Epithelial‑derived head and neck squamous tumourigenesis (Review)
- Authors:
- Charles Adolfu Shirima
- Coralia Bleotu
- Demetrios A. Spandidos
- Adel K. El‑Naggar
- Gratiela Gradisteanu Pircalabioru
- Ioannis Michalopoulos
-
Affiliations: Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece, Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States, eBio‑hub Research‑Center, University ‘Politehnica’ of Bucharest, Bucharest 061344, Romania - Published online on: August 21, 2024 https://doi.org/10.3892/or.2024.8800
- Article Number: 141
-
Copyright: © Shirima et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Brown JS, Amend SR, Austin RH, Gatenby RA, Hammarlund EU and Pienta KJ: Updating the definition of cancer. Mol Cancer Res. 21:1142–1147. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Szyfter K: Genetics and molecular biology of head and neck cancer. Biomolecules. 11:12932021. View Article : Google Scholar : PubMed/NCBI |
|
Jerjes WK, Upile T, Wong BJ, Betz CS, Sterenborg HJ, Witjes MJ, Berg K, van Veen R, Biel MA, El-Naggar AK, et al: The future of medical diagnostics: review paper. Head Neck Oncol. 3:382011. View Article : Google Scholar : PubMed/NCBI |
|
Ruffin AT, Li H, Vujanovic L, Zandberg DP, Ferris RL and Bruno TC: Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nat Rev Cancer. 23:173–188. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Langer CJ: Exploring biomarkers in head and neck cancer. Cancer. 118:3882–3892. 2012. View Article : Google Scholar : PubMed/NCBI |
|
Head and Neck Cancer Study Group (HNCSG), . Monden N, Asakage T, Kiyota N, Homma A, Matsuura K, Hanai N, Kodaira T, Zenda S, Fujii H, et al: A review of head and neck cancer staging system in the TNM classification of malignant tumors (eighth edition). Jpn J Clin Oncol. 49:589–595. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Field JK, Zoumpourlis V, Spandidos DA and Jones AS: p53 expression and mutations in squamous cell carcinoma of the head and neck: Expression correlates with the patients' use of tobacco and alcohol. Cancer Detect Prev. 18:197–208. 1994.PubMed/NCBI |
|
Barsouk A, Aluru JS, Rawla P, Saginala K and Barsouk A: Epidemiology, risk factors, and prevention of head and neck squamous cell carcinoma. Med Sci (Basel). 11:422023.PubMed/NCBI |
|
Watling DL, Gown AM and Coltrera MD: Overexpression of p53 in head and neck cancer. Head Neck. 14:437–444. 1992. View Article : Google Scholar : PubMed/NCBI |
|
Field JK, Spandidos DA, Malliri A, Gosney JR, Yiagnisis M and Stell PM: Elevated P53 expression correlates with a history of heavy smoking in squamous cell carcinoma of the head and neck. Br J Cancer. 64:573–577. 1991. View Article : Google Scholar : PubMed/NCBI |
|
Svider PF, Blasco MA, Raza SN, Shkoukani M, Sukari A, Yoo GH, Folbe AJ, Lin HS and Fribley AM: Head and neck cancer. Otolaryngol Head Neck Surg. 156:10–13. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Field JK, Spandidos DA and Stell PM: Overexpression of p53 gene in head-and-neck cancer, linked with heavy smoking and drinking. Lancet. 339:502–503. 1992. View Article : Google Scholar : PubMed/NCBI |
|
Steuer CE, El-Deiry M, Parks JR, Higgins KA and Saba NF: An update on larynx cancer. CA Cancer J Clin. 67:31–50. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Anderson G, Ebadi M, Vo K, Novak J, Govindarajan A and Amini A: An updated review on head and neck cancer treatment with radiation therapy. Cancers (Basel). 13:49122021. View Article : Google Scholar : PubMed/NCBI |
|
Jiang Z, Wu C, Zhao Y, Zhan Q, Wang K and Li Y: Global research trends in immunotherapy for head and neck neoplasms: A scientometric study. Heliyon. 9:e153092023. View Article : Google Scholar : PubMed/NCBI |
|
Pereira D, Martins D and Mendes F: Immunotherapy in head and neck cancer when, how, and why? Biomedicines. 10:21512022. View Article : Google Scholar : PubMed/NCBI |
|
Kleszcz R: Advantages of the combinatorial molecular targeted therapy of head and neck cancer-A step before anakoinosis-based personalized treatment. Cancers (Basel). 15:42472023. View Article : Google Scholar : PubMed/NCBI |
|
Hijazi MA, Gessner A and El-Najjar N: Repurposing of chronically used drugs in cancer therapy: A chance to grasp. Cancers (Basel). 15:31992023. View Article : Google Scholar : PubMed/NCBI |
|
Xia Y, Sun M, Huang H and Jin WL: Drug repurposing for cancer therapy. Signal Transduct Target Ther. 9:922024. View Article : Google Scholar : PubMed/NCBI |
|
Johnson FM, Janku F, Gouda MA, Tran HT, Kawedia JD, Schmitz D, Streefkerk H, Lee JJ, Andersen CR, Deng D, et al: Inhibition of the phosphatidylinositol-3 kinase pathway using bimiralisib in loss-of-function NOTCH1-Mutant head and neck cancer. Oncologist. 27:1004–e1926. 2022. View Article : Google Scholar : PubMed/NCBI |
|
Li C, Geng H, Ji L, Ma X, Yin Q and Xiong H: ESM-1: A novel tumor biomaker and its research advances. Anticancer Agents Med Chem. 19:1687–1694. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Wurzba S, Salo TA and Coletta RD: Editorial: Prognostic biomarkers for oral cancer. Front Oral Health. 3:9943872022. View Article : Google Scholar : PubMed/NCBI |
|
Wang HC, Yeh TJ, Chan LP, Hsu CM and Cho SF: Exploration of feasible immune biomarkers for immune checkpoint inhibitors in head and neck squamous cell carcinoma treatment in real World clinical practice. Int J Mol Sci. 21:76212020. View Article : Google Scholar : PubMed/NCBI |
|
El-Naggar A: Pathobiology of head and neck squamous tumorigenesis. Curr Cancer Drug Targets. 7:606–612. 2007. View Article : Google Scholar : PubMed/NCBI |
|
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes. Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI |
|
Curtius K, Wright NA and Graham TA: Evolution of premalignant disease. Cold Spring Harb Perspect Med. 7:a0265422017. View Article : Google Scholar : PubMed/NCBI |
|
Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES and Getz G: Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 505:495–501. 2014. View Article : Google Scholar : PubMed/NCBI |
|
Leshchiner I, Mroz EA, Cha J, Rosebrock D, Spiro O, Bonilla-Velez J, Faquin WC, Lefranc-Torres A, Lin DT, Michaud WA, et al: Inferring early genetic progression in cancers with unobtainable premalignant disease. Nat Cancer. 4:550–563. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE and Grandis JR: Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 6:922020. View Article : Google Scholar : PubMed/NCBI |
|
Mbeunkui F and Johann DJ Jr: Cancer and the tumor microenvironment: A review of an essential relationship. Cancer Chemother Pharmacol. 63:571–582. 2009. View Article : Google Scholar : PubMed/NCBI |
|
Krishnamurthy S, Dong Z, Vodopyanov D, Imai A, Helman JI, Prince ME, Wicha MS and Nör JE: Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res. 70:9969–9978. 2010. View Article : Google Scholar : PubMed/NCBI |
|
Vashisht S, Mishra H, Mishra PK, Ekielski A and Talegaonkar S: Structure, genome, infection cycle and clinical manifestations associated with human papillomavirus. Curr Pharm Biotechnol. 20:1260–1280. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Mehanna H, Taberna M, von Buchwald C, Tous S, Brooks J, Mena M, Morey F, Grønhøj C, Rasmussen JH, Garset-Zamani M, et al: Prognostic implications of p16 and HPV discordance in oropharyngeal cancer (HNCIG-EPIC-OPC): A multicentre, multinational, individual patient data analysis. Lancet Oncol. 24:239–251. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Roman BR and Aragones A: Epidemiology and incidence of HPV-related cancers of the head and neck. J Surg Oncol. 124:920–922. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Dokianakis DN, Papaefthimiou M, Tsiveleka A and Spandidos DA: High prevalence of HPV18 in correlation with ras gene mutations and clinicopathological parameters in cervical cancer studied from stained cytological smears. Oncol Rep. 6:1327–1331. 1999.PubMed/NCBI |
|
