengo-Gil G, Gonzalez-Billalabeitia E, Perez-Henarejos SA, Manzano EN, Chaves-Benito A, Garcia-Martinez E, Garcia-Garre E, Vicente V and Ayala de la Peña F: Angiogenic role of miR-20a in breast cancer. PLoS One. 13:e01946382018. View Article : Google Scholar : PubMed/NCBI | |
Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK, Kim YG, Jang JY and Kim CW: Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One. 8:e842562013. View Article : Google Scholar : PubMed/NCBI | |
Donnarumma E, Fiore D, Nappa M, Roscigno G, Adamo A, Iaboni M, Russo V, Affinito A, Puoti I, Quintavalle C, et al: Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget. 8:19592–19608. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yan Z, Sheng Z, Zheng Y, Feng R, Xiao Q, Shi L, Li H, Yin C, Luo H, Hao C, et al: Cancer-associated fibroblast-derived exosomal miR-18b promotes breast cancer invasion and metastasis by regulating TCEAL7. Cell Death Dis. 12:11202021. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Wei H, Wang J, Li L, Chen A and Li Z: MicroRNA-181d-5p-containing exosomes derived from CAFs promote EMT by regulating CDX2/HOXA5 in breast cancer. Mol Ther Nucleic Acids. 19:654–667. 2020. View Article : Google Scholar : PubMed/NCBI | |
Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, et al: A MicroRNA targeting dicer for metastasis control. Cell. 141:1195–1207. 2010. View Article : Google Scholar : PubMed/NCBI | |
Weng YS, Tseng HY, Chen YA, Shen PC, Al Haq AT, Chen LM, Tung YC and Hsu HL: MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol Cancer. 18:422019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Lai X, Yue Q, Cao F, Zhang Y, Sun Y, Tian J, Lu Y, He L, Bai J and Wei Y: Bone marrow mesenchymal stem cells-derived exosomal microRNA-16-5p restrains epithelial-mesenchymal transition in breast cancer cells via EPHA1/NF-κB signaling axis. Genomics. 114:1103412022. View Article : Google Scholar : PubMed/NCBI | |
Liang Z, Liu L, Gao R, Che C and Yang G: Downregulation of exosomal miR-7-5p promotes breast cancer migration and invasion by targeting RYK and participating in the atypical WNT signalling pathway. Cell Mol Biol Lett. 27:882022. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, Liu B, Su L and Qiu Z: Correction: Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res. 80:9222020. View Article : Google Scholar : PubMed/NCBI | |
Chen WX, Wang DD, Zhu B, Zhu YZ, Zheng L, Feng ZQ and Qin XH: Exosomal miR-222 from adriamycin-resistant MCF-7 breast cancer cells promote macrophages M2 polarization via PTEN/Akt to induce tumor progression. Aging (Albany NY). 13:10415–10430. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gordon S and Martinez FO: Alternative activation of macrophages: Mechanism and functions. Immunity. 32:593–604. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pakravan K, Mossahebi-Mohammadi M, Ghazimoradi MH, Cho WC, Sadeghizadeh M and Babashah S: Monocytes educated by cancer-associated fibroblasts secrete exosomal miR-181a to activate AKT signaling in breast cancer cells. J Transl Med. 20:5592022. View Article : Google Scholar : PubMed/NCBI | |
Hao C, Sheng Z, Wang W, Feng R, Zheng Y, Xiao Q and Zhang B: Tumor-derived exosomal miR-148b-3p mediates M2 macrophage polarization via TSC2/mTORC1 to promote breast cancer migration and invasion. Thorac Cancer. 14:1477–1491. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yao X, Tu Y, Xu Y, Guo Y, Yao F and Zhang X: Endoplasmic reticulum stress-induced exosomal miR-27a-3p promotes immune escape in breast cancer via regulating PD-L1 expression in macrophages. J Cell Mol Med. 24:9560–9573. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Zhang W, Zhang R, Liu P, Ye Y, Yu W, Guo X and Yu J: Cancer exosome-derived miR-9 and miR-181a promote the development of early-stage MDSCs via interfering with SOCS3 and PIAS3 respectively in breast cancer. Oncogene. 39:4681–4694. 2020. View Article : Google Scholar : PubMed/NCBI | |
