
Transitioning from molecular methods to therapeutic methods: An in‑depth analysis of glioblastoma (Review)
- Authors:
- Hongxi Han
- Aichao Du
- Jinwen Li
- Hongyan Han
- Peng Feng
- Yufeng Zhu
- Xinlong Li
- Guopeng Tian
- Haijia Yu
- Bo Zhang
- Weiguo Liu
- Guoqiang Yuan
-
Affiliations: Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China, College of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China, Department of Neurology, Tianshui First People's Hospital, Tianshui, Gansu 741000, P.R. China, Lanzhou University of Basic Medical Sciences, Lanzhou, Gansu 730000, P.R. China - Published online on: February 27, 2025 https://doi.org/10.3892/or.2025.8881
- Article Number: 48
-
Copyright: © Han et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Richardson TE, Walker JM, Hambardzumyan D, Brem S, Hatanpaa KJ, Viapiano MS, Pai B, Umphlett M, Becher OJ, Snuderl M, et al: Genetic and epigenetic instability as an underlying driver of progression and aggressive behavior in IDH-mutant astrocytoma. Acta Neuropathol. 148:52024. View Article : Google Scholar : PubMed/NCBI | |
Ezzati S, Salib S, Balasubramaniam M and Aboud O: Epidermal growth factor receptor inhibitors in glioblastoma: Current status and future possibilities. Int J Mol Sci. 25:23162024. View Article : Google Scholar : PubMed/NCBI | |
Testa U, Castelli G and Pelosi E: CAR-T Cells in the treatment of nervous system tumors. Cancers (Basel). 16:29132024. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Gu L, Li Y, Zheng Z, Chen W, Wang Y, Wang Y, Xing H, Shi Y, Liu D, et al: Histological and molecular glioblastoma, IDH-wildtype: A real-world landscape using the 2021 WHO classification of central nervous system tumors. Front Oncol. 13:12008152023. View Article : Google Scholar : PubMed/NCBI | |
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS and Khasraw M: Management of glioblastoma: State of the art and future directions. CA Cancer J Clin. 70:299–312. 2020. View Article : Google Scholar : PubMed/NCBI | |
Agarwal A, Edgar MA, Desai A, Gupta V, Soni N and Bathla G: Molecular GBM versus Histopathological GBM: Radiology-pathology-genetic correlation and the new WHO 2021 definition of glioblastoma. AJNR Am J Neuroradiol. 45:1006–1012. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ostrom QT, Cioffi G, Waite K, Kruchko C and Barnholtz-Sloan JS: CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol. 23:iii1–iii105. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yi GZ, Zhang HY, Que TS, Qu SQ, Li ZY, Qi ST, Feng WY and Huang GL: Identification of the clinical and genetic characteristics of gliomas with gene fusions by integrated genomic and transcriptomic analysis. Eur J Med Res. 30:492025. View Article : Google Scholar : PubMed/NCBI | |
Ungan G, Pons-Escoda A, Ulinic D, Arús C, Ortega-Martorell S, Olier I, Vellido A, Majós C and Julià-Sapé M: Early pseudoprogression and progression lesions in glioblastoma patients are both metabolically heterogeneous. NMR Biomed. 37:e50952024. View Article : Google Scholar : PubMed/NCBI | |
Thornton ZA, Andrews LJ, Zhao H, Zheng J, Paternoster L, Robinson JW and Kurian KM: Brain multi-omic Mendelian randomisation to identify novel drug targets for gliomagenesis. Hum Mol Genet. 34:178–192. 2025. View Article : Google Scholar : PubMed/NCBI | |
Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, et al: The somatic genomic landscape of glioblastoma. Cell. 155:462–477. 2013. View Article : Google Scholar : PubMed/NCBI | |
Karipidis K, Baaken D, Loney T, Blettner M, Mate R, Brzozek C, Elwood M, Narh C, Orsini N, Röösli M, et al: The effect of exposure to radiofrequency fields on cancer risk in the general and working population: A systematic review of human observational studies-Part I: Most researched outcomes. Environ Int. 191:1089832024. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, deCarvalho AC, Lyu S, Li P, Li Y, et al: Tumor evolution of Glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 33:1522018. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455:1061–1068. 2008. View Article : Google Scholar : PubMed/NCBI | |