Galati L, Chiocca S, Duca D, Tagliabue M, Simoens C, Gheit T, Arbyn M and Tommasino M: HPV and head and neck cancers: Towards early diagnosis and prevention. Tumour Virus Res. 14:2002452022. View Article : Google Scholar : PubMed/NCBI |
|
Lechner M, Liu J, Masterson L and Fenton TR: HPV-associated oropharyngeal cancer: Epidemiology, molecular biology and clinical management. Nat Rev Clin Oncol. 19:306–327. 2022. View Article : Google Scholar : PubMed/NCBI |
|
El-Naggar AK and Westra WH: p16 expression as a surrogate marker for HPV-related oropharyngeal carcinoma: A guide for interpretative relevance and consistency. Head Neck. 34:459–461. 2011. View Article : Google Scholar : PubMed/NCBI |
|
Ramesh PS, Bovilla VR, Swamy VH, Manoli NN, Dasegowda KB, Siddegowda SM, Chandrashekarappa S, Somasundara VM, Kabekkodu SP, Rajesh R, et al: Human papillomavirus-driven repression of NRF2 signalling confers chemo-radio sensitivity and predicts prognosis in head and neck squamous cell carcinoma. Free Radic Biol Med. 205:234–243. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Holzinger D, Flechtenmacher C, Henfling N, Kaden I, Grabe N, Lahrmann B, Schmitt M, Hess J, Pawlita M and Bosch FX: Identification of oropharyngeal squamous cell carcinomas with active HPV16 involvement by immunohistochemical analysis of the retinoblastoma protein pathway. Int J Cancer. 133:1389–1399. 2013. View Article : Google Scholar : PubMed/NCBI |
|
Lechner M, Chakravarthy AR, Walter V, Masterson L, Feber A, Jay A, Weinberger PM, McIndoe RA, Forde CT, Chester K, et al: Frequent HPV-independent p16/INK4A overexpression in head and neck cancer. Oral Oncol. 83:32–37. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Kuhn JP, Schmid W, Korner S, Bochen F, Wemmert S, Rimbach H, Smola S, Radosa JC, Wagner M, Morris LGT, et al: HPV status as prognostic biomarker in head and neck cancer-which method fits the best for outcome prediction? Cancers (Basel). 13:47302021. View Article : Google Scholar : PubMed/NCBI |
|
Sánchez Barrueco A, González Galán F, Villacampa Aubá JM, Díaz Tapia G, Fernández Hernández S, Martín-Arriscado Arroba C, Cenjor Español C and Almodóvar Álvarez C: p16 influence on laryngeal squamous cell carcinoma relapse and survival. Otolaryngol Head Neck Surg. 160:1042–1047. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Chung CH, Zhang Q, Kong CS, Harris J, Fertig EJ, Harari PM, Wang D, Redmond KP, Shenouda G, Trotti A, et al: p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. J Clin Oncol. 32:3930–3938. 2014. View Article : Google Scholar : PubMed/NCBI |
|
Kori M and Arga KY: HPV16 status predicts potential protein biomarkers and therapeutics in head and neck squamous cell carcinoma. Virology. 582:90–99. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Wise-Draper TM, Bahig H, Tonneau M, Karivedu V and Burtness B: Current therapy for metastatic head and neck cancer: Evidence, opportunities, and challenges. Am Soc Clin Oncol Educ Book. 42:1–14. 2022.PubMed/NCBI |
|
Liloglou T, Scholes AG, Spandidos DA, Vaughan ED, Jones AS and Field JK: p53 mutations in squamous cell carcinoma of the head and neck predominate in a subgroup of former and present smokers with a low frequency of genetic instability. Cancer Res. 57:4070–4074. 1997.PubMed/NCBI |
|
Carpov D, Buiga R and Nagy VM: DNA damage response and potential biomarkers of radiosensitivity in head and neck cancers: clinical implications. Rom J Morphol Embryol. 64:5–13. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Wang J, Hu Y, Escamilla-Rivera V, Gonzalez CL, Tang L, Wang B, El-Naggar AK, Myers JN and Caulin C: Epithelial mutant p53 promotes resistance to Anti-PD-1-Mediated oral cancer immunoprevention in carcinogen-induced mouse models. Cancers (Basel). 13:14712021. View Article : Google Scholar : PubMed/NCBI |
|
Solomon B, Young RJ and Rischin D: Head and neck squamous cell carcinoma: Genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin Cancer Biol. 52((Pt 2)): 228–240. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Amenabar JM, Da Silva BM and Punyadeera C: Salivary protein biomarkers for head and neck cancer. Expert Rev Mol Diagn. 20:305–313. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Kampel L, Feldstein S, Tsuriel S, Hannes V, Carmel Neiderman NN, Horowitz G, Warshavsky A, Leider-Trejo L, Hershkovitz D and Muhanna N: Mutated TP53 in circulating tumor DNA as a risk level biomarker in head and neck squamous cell carcinoma patients. Biomolecules. 13:14182023. View Article : Google Scholar : PubMed/NCBI |
|
Yu R, Sun T, Zhang X, Li Z, Xu Y, Liu K, Shi Y, Wu X, Shao Y and Kong L: TP53 Co-Mutational Features and NGS-Calibrated immunohistochemistry threshold in gastric cancer. Onco Targets Ther. 14:4967–4978. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Peltonen JK, Helppi HM, Paakko P, Turpeenniemi-Hujanen T and Vahakangas KH: p53 in head and neck cancer: functional consequences and environmental implications of TP53 mutations. Head Neck Oncol. 2:362010. View Article : Google Scholar : PubMed/NCBI |
|
Field J, Malliri A, Butt S, Gosney J, Phillips D, Spandidos D and Jones A: P53 expression in end-stage squamous-cell carcinoma of the head and neck prior to chemotherapy treatment-expression correlates with a very poor clinical outcome. Int J Oncol. 3:431–435. 1993.PubMed/NCBI |
|
Field J, Malliri A, Jones A and Spandidos D: Mutations in the p53 gene at codon 249 are rare in squamous-cell carcinoma of the head and neck. Int J Oncol. 1:253–256. 1992.PubMed/NCBI |
|
Jagadeeshan S, Novoplansky OZ, Cohen O, Kurth I, Hess J, Rosenberg AJ, Grandis JR and Elkabets M: New insights into RAS in head and neck cancer. Biochim Biophys Acta Rev Cancer. 1878:1889632023. View Article : Google Scholar : PubMed/NCBI |
|
Novoplansky O, Jagadeeshan S, Regev O, Menashe I and Elkabets M: Worldwide prevalence and clinical characteristics of RAS mutations in head and neck cancer: A systematic review and meta-analysis. Front Oncol. 12:8389112022. View Article : Google Scholar : PubMed/NCBI |
|
Weidhaas JB, Harris J, Schaue D, Chen AM, Chin R, Axelrod R, El-Naggar AK, Singh AK, Galloway TJ, Raben D, et al: The KRAS-Variant and cetuximab response in head and neck squamous cell cancer: A secondary analysis of a Randomized clinical trial. JAMA Oncol. 3:483–491. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Rampias T, Giagini A, Siolos S, Matsuzaki H, Sasaki C, Scorilas A and Psyrri A: RAS/PI3K crosstalk and cetuximab resistance in head and neck squamous cell carcinoma. Clin Cancer Res. 20:2933–2946. 2014. View Article : Google Scholar : PubMed/NCBI |
|
Wang J, Al-Majid D, Brenner JC and Smith JD: Mutant HRas signaling and rationale for use of farnesyltransferase inhibitors in head and neck squamous cell carcinoma. Target Oncol. 18:643–655. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Coleman N, Marcelo KL, Hopkins JF, Khan NI, Du R, Hong L, Park E, Balsara B, Leoni M, Pickering C, et al: HRAS mutations define a distinct subgroup in head and neck squamous cell carcinoma. JCO Precis Oncol. 7:e22002112023. View Article : Google Scholar : PubMed/NCBI |
|
Sasaki E, Masago K, Fujita S, Hanai N and Yatabe Y: Frequent KRAS and HRAS mutations in squamous cell papillomas of the head and neck. J Pathol Clin Res. 6:154–159. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Papanikolaou V, Chrysovergis A, Mastronikolis S, Tsiambas E, Ragos V, Peschos D, Spyropoulou D, Pantos P, Niotis A, Mastronikolis N and Kyrodimos E: Impact of K-Ras Over-expression in laryngeal squamous cell carcinoma. In Vivo. 35:1611–1615. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Wei F, Wu Y, Wang Z, Li Y, Wang J, Shao G, Yang Y and Shi B: Diagnostic significance of DNA methylation of PTEN and DAPK in thyroid tumors. Clin Endocrinol (Oxf). 93:187–195. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Qiu R, Wang W, Li J and Wang Y: Roles of PTEN inactivation and PD-1/PD-L1 activation in esophageal squamous cell carcinoma. Mol Biol Rep. 49:6633–6645. 2022. View Article : Google Scholar : PubMed/NCBI |