Salehi M, Vafadar A, Khatami SH, Taheri-Anganeh M, Vakili O, Savardashtaki A, Negahdari B, Naeli P, Behrouj H, Ghasemi H and Movahedpour A: Gastrointestinal cancer drug resistance: the role of exosomal miRNAs. Mol Biol Rep. 49:2421–2432. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hu W, Tan C, He Y, Zhang G, Xu Y and Tang J: Functional miRNAs in breast cancer drug resistance. Onco Targets Ther. 11:1529–1541. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sachdeva M, Wu H, Ru P, Hwang L, Trieu V and Mo YY: MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene. 30:822–831. 2011. View Article : Google Scholar : PubMed/NCBI | |
Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, Jacob S and Majumder S: MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem. 283:29897–29903. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Lai X, Yu S, Chen S, Ma Y, Zhang Y, Li H, Zhu X, Yao L and Zhang J: Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat. 147:423–431. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gao M, Miao L, Liu M, Li C, Yu C, Yan H, Yin Y, Wang Y, Qi X and Ren J: miR-145 sensitizes breast cancer to doxorubicin by targeting multidrug resistance-associated protein-1. Oncotarget. 7:59714–59726. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sueta A, Yamamoto Y, Tomiguchi M, Takeshita T, Yamamoto-Ibusuki M and Iwase H: Differential expression of exosomal miRNAs between breast cancer patients with and without recurrence. Oncotarget. 8:69934–69944. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhong Q, Nie Q, Wu R and Huang Y: Exosomal miR-18a-5p promotes EMT and metastasis of NPC cells via targeting BTG3 and activating the Wnt/β-catenin signaling pathway. Cell Cycle. 22:1544–1562. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xia Y, Wei K, Hu LQ, Zhou CE, Lu ZB, Zhan GS, Pan XL, Pan CF, Wang J, Wen W, et al: Exosome-mediated transfer of miR-1260b promotes cell invasion through Wnt/β-catenin signaling pathway in lung adenocarcinoma. J Cell Physiol. 235:6843–6853. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Zhen S, Jin L, Chen J, Han Y, Lei W and Zhang F: miRNA-1260b promotes breast cancer cell migration and invasion by downregulating CCDC134. Curr Gene Ther. 23:60–71. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Feng X, Zhou Y, Li P, Luo J, Zhang W, Zhou J, Zhao J, Wang D, Wang Y, et al: Exosomal miR-10527-5p inhibits migration, invasion, lymphangiogenesis and lymphatic metastasis by affecting Wnt/β-catenin signaling via Rab10 in esophageal squamous cell carcinoma. Int J Nanomedicine. 18:95–114. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Yang C, Chen S, Liu W, Liang J, He S and Hui J: Cancer-derived exosomal miR-375 targets DIP2C and promotes osteoblastic metastasis and prostate cancer progression by regulating the Wnt signaling pathway. Cancer Gene Ther. 30:437–449. 2023.PubMed/NCBI | |
Li H, Xie C, Lu Y, Chang K, Guan F and Li X: Exosomal mir92a promotes cytarabine resistance in myelodysplastic syndromes by activating Wnt/β-catenin signal pathway. Biomolecules. 12:14482022. View Article : Google Scholar : PubMed/NCBI | |
Yue X, Lan F and Xia T: Hypoxic glioma cell-secreted exosomal miR-301a activates Wnt/β-catenin signaling and promotes radiation resistance by targeting TCEAL7. Mol Ther. 27:1939–1949. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yue X, Cao D, Lan F, Pan Q, Xia T and Yu H: MiR-301a is activated by the Wnt/β-catenin pathway and promotes glioma cell invasion by suppressing SEPT7. Neuro Oncol. 18:1288–1296. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang L, He M, Fu L and Jin Y: Exosomal release of microRNA-454 by breast cancer cells sustains biological properties of cancer stem cells via the PRRT2/Wnt axis in ovarian cancer. Life Sci. 257:1180242020. View Article : Google Scholar : PubMed/NCBI | |
Fang F, Guo C, Zheng W, Wang Q and Zhou L: Exosome-mediated transfer of miR-1323 from cancer-associated fibroblasts confers radioresistance of c33a cells by targeting PABPN1 and activating Wnt/β-catenin signaling pathway in cervical cancer. Reprod Sci. 29:1809–1821. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shan G, Zhou X, Gu J, Zhou D, Cheng W, Wu H, Wang Y, Tang T and Wang X: Downregulated exosomal microRNA-148b-3p in cancer associated fibroblasts enhance chemosensitivity of bladder cancer cells by downregulating the Wnt/β-catenin pathway and upregulating PTEN. Cell Oncol (Dordr). 44:45–59. 2021. View Article : Google Scholar : PubMed/NCBI |