Luo J, Junaid M, Hamid N, Duan JJ, Yang X and Pei DS: Current understanding of gliomagenesis: From model to mechanism. Int J Med Sci. 19:2071–2079. 2022. View Article : Google Scholar : PubMed/NCBI | |
Senhaji N, Squalli Houssaini A, Lamrabet S, Louati S and Bennis S: Molecular and Circulating Biomarkers in Patients with Glioblastoma. Int J Mol Sci. 23:74742022. View Article : Google Scholar : PubMed/NCBI | |
Grewal EP, Richardson LGK, Sun J, Ramapriyan R, Martinez-Lage M, Miller JJ, Carter BS, Cahill DP, Curry WT and Choi BD: Mutant IDH modulates suppressive myeloid populations in malignant glioma. Clin Cancer Res. 30:4068–4076. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lucas CG, Al-Adli NN, Young JS, Gupta R, Morshed RA, Wu J, Ravindranathan A, Shai A, Oberheim Bush NA, Taylor JW, et al: Longitudinal multimodal profiling of IDH-wildtype glioblastoma reveals the molecular evolution and cellular phenotypes underlying prognostically different treatment responses. Neuro Oncol. 27:89–105. 2025. View Article : Google Scholar : PubMed/NCBI | |
Du X and Hu H: The Roles of 2-hydroxyglutarate. Front Cell Dev Biol. 9:6513172021. View Article : Google Scholar : PubMed/NCBI | |
Hou Z, Wu H, Luo N, Li S, Zhang X, Dong S, Zhu D, Zhang H and Tao R: Almonertinib combined with anlotinib and temozolomide in a patient with recurrent glioblastoma with EGFR L858R mutation. Oncologist. 28:449–452. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sai Krishna AVS, Sinha S, Satyanarayana Rao MR and Donakonda S: The impact of PTEN status on glioblastoma multiforme: A glial cell type-specific study identifies unique prognostic markers. Comput Biol Med. 184:1093952025. View Article : Google Scholar : PubMed/NCBI | |
Xia Q, Zhang H, Zhang P, Li Y, Xu M, Li X, Li X and Dong L: Oncogenic Smurf1 promotes PTEN wild-type glioblastoma growth by mediating PTEN ubiquitylation. Oncogene. 39:5902–5915. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mazzoleni A, Awuah WA, Sanker V, Bharadwaj HR, Aderinto N, Tan JK, Huang HYR, Poornaselvan J, Shah MH, Atallah O, et al: Chromosomal instability: A key driver in glioma pathogenesis and progression. Eur J Med Res. 29:4512024. View Article : Google Scholar : PubMed/NCBI | |
Ghosh D, Pryor B and Jiang N: Cellular signaling in glioblastoma: A molecular and clinical perspective. Int Rev Cell Mol Biol. 386:1–47. 2024. View Article : Google Scholar : PubMed/NCBI | |
Pham J, Cote DJ, Kang K, Briggs RG, Gomez D, Prasad A, Daggupati S, Sisti J, Chow F, Attenello F, et al: Treatment practices and survival outcomes for IDH-wildtype glioblastoma patients according to MGMT promoter methylation status: Insights from the U.S. National Cancer Database. J Neurooncol. Feb 5–2025.doi: 10.1007/s11060-025-04952-y (Epub ahead of print). View Article : Google Scholar | |
Fathi Kazerooni A, Bakas S, Saligheh Rad H and Davatzikos C: Imaging signatures of glioblastoma molecular characteristics: A radiogenomics review. J Magn Reson Imaging. 52:54–69. 2020. View Article : Google Scholar : PubMed/NCBI | |
Stazi G, Taglieri L, Nicolai A, Romanelli A, Fioravanti R, Morrone S, Sabatino M, Ragno R, Taurone S, Nebbioso M, et al: Dissecting the role of novel EZH2 inhibitors in primary glioblastoma cell cultures: Effects on proliferation, epithelial-mesenchymal transition, migration, and on the pro-inflammatory phenotype. Clin Epigenetics. 11:1732019. View Article : Google Scholar : PubMed/NCBI | |
Bates SE: Epigenetic therapies for cancer. N Engl J Med. 383:650–663. 2020. View Article : Google Scholar : PubMed/NCBI | |
Meng W, Wang B, Mao W, Wang J, Zhao Y, Li Q, Zhang C, Tang Y and Ma J: Enhanced efficacy of histone deacetylase inhibitor combined with bromodomain inhibitor in glioblastoma. J Exp Clin Cancer Res. 37:2412018. View Article : Google Scholar : PubMed/NCBI | |