|
Kim B, Kang SY, Kim D, Heo YJ and Kim KM: PTEN Protein Loss and Loss-of-Function mutations in gastric cancers: The relationship with microsatellite instability, EBV, HER2, and PD-L1 expression. Cancers (Basel). 12:17242020. View Article : Google Scholar : PubMed/NCBI |
|
Kerdjoudj M, De La Torre RA and Arnouk H: Characterization of DJ-1, PTEN, and p-Akt as prognostic biomarkers in the progression of oral squamous cell carcinoma. Cureus. 15:e344362023.PubMed/NCBI |
|
Squarize CH, Castilho RM, Abrahao AC, Molinolo A, Lingen MW and Gutkind JS: PTEN deficiency contributes to the development and progression of head and neck cancer. Neoplasia. 15:461–471. 2013. View Article : Google Scholar : PubMed/NCBI |
|
Blessy S, Sankar S and Girija AS: In silico analysis of key miRNAs and gene-network analysis of pten gene involved in head and neck cancer. J Surv Fish Sci. 10:198–204. 2023. |
|
Saintigny P, Mitani Y, Pytynia KB, Ferrarotto R, Roberts DB, Weber RS, Kies MS, Maity SN, Lin SH and El-Naggar AK: Frequent PTEN loss and differential HER2/PI3K signaling pathway alterations in salivary duct carcinoma: Implications for targeted therapy. Cancer. 124:3693–3705. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Jasphin SS, Desai D, Pandit S, Gonsalves NM, Nayak PB and Iype A: Immunohistochemical expression of phosphatase and tensin homolog in histologic gradings of oral squamous cell carcinoma. Contemp Clin Dent. 7:524–528. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Vidotto T, Melo CM, Lautert-Dutra W, Chaves LP, Reis RB and Squire JA: Pan-cancer genomic analysis shows hemizygous PTEN loss tumors are associated with immune evasion and poor outcome. Sci Rep. 13:50492023. View Article : Google Scholar : PubMed/NCBI |
|
Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, et al: The GeneCards Suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 54:1.30.1–1.30.33. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Cuylen S, Blaukopf C, Politi AZ, Müller-Reichert T, Neumann B, Poser I, Ellenberg J, Hyman AA and Gerlich DW: Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature. 535:308–312. 2016. View Article : Google Scholar : PubMed/NCBI |
|
MacCallum DE and Hall PA: The biochemical characterization of the DNA binding activity of pKi67. J Pathol. 191:286–298. 2000. View Article : Google Scholar : PubMed/NCBI |
|
Urruticoechea A, Smith IE and Dowsett M: Proliferation marker Ki-67 in early breast cancer. J Clin Oncol. 23:7212–7220. 2005. View Article : Google Scholar : PubMed/NCBI |
|
Kovesi G and Szende B: Changes in apoptosis and mitotic index, p53 and Ki67 expression in various types of oral leukoplakia. Oncology. 65:331–336. 2003. View Article : Google Scholar : PubMed/NCBI |
|
Hellgren LS, Stenman A, Paulsson JO, Höög A, Larsson C, Zedenius J and Juhlin CC: Prognostic Utility of the Ki-67 labeling index in follicular thyroid tumors: A 20-Year experience from a tertiary thyroid center. Endocr Pathol. 33:231–242. 2022. View Article : Google Scholar : PubMed/NCBI |
|
Ahmed MW, Kayani MA, Shabbir G, Ali SM, Shinwari WU and Mahjabeen I: Expression of PTEN and its correlation with proliferation marker Ki-67 in head and neck cancer. Int J Biol Markers. 31:e193–e203. 2016. View Article : Google Scholar : PubMed/NCBI |
|
He QY, Jin F, Li YY, Wu WL, Long JH, Luo XL, Gong XY, Chen XX, Bi T, Li ZL, et al: Prognostic significance of downregulated BMAL1 and upregulated Ki-67 proteins in nasopharyngeal carcinoma. Chronobiol Int. 35:348–357. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Huang SF, Cheng SD, Chuang WY, Chen IH, Liao CT, Wang HM and Hsieh LL: Cyclin D1 overexpression and poor clinical outcomes in Taiwanese oral cavity squamous cell carcinoma. World J Surg Oncol. 10:402012. View Article : Google Scholar : PubMed/NCBI |
|
Rauf M, Azmat H, Shahab S, Ahmad A, Khadija S and Firidi J: Immunohistochemical expression of cyclind1 in conventional squamous cell carcinomaof oral cavity. J Ayub Med Coll Abbottabad. 35:11–16. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Gioacchini FM, Alicandri-Ciufelli M, Kaleci S, Magliulo G, Presutti L and Re M: The prognostic value of cyclin D1 expression in head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol. 273:801–809. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Yang K, Zhu G, Sun Y, Hu Y, Lv Y, Li Y, Pan J, Chen F, Zhou Y and Zhang J: Prognostic significance of cyclin D1 expression pattern in HPV-negative oral and oropharyngeal carcinoma: A deep-learning approach. J Oral Pathol Med. 52:919–929. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Wang CC, Lu DD, Shen MH, Chen RL, Zhang ZH and Lv JH: Clinical value of Cyclin D1 and P21 in the differential diagnosis of papillary thyroid carcinoma. Diagn Pathol. 18:1232023. View Article : Google Scholar : PubMed/NCBI |
|
John RR, Sam N and Chandrasekaran B: Prognostic significance of proliferative markers: Cyclin D1 and CENPF in oral squamous cell carcinoma patients-A cohort study. J Maxillofac Oral Surg. 22:734–740. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Li C, Li C, Zhi C, Liang W, Wang X, Chen X, Lv T, Shen Q, Song Y, Lin D and Liu H: Clinical significance of PD-L1 expression in serum-derived exosomes in NSCLC patients. J Transl Med. 17:3552019. View Article : Google Scholar : PubMed/NCBI |
|
Oliva M, Spreafico A, Taberna M, Alemany L, Coburn B, Mesia R and Siu LL: Immune biomarkers of response to immune-checkpoint inhibitors in head and neck squamous cell carcinoma. Ann Oncol. 30:57–67. 2019. View Article : Google Scholar : PubMed/NCBI |
|
William WN Jr, Zhang J, Zhao X, Parra ER, Uraoka N, Lin HY, Peng SA, El-Naggar AK, Rodriguez-Canales J, Song J, et al: Spatial PD-L1, immune-cell microenvironment, and genomic copy-number alteration patterns and drivers of invasive-disease transition in prospective oral precancer cohort. Cancer. 129:714–727. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Müller T, Braun M, Dietrich D, Aktekin S, Höft S, Kristiansen G, Göke F, Schröck A, Brägelmann J, Held SAE, et al: PD-L1: A novel prognostic biomarker in head and neck squamous cell carcinoma. Oncotarget. 8:52889–52900. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Malinowska K, Kowalski A, Merecz-Sadowska A, Paprocka-Zjawiona M, Sitarek P, Kowalczyk T and Zielińska-Bliźniewska H: PD-1 and PD-L1 expression levels as a potential biomarker of chronic Rhinosinusitis and head and neck cancers. J Clin Med. 12:20332023. View Article : Google Scholar : PubMed/NCBI |
|
Jiang D, Song Q, Wang H, Huang J, Wang H, Hou J, Li X, Xu Y, Sujie A, Zeng H, et al: Independent prognostic role of PD-L1expression in patients with esophageal squamous cell carcinoma. Oncotarget. 8:8315–8329. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Shah PA, Huang C, Li Q, Kazi SA, Byers LA, Wang J, Johnson FM and Frederick MJ: NOTCH1 signaling in head and neck squamous cell carcinoma. Cells. 9:26772020. View Article : Google Scholar : PubMed/NCBI |
|
Sadeghi ES, Nematpour FS, Mohtasham N and Mohajertehran F: The oncogenic role of NOTCH1 as biomarker in oral squamous cell carcinoma and oral lichen planus. Dent Res J (Isfahan). 20:1022023. View Article : Google Scholar : PubMed/NCBI |
|
Lee SH, Do SI, Lee HJ, Kang HJ, Koo BS and Lim YC: Notch1 signaling contributes to stemness in head and neck squamous cell carcinoma. Lab Invest. 96:508–516. 2016.(In Amharic, English). View Article : Google Scholar : PubMed/NCBI |
|
Fukusumi T and Califano JA: The NOTCH pathway in head and neck squamous cell carcinoma. J Dent Res. 97:645–653. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, Fakhry C, Xie TX, Zhang J, Wang J, et al: Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 333:1154–1157. 2011. View Article : Google Scholar : PubMed/NCBI |
|
Zhang W, Wang J, Huang D, Liu Z, Lu T, Cui C and Li Z: Single-cell sequencing reveals SATB2/NOTCH1 signaling promotes the progression of malignancy of epithelial cells from papillary thyroid cancer. Mol Carcinog. 63:22–33. 2024. View Article : Google Scholar : PubMed/NCBI |
|
Yeh TJ, Luo CW, Du JS, Huang CT, Wang MH, Chuang TM, Gau YC, Cho SF, Liu YC, Hsiao HH, et al: Deciphering the functions of telomerase reverse transcriptase in head and neck cancer. Biomedicines. 11:6912023. View Article : Google Scholar : PubMed/NCBI |
|
Leão R, Apolónio JD, Lee D, Figueiredo A, Tabori U and Castelo-Branco P: Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: Clinical impacts in cancer. J Biomed Sci. 25:222018. View Article : Google Scholar : PubMed/NCBI |
|
Arantes LMRB, Cruvinel-Carloni A, de Carvalho AC, Sorroche BP, Carvalho AL, Scapulatempo-Neto C and Reis RM: TERT Promoter Mutation C228T increases risk for tumor recurrence and death in head and neck cancer patients. Front Oncol. 10:12752020. View Article : Google Scholar : PubMed/NCBI |
|
Boscolo-Rizzo P, Tirelli G, Polesel J, Sia E, Phillips V, Borsetto D, De Rossi A and Giunco S: TERT promoter mutations in head and neck squamous cell carcinoma: A systematic review and meta-analysis on prevalence and prognostic significance. Oral Oncol. 140:1063982023. View Article : Google Scholar : PubMed/NCBI |
|
Ganesh MS, Narayanan GS and Kumar R: Change of telomerase activity in peripheral blood of patients with head and neck squamous cell carcinoma pre and post curative treatment. Rep Pract Oncol Radiother. 25:28–34. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Xu Y, Quan Z, Zhan Y, Wang H, Luo J, Wang W and Fan S: SSTR2 positively associates with EGFR and predicts poor prognosis in nasopharyngeal carcinoma. J Clin Pathol. Sep 27–2023.(Epub ahead of print). View Article : Google Scholar |
|
Murphrey MB, Quaim L and Varacallo M: Biochemistry, Epidermal Growth Factor Receptor. Disclosure: Lamisa Quaim declares no relevant financial relationships with ineligible companies. Disclosure: Matthew Varacallo declares no relevant financial relationships with ineligible companies. StatPearls; Treasure Island, FL: 2023 |
|
Zimmermann M, Zouhair A, Azria D and Ozsahin M: The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications. Radiat Oncol. 1:112006. View Article : Google Scholar : PubMed/NCBI |
|
Boccellino M, De Rosa A and Di Domenico M: An ELISA test able to predict the development of oral cancer: The significance of the interplay between steroid receptors and the EGF receptor for early diagnosis. Diagnostics (Basel). 13:20012023. View Article : Google Scholar : PubMed/NCBI |
|
Nair S, Bonner JA and Bredel M: EGFR mutations in head and neck squamous cell carcinoma. Int J Mol Sci. 23:38182022. View Article : Google Scholar : PubMed/NCBI |
|
Sivarajah S, Kostiuk M, Lindsay C, Puttagunta L, O'Connell DA, Harris J, Seikaly H and Biron VL: EGFR as a biomarker of smoking status and survival in oropharyngeal squamous cell carcinoma. J Otolaryngol Head Neck Surg. 48:12019. View Article : Google Scholar : PubMed/NCBI |
|
Rehmani HS and Issaeva N: EGFR in head and neck squamous cell carcinoma: Exploring possibilities of novel drug combinations. Ann Transl Med. 8:8132020. View Article : Google Scholar : PubMed/NCBI |
|
Licitra L, Perrone F, Tamborini E, Bertola L, Ghirelli C, Negri T, Orsenigo M, Filipazzi P, Pastore E, Pompilio M, et al: Role of EGFR family receptors in proliferation of squamous carcinoma cells induced by wound healing fluids of head and neck cancer patients. Ann Oncol. 22:1886–1893. 2011. View Article : Google Scholar : PubMed/NCBI |
|
Numico G, Russi EG, Colantonio I, Lantermo RA, Silvestris N, Vitiello R, Comino A, Abrate M, Zavattero C, Melano A and Merlano M: EGFR status and prognosis of patients with locally advanced head and neck cancer treated with chemoradiotherapy. Anticancer Res. 30:671–676. 2010.PubMed/NCBI |
|
Schiff BA, McMurphy AB, Jasser SA, Younes MN, Doan D, Yigitbasi OG, Kim S, Zhou G, Mandal M, Bekele BN, et al: Epidermal growth factor receptor (EGFR) is overexpressed in anaplastic thyroid cancer, and the EGFR inhibitor gefitinib inhibits the growth of anaplastic thyroid cancer. Clin Cancer Res. 10:8594–8602. 2004. View Article : Google Scholar : PubMed/NCBI |
|
Cívico-Ortega JL, González-Ruiz I, Ramos-García P, Cruz-Granados D, Samayoa-Descamps V and González-Moles MÁ: Prognostic and clinicopathological significance of epidermal growth factor receptor (EGFR) expression in oral squamous cell carcinoma: Systematic Review and meta-analysis. Int J Mol Sci. 24:118882023. View Article : Google Scholar : PubMed/NCBI |
|
Hsu ER, Gillenwater AM, Hasan MQ, Williams MD, El-Naggar AK and Richards-Kortum RR: Real-time detection of epidermal growth factor receptor expression in fresh oral cavity biopsies using a molecular-specific contrast agent. Int J Cancer. 118:3062–3071. 2006. View Article : Google Scholar : PubMed/NCBI |
|
Chen X, Liang R and Zhu X: Anti-EGFR therapies in nasopharyngeal carcinoma. Biomed Pharmacother. 131:1106492020. View Article : Google Scholar : PubMed/NCBI |
|
Neufeld G, Cohen T, Gengrinovitch S and Poltorak Z: Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13:9–22. 1999. View Article : Google Scholar : PubMed/NCBI |
|
Bouzoubaa SM, Benlahfid M, Sidqui M, Aboussaouira T, Rifki C, Brouillet S, Traboulsi W, Alfaidy N and Benharouga M: Vascular endothelial growth factor (VEGF) and Endocrine gland-VEGF (EG-VEGF) are down regulated in head and neck cancer. Clin Otolaryngol. 45:788–795. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Schlüter A, Weller P, Kanaan O, Nel I, Heusgen L, Höing B, Haßkamp P, Zander S, Mandapathil M, Dominas N, et al: CD31 and VEGF are prognostic biomarkers in early-stage, but not in late-stage, laryngeal squamous cell carcinoma. BMC Cancer. 18:2722018. View Article : Google Scholar : PubMed/NCBI |
|
Dumitru CS and Raica M: Vascular endothelial growth factor family and head and neck squamous cell carcinoma. Anticancer Res. 43:4315–4326. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Patel SA, Nilsson MB, Le X, Cascone T, Jain RK and Heymach JV: Molecular mechanisms and future implications of VEGF/VEGFR in cancer therapy. Clin Cancer Res. 29:30–39. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Gisterek I and Kornafel J: Vascular endothelial growth factor in head and neck cancer. Pol Merkur Lekarski. 20:242–244. 2006.(In Polish). PubMed/NCBI |
|
Edirisinghe ST, Weerasekera M, De Silva DK, Devmini MT, Pathmaperuma S, Wijesinghe GK, Nisansala T, Maddumage A, Huzaini H, Rich AM, et al: Vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor receptor 2 (VEGFR-2) as potential biomarkers for oral squamous cell carcinoma: A Sri Lankan study. Asian Pac J Cancer Prev. 24:267–274. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Zhu H: Squamous cell carcinoma antigen: Clinical application and research status. Diagnostics (Basel). 12:10652022. View Article : Google Scholar : PubMed/NCBI |
|
Yasumatsu R, Nakano T, Hashimoto K, Kogo R, Wakasaki T and Nakagawa T: The clinical value of serum squamous cell carcinoma antigens 1 and 2 in head and neck squamous cell carcinoma. Auris Nasus Larynx. 46:135–140. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Schepens EJA, Al-Mamgani A, Karssemakers LHE, van den Broek D, van den Brekel MWM and Lopez-Yurda M: Squamous cell carcinoma antigen in the follow-up of patients with head and neck cancer. Otolaryngol Head Neck Surg. 170:422–430. 2024. View Article : Google Scholar : PubMed/NCBI |
|
van Schaik JE, Muller Kobold AC, van der Laan B, van der Vegt B, van Hemel BM and Plaat BEC: Squamous cell carcinoma antigen concentration in fine needle aspiration samples: A new method to detect cervical lymph node metastases of head and neck squamous cell carcinoma. Head Neck. 41:2561–2565. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Souza SP, Serra MGDS, Oliveira NDS, Oliveira MC, Junior JB and Reis TG: Arterial lactate as a predictor of postoperative complications in head and neck squamous cell carcinoma. Braz J Otorhinolaryngol. 88 (Suppl 1):S97–S101. 2022. View Article : Google Scholar : PubMed/NCBI |
|
Blatt S, Voelxen N, Sagheb K, Pabst AM, Walenta S, Schroeder T, Mueller-Klieser W and Ziebart T: Lactate as a predictive marker for tumor recurrence in patients with head and neck squamous cell carcinoma (HNSCC) post radiation: A prospective study over 15 years. Clin Oral Investig. 20:2097–2104. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW and Mueller-Klieser W: Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 251:349–353. 2001. View Article : Google Scholar : PubMed/NCBI |
|
Wu M, Li B, Zhang X and Sun G: Serum metabolomics reveals an innovative diagnostic model for salivary gland tumors. Anal Biochem. 655:1148532022. View Article : Google Scholar : PubMed/NCBI |
|
Srivastava S, Roy R, Gupta V, Tiwari A, Srivastava AN and Sonkar AA: Proton HR-MAS MR spectroscopy of oral squamous cell carcinoma tissues: An ex vivo study to identify malignancy induced metabolic fingerprints. Metabolomics. 7:278–288. 2011. View Article : Google Scholar |
|
Kavitha L, Vijayashree Priyadharsini J, Kattula D, Rao UKM, Balaji Srikanth R, Kuzhalmozhi M and Ranganathan K: Expression of CD44 in head and neck squamous cell carcinoma-an in-silico study. Glob Med Genet. 10:221–228. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Gomez KE, Wu F, Keysar SB, Morton JJ, Miller B, Chimed TS, Le PN, Nieto C, Chowdhury FN, Tyagi A, et al: Cancer Cell CD44 mediates macrophage/monocyte-driven regulation of head and neck cancer stem cells. Cancer Res. 80:4185–4198. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Yu SS and Cirillo N: The molecular markers of cancer stem cells in head and neck tumors. J Cell Physiol. 235:65–73. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Chen J, Zhou J, Lu J, Xiong H, Shi X and Gong L: Significance of CD44 expression in head and neck cancer: A systemic review and meta-analysis. BMC Cancer. 14:152014. View Article : Google Scholar : PubMed/NCBI |
|
Xu H, Niu M, Yuan X, Wu K and Liu A: CD44 as a tumor biomarker and therapeutic target. Exp Hematol Oncol. 9:362020. View Article : Google Scholar : PubMed/NCBI |
|
Puzzo L, Bianco MR, Salvatorelli L, Tinnirello G, Occhiuzzi F, Latella D and Allegra E: CD44, PDL1, and ATG7 expression in laryngeal squamous cell carcinomas with tissue microarray (TMA) Technique: Evaluation of the potential prognostic and predictive roles. Cancers (Basel). 15:24612023. View Article : Google Scholar : PubMed/NCBI |
|
Franzmann EJ, Reategui EP, Pedroso F, Pernas FG, Karakullukcu BM, Carraway KL, Hamilton K, Singal R and Goodwin WJ: Soluble CD44 is a potential marker for the early detection of head and neck cancer. Cancer Epidemiol Biomarkers Prev. 16:1348–1355. 2007. View Article : Google Scholar : PubMed/NCBI |
|
Ali F, Siddiqui TA, Sukhia RH, Maqsood A and Ghandhi D: Diagnostic and prognostic role of cancer stem cell biomarkers in oral squamous cell carcinoma; A systematic review. J Pak Med Assoc. 73 (Suppl 1):S32–S39. 2023. View Article : Google Scholar |
|
Vasudevan HN and Yom SS: Nasopharyngeal carcinoma and its association with epstein-barr virus. Hematol Oncol Clin North Am. 35:963–971. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Jiang W, Chamberlain PD, Garden AS, Kim BY, Ma D, Lo EJ, Bell D, Gunn GB, Fuller CD, Rosenthal DI, et al: Prognostic value of p16 expression in Epstein-Barr virus-positive nasopharyngeal carcinomas. Head Neck. 38 (Suppl 1):E1459–E1466. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Lee LA, Fang TJ, Li HY, Chuang HH, Kang CJ, Chang KP, Liao CT, Chen TC, Huang CG and Yen TC: Effects of Epstein-Barr virus infection on the risk and prognosis of primary laryngeal squamous cell carcinoma: A hospital-based case-control study in Taiwan. Cancers (Basel). 13:17412021. View Article : Google Scholar : PubMed/NCBI |
|
Wu S, Yuan X, Huang H, Li Y, Cui L, Lin D, Lu W, Feng H, Chen Z, Liu X, et al: Nomogram incorporating Epstein-Barr virus DNA and a novel immune-nutritional marker for survival prediction in nasopharyngeal carcinoma. BMC Cancer. 23:12172023. View Article : Google Scholar : PubMed/NCBI |
|
de Lima MAP, Silva ADL, do Nascimento Filho ACS, Cordeiro TL, Bezerra JPS, Rocha MAB, Pinheiro SFL, Pinheiro Junior RFF, Gadelha MDSV and da Silva CGL: Epstein-Barr virus-associated carcinoma of the larynx: A systematic review with meta-analysis. Pathogens. 10:14292021. View Article : Google Scholar : PubMed/NCBI |
|
Goldenberg D, Benoit NE, Begum S, Westra WH, Cohen Y, Koch WM, Sidransky D and Califano JA: Epstein-Barr virus in head and neck cancer assessed by quantitative polymerase chain reaction. Laryngoscope. 114:1027–1031. 2004. View Article : Google Scholar : PubMed/NCBI |
|
Javadirad E, Yekta AM, Lorestani RC and Azimivaghar J: A survey of human papillomavirus and epstein-barr virus immunohistochemical status in patients with head and neck squamous cell carcinoma (HNSCC). Head Neck Pathol. 17:325–330. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Wuerdemann N, Joosse S, Klasen C, Prinz J, Demers I, George J, Speel EM, Wagner S and Klußmann JP: ctHPV-DNA based precision oncology for patients with oropharyngeal cancer-Where are we? Laryngorhinootologie. 102:728–734. 2023.(In German). PubMed/NCBI |
|
Yan H and Bu P: Non-coding RNA in cancer. Essays Biochem. 65:625–639. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Yang QQ and Deng YF: Long non-coding RNAs as novel biomarkers and therapeutic targets in head and neck cancers. Int J Clin Exp Pathol. 7:1286–1292. 2014.PubMed/NCBI |
|
Luo X, Qiu Y, Jiang Y, Chen F, Jiang L, Zhou Y, Dan H, Zeng X, Lei YL and Chen Q: Long non-coding RNA implicated in the invasion and metastasis of head and neck cancer: Possible function and mechanisms. Mol Cancer. 17:142018. View Article : Google Scholar : PubMed/NCBI |
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V and Fortis SP: Promising biomarkers in head and neck cancer: The most clinically important miRNAs. Int J Mol Sci. 23:82572022. View Article : Google Scholar : PubMed/NCBI |
|
Feng H, Zhao F, Luo J, Xu S, Liang Z, Xu W, Bao Y and Qin G: Long non-coding RNA HOTTIP exerts an oncogenic function by regulating HOXA13 in nasopharyngeal carcinoma. Mol Biol Rep. 50:6807–6818. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Fan Y, Yan T, Chai Y, Jiang Y and Zhu X: Long noncoding RNA HOTTIP as an independent prognostic marker in cancer. Clin Chim Acta. 482:224–230. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Jiang H, Zhou L, Shen N, Ning X, Wu D, Jiang K and Huang X: M1 macrophage-derived exosomes and their key molecule lncRNA HOTTIP suppress head and neck squamous cell carcinoma progression by upregulating the TLR5/NF-κB pathway. Cell Death Dis. 13:1832022. View Article : Google Scholar : PubMed/NCBI |
|
Yin X, Yang W, Xie J, Wei Z, Tang C, Song C, Wang Y, Cai Y, Xu W and Han W: HOTTIP functions as a key candidate biomarker in head and neck squamous cell carcinoma by integrated bioinformatic analysis. Biomed Res Int. 2019:54506172019. View Article : Google Scholar : PubMed/NCBI |
|
Kozlowska J, Kolenda T, Poter P, Sobocińska J, Guglas K, Stasiak M, Bliźniak R, Teresiak A and Lamperska K: Long intergenic non-coding RNAs in HNSCC: From ‘Junk DNA’ to important prognostic factor. Cancers (Basel). 13:29492021. View Article : Google Scholar : PubMed/NCBI |
|
Li Y, Liu Y, Chen G, Liu H, Wu Y, Liu J and Zhang Z: HOTTIP is upregulated in esophageal cancer and triggers the drug resistance. J BUON. 26:1056–1061. 2021.PubMed/NCBI |
|
Shen M, Li M and Liu J: Long Noncoding RNA HOTTIP promotes nasopharyngeal cancer cell proliferation, migration, and invasion by inhibiting miR-4301. Med Sci Monit. 25:778–785. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Hussein MA, Valinezhad K, Adel E and Munirathinam G: MALAT-1 is a key regulator of epithelial-mesenchymal transition in cancer: A potential therapeutic target for metastasis. Cancers (Basel). 16:2342024. View Article : Google Scholar : PubMed/NCBI |
|
Masrour M, Khanmohammadi S, Fallahtafti P and Rezaei N: Long non-coding RNA as a potential diagnostic biomarker in head and neck squamous cell carcinoma: A systematic review and meta-analysis. PLoS One. 18:e02919212023. View Article : Google Scholar : PubMed/NCBI |
|
Cossu AM, Mosca L, Zappavigna S, Misso G, Bocchetti M, De Micco F, Quagliuolo L, Porcelli M, Caraglia M and Boccellino M: Long Non-coding RNAs as important biomarkers in laryngeal cancer and other head and neck tumours. Int J Mol Sci. 20:34442019. View Article : Google Scholar : PubMed/NCBI |
|
Han X, Xu Z, Tian G, Tang Z, Gao J, Wei Y and Xu X: Suppression of the long non-coding RNA MALAT-1 impairs the growth and migration of human tongue squamous cell carcinoma SCC4 cells. Arch Med Sci. 15:992–1000. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Kangboonruang K, Wongtrakoongate P, Lertsuwan K, Khachonkham S, Changkaew P, Tangboonduangjit P, Siripoon T, Ngamphaiboon N and Chairoungdua A: MALAT1 decreases the sensitivity of head and neck squamous cell carcinoma cells to radiation and cisplatin. Anticancer Res. 40:2645–2655. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Yao W, Bai Y, Li Y, Guo L, Zeng P, Wang Y, Qi B, Liu S, Qin X, Li Y and Zhao B: Upregulation of MALAT-1 and its association with survival rate and the effect on cell cycle and migration in patients with esophageal squamous cell carcinoma. Tumour Biol. 37:4305–4312. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Liu X, Zhao W and Wang X: Inhibition of long non-coding RNA MALAT1 elevates microRNA-429 to suppress the progression of hypopharyngeal squamous cell carcinoma by reducing ZEB1. Life Sci. 262:1184802020. View Article : Google Scholar : PubMed/NCBI |
|
Duan Y, Yue K, Ye B, Chen P, Zhang J, He Q, Wu Y, Lai Q, Li H, Wu Y, et al: LncRNA MALAT1 promotes growth and metastasis of head and neck squamous cell carcinoma by repressing VHL through a non-canonical function of EZH2. Cell Death Dis. 14:1492023. View Article : Google Scholar : PubMed/NCBI |
|
Ghafouri-Fard S, Dashti S, Farsi M and Taheri M: HOX transcript antisense RNA: An oncogenic lncRNA in diverse malignancies. Exp Mol Pathol. 118:1045782021. View Article : Google Scholar : PubMed/NCBI |
|
Xiang Y and Hua Q: The role and mechanism of long non-coding RNA HOTAIR in the oncogenesis, diagnosis, and treatment of head and neck squamous cell carcinoma. Clin Med Insights Oncol. 17:117955492311690992023. View Article : Google Scholar : PubMed/NCBI |
|
Shi L, Zhang D, Han H, Zhang L, Li S, Yang F and He C: HOTAIR knockdown impairs metastasis of cervical cancer cells by down-regulating metastasis-related genes. J Obstet Gynaecol. 43:21810602023. View Article : Google Scholar : PubMed/NCBI |
|
Hu D and Messadi DV: Immune-Related long non-coding RNA signatures for tongue squamous cell carcinoma. Curr Oncol. 30:4817–4832. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Yuan X, Shen Q and Ma W: Long Noncoding RNA Hotair promotes the progression and immune escape in laryngeal squamous cell carcinoma through MicroRNA-30a/GRP78/PD-L1 Axis. J Immunol Res. 2022:51414262022. View Article : Google Scholar : PubMed/NCBI |
|
Yang G, Huang T, Wu Y, Wang J, Pan Z, Chen Y, Pan F and Wang Y: Clinicopathological and prognostic significance of the long non-coding RNA HOTAIR high expression in head and neck squamous cell carcinoma: A systematic review and meta-analysis. Transl Cancer Res. 11:2536–2552. 2022. View Article : Google Scholar : PubMed/NCBI |
|
Li F and Hu CP: Long Non-Coding RNA urothelial carcinoma associated 1 (UCA1): Insight into Its role in human diseases. Crit Rev Eukaryot Gene Expr. 25:191–197. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Wang X, Sun M, Gao Z, Yin L, Pu Y, Zhu Y, Wang X and Liu R: N-nitrosamines-mediated downregulation of LncRNA-UCA1 induces carcinogenesis of esophageal squamous by regulating the alternative splicing of FGFR2. Sci Total Environ. 855:1589182023. View Article : Google Scholar : PubMed/NCBI |
|
Sun S, Gong C and Yuan K: LncRNA UCA1 promotes cell proliferation, invasion and migration of laryngeal squamous cell carcinoma cells by activating Wnt/β-catenin signaling pathway. Exp Ther Med. 17:1182–1189. 2019.PubMed/NCBI |
|
Huang HH, You GR, Tang SJ, Chang JT and Cheng AJ: Molecular signature of long non-coding RNA associated with areca nut-induced head and neck cancer. Cells. 12:8732023. View Article : Google Scholar : PubMed/NCBI |
|
Qian Y, Liu D, Cao S, Tao Y, Wei D, Li W, Li G, Pan X and Lei D: Upregulation of the long noncoding RNA UCA1 affects the proliferation, invasion, and survival of hypopharyngeal carcinoma. Mol Cancer. 16:682017. View Article : Google Scholar : PubMed/NCBI |
|
Liu C, Jin J, Shi J, Wang L, Gao Z, Guo T and He Y: Long noncoding RNA UCA1 as a novel biomarker of lymph node metastasis and prognosis in human cancer: A meta-analysis. Biosci Rep. 39:BSR201809952019. View Article : Google Scholar : PubMed/NCBI |
|
Zhang C, Xie L, Fu Y, Yang J and Cui Y: lncRNA MIAT promotes esophageal squamous cell carcinoma progression by regulating miR-1301-3p/INCENP axis and interacting with SOX2. J Cell Physiol. 235:7933–7944. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Da CM, Gong CY, Nan W, Zhou KS, Wu ZL and Zhang HH: The role of long non-coding RNA MIAT in cancers. Biomed Pharmacother. 129:1103592020. View Article : Google Scholar : PubMed/NCBI |
|
Song F, Yang Y and Liu J: Long non-coding RNA MIAT promotes the proliferation and invasion of laryngeal squamous cell carcinoma cells by sponging microRNA-613. Exp Ther Med. 21:2322021. View Article : Google Scholar : PubMed/NCBI |
|
Liu W, Wang Z, Wang C and Ai Z: Long non-coding RNA MIAT promotes papillary thyroid cancer progression through upregulating LASP1. Cancer Cell Int. 19:1942019. View Article : Google Scholar : PubMed/NCBI |
|
Zhong W, Xu Z, Wen S, Xie T, Wang F, Wang Q and Chen J: Long non-coding RNA myocardial infarction associated transcript promotes epithelial-mesenchymal transition and is an independent risk factor for poor prognosis of tongue squamous cell carcinoma. J Oral Pathol Med. 48:720–727. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Wang R, Zhao L, Ji L, Bai L and Wen Q: Myocardial infarction associated transcript (MIAT) promotes papillary thyroid cancer progression via sponging miR-212. Biomed Pharmacother. 118:1092982019. View Article : Google Scholar : PubMed/NCBI |
|
Guo K, Qian K, Shi Y, Sun T and Wang Z: LncRNA-MIAT promotes thyroid cancer progression and function as ceRNA to target EZH2 by sponging miR-150-5p. Cell Death Dis. 12:10972021. View Article : Google Scholar : PubMed/NCBI |
|
Dey Ghosh R and Guha Majumder S: Circulating long non-coding RNAs could be the potential prognostic biomarker for liquid biopsy for the clinical management of oral squamous cell carcinoma. Cancers (Basel). 14:55902022. View Article : Google Scholar : PubMed/NCBI |
|
Wang H, Zhou Z, Lin W, Qian Y, He S and Wang J: MicroRNA-21 promotes head and neck squamous cell carcinoma (HNSCC) induced transition of bone marrow mesenchymal stem cells to cancer-associated fibroblasts. BMC Cancer. 23:11352023. View Article : Google Scholar : PubMed/NCBI |
|
Doukas SG, Vageli DP, Lazopoulos G, Spandidos DA, Sasaki CT and Tsatsakis A: The Effect of NNK, A tobacco smoke carcinogen, on the miRNA and Mismatch DNA repair expression profiles in lung and head and neck squamous cancer cells. Cells. 9:10312020. View Article : Google Scholar : PubMed/NCBI |
|
Shah S, Jadhav K, Shah V, Gupta N and Dagrus K: miRNA 21: Diagnostic prognostic and therapeutic marker for oral cancer. Microrna. 5:175–179. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Arantes LM, Laus AC, Melendez ME, de Carvalho AC, Sorroche BP, De Marchi PR, Evangelista AF, Scapulatempo-Neto C, de Souza Viana L and Carvalho AL: MiR-21 as prognostic biomarker in head and neck squamous cell carcinoma patients undergoing an organ preservation protocol. Oncotarget. 8:9911–9921. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Ishinaga H, Okugawa Y, Hou B, He F, Yin C, Murata M, Toiyama Y and Takeuchi K: The role of miR-21 as a predictive biomarker and a potential target to improve the effects of chemoradiotherapy against head and neck squamous cell carcinoma. J Radiat Res. 64:668–676. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Vageli DP, Doukas PG, Shah R, Boyi T, Liu C and Judson BL: A novel saliva and serum miRNA panel as a potential useful index for oral cancer and the association of miR-21 with smoking history: A pilot study. Cancer Prev Res (Phila). 16:653–659. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Irimie-Aghiorghiesei AI, Pop-Bica C, Pintea S, Braicu C, Cojocneanu R, Zimța AA, Gulei D, Slabý O and Berindan-Neagoe I: Prognostic Value of MiR-21: An updated meta-analysis in head and neck squamous cell carcinoma (HNSCC). J Clin Med. 8:20412019. View Article : Google Scholar : PubMed/NCBI |
|
Sheng S, Su W, Mao D, Li C, Hu X, Deng W, Yao Y and Ji Y: MicroRNA-21 induces cisplatin resistance in head and neck squamous cell carcinoma. PLoS One. 17:e02670172022. View Article : Google Scholar : PubMed/NCBI |
|
Kabzinski J, Maczynska M and Majsterek I: MicroRNA as a novel biomarker in the diagnosis of head and neck cancer. Biomolecules. 11:8442021. View Article : Google Scholar : PubMed/NCBI |
|
Luo C, Zhang J, Zhang Y, Zhang X, Chen Y and Fan W: Low expression of miR-let-7a promotes cell growth and invasion through the regulation of c-Myc in oral squamous cell carcinoma. Cell Cycle. 19:1983–1993. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Ulusan M, Sen S, Yilmazer R, Dalay N and Demokan S: The let-7 microRNA binding site variant in KRAS as a predictive biomarker for head and neck cancer patients with lymph node metastasis. Pathol Res Pract. 239:1541472022. View Article : Google Scholar : PubMed/NCBI |
|
Lee YS and Dutta A: The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 21:1025–1030. 2007. View Article : Google Scholar : PubMed/NCBI |
|
Yu D, Liu X, Han G, Liu Y, Zhao X, Wang D, Bian X, Gu T and Wen L: The let-7 family of microRNAs suppresses immune evasion in head and neck squamous cell carcinoma by promoting PD-L1 degradation. Cell Commun Signal. 17:1732019. View Article : Google Scholar : PubMed/NCBI |
|
Chirshev E, Oberg KC, Ioffe YJ and Unternaehrer JJ: Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin Transl Med. 8:242019. View Article : Google Scholar : PubMed/NCBI |
|
Kinoshita T, Hanazawa T, Nohata N, Okamoto Y and Seki N: The functional significance of microRNA-375 in human squamous cell carcinoma: Aberrant expression and effects on cancer pathways. J Hum Genet. 57:556–563. 2012. View Article : Google Scholar : PubMed/NCBI |
|
Mazumder S, Datta S, Ray JG, Chaudhuri K and Chatterjee R: Liquid biopsy: miRNA as a potential biomarker in oral cancer. Cancer Epidemiol. 58:137–145. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Chen J, Cai Z, Hu J, Zhou L, Zhang P and Xu X: MicroRNA-375 in extracellular vesicles-novel marker for esophageal cancer diagnosis. Medicine (Baltimore). 102:e328262023. View Article : Google Scholar : PubMed/NCBI |
|
Huni KC, Cheung J, Sullivan M, Robison WT, Howard KM and Kingsley K: Chemotherapeutic drug resistance associated with differential miRNA expression of miR-375 and miR-27 among oral cancer cell lines. Int J Mol Sci. 24:12442023. View Article : Google Scholar : PubMed/NCBI |
|
Gazdzicka J, Golabek K, Strzelczyk JK and Ostrowska Z: Epigenetic modifications in head and neck cancer. Biochem Genet. 58:213–244. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Castilho RM, Squarize CH and Almeida LO: Epigenetic modifications and head and neck cancer: Implications for tumor progression and resistance to therapy. Int J Mol Sci. 18:15062017. View Article : Google Scholar : PubMed/NCBI |
|
Li J, Huang Q, Zeng F, Li W, He Z, Chen W, Zhu W and Zhang B: The prognostic value of global DNA hypomethylation in cancer: A meta-analysis. PLoS One. 9:e1062902014. View Article : Google Scholar : PubMed/NCBI |
|
Temilola DO, Adeola HA, Grobbelaar J and Chetty M: Liquid biopsy in head and neck cancer: Its present state and future role in Africa. Cells. 12:26632023. View Article : Google Scholar : PubMed/NCBI |
|
Liu HE, Triboulet M, Zia A, Vuppalapaty M, Kidess-Sigal E, Coller J, Natu VS, Shokoohi V, Che J, Renier C, et al: Workflow optimization of whole genome amplification and targeted panel sequencing for CTC mutation detection. NPJ Genom Med. 2:342017. View Article : Google Scholar : PubMed/NCBI |
|
Kong L and Birkeland AC: Liquid biopsies in head and neck cancer: Current state and future challenges. Cancers (Basel). 13:18742021. View Article : Google Scholar : PubMed/NCBI |
|
Huang X, Duijf PHG, Sriram S, Perera G, Vasani S, Kenny L, Leo P and Punyadeera C: Circulating tumour DNA alterations: emerging biomarker in head and neck squamous cell carcinoma. J Biomed Sci. 30:652023. View Article : Google Scholar : PubMed/NCBI |
|
Thierry AR, El Messaoudi S, Gahan PB, Anker P and Stroun M: Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 35:347–376. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Silvoniemi A, Laine J, Aro K, Nissi L, Bäck L, Schildt J, Hirvonen J, Hagström J, Irjala H, Aaltonen LM, et al: Circulating tumor DNA in head and neck squamous cell carcinoma: Association with metabolic tumor burden determined with FDG-PET/CT. Cancers (Basel). 15:39702023. View Article : Google Scholar : PubMed/NCBI |
|
Allevato MM, Smith JD, Brenner MJ and Chinn SB: Tumor-Derived exosomes and the role of liquid biopsy in human papillomavirus oropharyngeal squamous cell carcinoma. Cancer J. 29:230–237. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, Zheng Y, Hoshino A, Brazier H, Xiang J, et al: Double-stranded DNA in exosomes: A novel biomarker in cancer detection. Cell Res. 24:766–769. 2014. View Article : Google Scholar : PubMed/NCBI |
|
Li S, Yi M, Dong B, Tan X, Luo S and Wu K: The role of exosomes in liquid biopsy for cancer diagnosis and prognosis prediction. Int J Cancer. 148:2640–2651. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, et al: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 105:10513–10518. 2008. View Article : Google Scholar : PubMed/NCBI |
|
Kabzinski J, Kucharska-Lusina A and Majsterek I: RNA-Based liquid biopsy in head and neck cancer. Cells. 12:19162023. View Article : Google Scholar : PubMed/NCBI |
|
Lu YC, Chang JT, Huang YC, Huang CC, Chen WH, Lee LY, Huang BS, Chen YJ, Li HF and Cheng AJ: Combined determination of circulating miR-196a and miR-196b levels produces high sensitivity and specificity for early detection of oral cancer. Clin Biochem. 48:115–121. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Kumar P, Gupta S and Das BC: Saliva as a potential non-invasive liquid biopsy for early and easy diagnosis/prognosis of head and neck cancer. Transl Oncol. 40:1018272024. View Article : Google Scholar : PubMed/NCBI |
|
Mishra V, Singh A, Chen X, Rosenberg AJ, Pearson AT, Zhavoronkov A, Savage PA, Lingen MW, Agrawal N and Izumchenko E: Application of liquid biopsy as multi-functional biomarkers in head and neck cancer. Br J Cancer. 126:361–370. 2022. View Article : Google Scholar : PubMed/NCBI |
|
Wang X and Li BB: Deep learning in head and neck tumor multiomics diagnosis and analysis: Review of the literature. Front Genet. 12:6248202021. View Article : Google Scholar : PubMed/NCBI |
|
Haider M, Jagal J, Bajbouj K, Sharaf BM, Sahnoon L, Okendo J, Semreen MH, Hamda M and Soares NC: Integrated multi-omics analysis reveals unique signatures of paclitaxel-loaded poly(lactide-co-glycolide) nanoparticles treatment of head and neck cancer cells. Proteomics. 23:e22003802023. View Article : Google Scholar : PubMed/NCBI |
|
Eichberger J, Froschhammer D, Schulz D, Scholz KJ, Federlin M, Ebensberger H, Reichert TE, Ettl T and Bauer RJ: BMSC-HNC Interaction: Exploring effects on bone integrity and head and neck cancer progression. Int J Mol Sci. 24:144172023. View Article : Google Scholar : PubMed/NCBI |
|
Borkowska EM, Barańska M, Kowalczyk M and Pietruszewska W: Detection of PIK3CA gene mutation in head and neck squamous cell carcinoma using droplet digital PCR and RT-qPCR. Biomolecules. 11:8182021. View Article : Google Scholar : PubMed/NCBI |
|
Khedkar HN, Chen LC, Kuo YC, Wu ATH and Huang HS: Multi-Omics identification of genetic alterations in head and neck squamous cell carcinoma and therapeutic efficacy of HNC018 as a novel multi-target agent for c-MET/STAT3/AKT signaling axis. Int J Mol Sci. 24:102472023. View Article : Google Scholar : PubMed/NCBI |
|
Ehrlich M: DNA hypomethylation in cancer cells. Epigenomics. 1:239–259. 2009. View Article : Google Scholar : PubMed/NCBI |
|
Guo Z, Liu W, Yang Y, Zhang S, Li C and Yang W: DNA methylation in the genesis, progress and prognosis of head and neck cancer. Holist Integ Oncol. 2:232023. View Article : Google Scholar |
|
Capkova M, Sachova J, Strnad H, Kolář M, Hroudová M, Chovanec M, Čada Z, Šteffl M, Valach J, Kastner J, et al: Microarray analysis of serum mRNA in patients with head and neck squamous cell carcinoma at whole-genome scale. Biomed Res Int. 2014:4086832014. View Article : Google Scholar : PubMed/NCBI |
|
Li Y, Porta-Pardo E, Tokheim C, Bailey MH, Yaron TM, Stathias V, Geffen Y, Imbach KJ, Cao S, Anand S, et al: Pan-cancer proteogenomics connects oncogenic drivers to functional states. Cell. 186:3921–3944.e25. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Assarsson E, Lundberg M, Holmquist G, Björkesten J, Thorsen SB, Ekman D, Eriksson A, Rennel Dickens E, Ohlsson S, Edfeldt G, et al: Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS One. 9:e951922014. View Article : Google Scholar : PubMed/NCBI |
|
Pawlicka M, Gumbarewicz E, Blaszczak E and Stepulak A: Transcription factors and markers related to epithelial-mesenchymal transition and their role in resistance to therapies in head and neck cancers. Cancers (Basel). 16:13542024. View Article : Google Scholar : PubMed/NCBI |
|
Fornieles G, Núñez MI and Expósito J: Matrix metalloproteinases and their inhibitors as potential prognostic biomarkers in head and neck cancer after radiotherapy. Int J Mol Sci. 25:5272023. View Article : Google Scholar : PubMed/NCBI |
|
Liao C, An J, Tan Z, Xu F, Liu J and Wang Q: Changes in protein glycosylation in head and neck squamous cell carcinoma. J Cancer. 12:1455–1466. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Zhao X, Liu X and Cui L: Development of a five-protein signature for predicting the prognosis of head and neck squamous cell carcinoma. Aging (Albany NY). 12:19740–19755. 2020. View Article : Google Scholar : PubMed/NCBI |
|
Yang T, Hui R, Nouws J, Sauler M, Zeng T and Wu Q: Untargeted metabolomics analysis of esophageal squamous cell cancer progression. J Transl Med. 20:1272022. View Article : Google Scholar : PubMed/NCBI |
|
Wu Z, Han Y, Wan Y, Hua X, Chill SS, Teshome K, Zhou W, Liu J, Wu D, Hutchinson A, et al: Oral microbiome and risk of incident head and neck cancer: A nested case-control study. Oral Oncol. 137:1063052023. View Article : Google Scholar : PubMed/NCBI |
|
Stasiewicz M and Karpinski TM: The oral microbiota and its role in carcinogenesis. Semin Cancer Biol. 86:633–642. 2022. View Article : Google Scholar : PubMed/NCBI |
|
Dorobisz K, Dorobisz T and Zatonski T: The Microbiome's influence on head and neck cancers. Curr Oncol Rep. 25:163–171. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Benjamin WJ, Wang K, Zarins K, Bellile E, Blostein F, Argirion I, Taylor JMG, D'Silva NJ, Chinn SB, Rifkin S, et al: Oral microbiome community composition in head and neck squamous cell carcinoma. Cancers (Basel). 15:25492023. View Article : Google Scholar : PubMed/NCBI |
|
Kunhabdulla H, Manas R, Shettihalli AK, Reddy CRM, Mustak MS, Jetti R, Abdulla R, Sirigiri DR, Ramdan D and Ammarullah MI: Identifying biomarkers and therapeutic targets by multiomic analysis for HNSCC: Precision medicine and healthcare management. ACS Omega. 9:12602–12610. 2024.PubMed/NCBI |
|
Xiao M, Zhang X, Zhang D, Deng S, Zheng A, Du F, Shen J, Yue L, Yi T, Xiao Z and Zhao Y: Complex interaction and heterogeneity among cancer stem cells in head and neck squamous cell carcinoma revealed by single-cell sequencing. Front Immunol. 13:10509512022. View Article : Google Scholar : PubMed/NCBI |
|
Li M, Sun D, Song N, Chen X, Zhang X, Zheng W, Yu Y and Han C: Mutant p53 in head and neck squamous cell carcinoma: Molecular mechanism of gain-of-function and targeting therapy (Review). Oncol Rep. 50:1622023. View Article : Google Scholar : PubMed/NCBI |
|
Snietura M, Jaworska M, Mlynarczyk-Liszka J, Goraj-Zajac A, Piglowski W, Lange D, Wozniak G, Nowara E and Suwinski R: PTEN as a prognostic and predictive marker in postoperative radiotherapy for squamous cell cancer of the head and neck. PLoS One. 7:e333962012. View Article : Google Scholar : PubMed/NCBI |
|
Bossi P, Resteghini C, Paielli N, Licitra L, Pilotti S and Perrone F: Prognostic and predictive value of EGFR in head and neck squamous cell carcinoma. Oncotarget. 7:74362–74379. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Qiao XW, Jiang J, Pang X, Huang MC, Tang YJ, Liang XH and Tang YL: The Evolving Landscape of PD-1/PD-L1 pathway in head and neck cancer. Front Immunol. 11:17212020. View Article : Google Scholar : PubMed/NCBI |
|
Edirisinghe S, Weerasekera M, De Silva D, Devmini MT, Pathmaperuma S, Wijesinghe GK, Nisansala T, Maddumage A, Huzaini H, Rich AM, et al: Vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor receptor 2 (VEGFR-2) as potential biomarkers for oral squamous cell carcinoma: A Sri Lankan study. Asian Pac J Cancer Prev. 24:267–274. 2023. View Article : Google Scholar : PubMed/NCBI |
|
Augustin JG, Lepine C, Morini A, Brunet A, Veyer D, Brochard C, Mirghani H, Péré H and Badoual C: HPV detection in head and neck squamous cell carcinomas: What is the issue? Front Oncol. 10:17512020. View Article : Google Scholar : PubMed/NCBI |
|
Tan D, Wu Y, Hu L, He P, Xiong G, Bai Y and Yang K: Long noncoding RNA H19 is up-regulated in esophageal squamous cell carcinoma and promotes cell proliferation and metastasis. Dis Esophagus. 30:1–9. 2017. |
|
Yoshizaki T, Kondo S, Dochi H, Kobayashi E, Mizokami H, Komura S and Endo K: Recent advances in assessing the clinical implications of epstein-barr virus infection and their application to the diagnosis and treatment of nasopharyngeal carcinoma. Microorganisms. 12:142023. View Article : Google Scholar : PubMed/NCBI |
|
Ye D, Deng Y and Shen Z: The role and mechanism of MALAT1 Long Non-Coding RNA in the diagnosis and treatment of head and neck squamous cell carcinoma. Onco Targets Ther. 14:4127–4136. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Cantile M, Di Bonito M, Tracey De Bellis M and Botti G: Functional Interaction among lncRNA HOTAIR and MicroRNAs in cancer and other human diseases. Cancers (Basel). 13:5702021. View Article : Google Scholar : PubMed/NCBI |
|
Wang Y, Wang S, Ren Y and Zhou X: The Role of lncRNA Crosstalk in leading cancer metastasis of head and neck squamous cell carcinoma. Front Oncol. 10:5618332020. View Article : Google Scholar : PubMed/NCBI |
|
Mohammadi C, Gholamzadeh Khoei S, Fayazi N, Mohammadi Y and Najafi R: miRNA as promising theragnostic biomarkers for predicting radioresistance in cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol. 157:1031832021. View Article : Google Scholar : PubMed/NCBI |
|
Ma Y, Shen N, Wicha MS and Luo M: The Roles of the Let-7 Family of MicroRNAs in the regulation of cancer stemness. Cells. 10:24152021. View Article : Google Scholar : PubMed/NCBI |