Yuan Z, Zhou Y, Gao S, Cheng Y and Li Z: Homogeneous and sensitive detection of microRNA with ligase chain reaction and lambda exonuclease-assisted cationic conjugated polymer biosensing. ACS Appl Mater Interfaces. 6:6181–6185. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dai SM, Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG and Gao LC: Relationship between miRNA and ferroptosis in tumors. Front Pharmacol. 13:9770622022. View Article : Google Scholar : PubMed/NCBI | |
Charbit H and Lavon I: Investigating expression dynamics of miR-21 and miR-10b in glioblastoma cells in vitro: Insights into responses to hypoxia and secretion mechanisms. Int J Mol Sci. 25:79842024. View Article : Google Scholar : PubMed/NCBI | |
Wang RJ, Li JW, Bao BH, Wu HC, Du ZH, Su JL, Zhang MH and Liang HQ: MicroRNA-873 (miRNA-873) inhibits glioblastoma tumorigenesis and metastasis by suppressing the expression of IGF2BP1. J Biol Chem. 290:8938–8948. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rhim J, Baek W, Seo Y and Kim JH: From molecular mechanisms to therapeutics: Understanding MicroRNA-21 in cancer. Cells. 11:27912022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Rabinovsky R, Wei Z, El Fatimy R, Deforzh E, Luan B, Peshkin L, Uhlmann EJ and Krichevsky AM: Secreted PGK1 and IGFBP2 contribute to the bystander effect of miR-10b gene editing in glioma. Mol Ther Nucleic Acids. 31:265–275. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tan C, Wei J, Li Z, Tian N, Wang Z, Wang G, Han L and Tian Y: Circ_0021350 plays an oncogene role by regulating miR-1207-3p/PIK3R3 in glioblastoma. BMC Cancer. 23:8082023. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Li C, Yang J, Sun Y, Zhang S, Yang J, Yang L, Wang Y and Jiao B: Long noncoding RNA CASC9/miR-519d/STAT3 positive feedback loop facilitate the glioma tumourigenesis. J Cell Mol Med. 22:6338–6344. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Lin X, Han H, Zhang H, Li X, Feng M and Jiang C: lncRNA H19 promotes glioblastoma multiforme development by activating autophagy by sponging miR-491-5p. Bioengineered. 13:11440–11455. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yao H, Huang C, Zou J, Liang W, Zhao Y, Yang K, Zhong Z, Zhou S, Li J, Li Y, et al: Extracellular vesicle-packaged lncRNA from cancer-associated fibroblasts promotes immune evasion by downregulating HLA-A in pancreatic cancer. J Extracell Vesicles. 13:e124842024. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Jin W, Yi K, Wang Q, Zhou J, Tan Y, Xu C, Xiao M, Hong B, Xu F, et al: Combination LSD1 and HOTAIR-EZH2 inhibition disrupts cell cycle processes and induces apoptosis in glioblastoma cells. Pharmacol Res. 171:1057642021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yu Y, Yu J, Wang C, Wang Y, Fu R and Zhang C: The role of the dysregulation of circRNAs expression in glioblastoma multiforme. J Mol Neurosci. 75:92025. View Article : Google Scholar : PubMed/NCBI | |
Alom MW, Jibon MDK, Faruqe MO, Rahman MS, Akter F, Ali A and Rahman MM: Integrated gene expression Data-driven identification of molecular signatures, prognostic biomarkers, and drug targets for glioblastoma. Biomed Res Int. 2024:68102002024. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Gao S and Dong Z: CircVCAN promotes glioma progression through the miR-488-3p/MEF2C-JAGGED1 axis. Environ Toxicol. 39:4417–4430. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kadoch C and Crabtree GR: Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci Adv. 1:e15004472015. View Article : Google Scholar : PubMed/NCBI | |
Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun G, Lu Z, Huang Y, Yang CG, et al: m6A RNA methylation regulates the Self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 18:2622–2634. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hashemi M, Etemad S, Rezaei S, Ziaolhagh S, Rajabi R, Rahmanian P, Abdi S, Koohpar ZK, Rafiei R, Raei B, et al: Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions. Biomed Pharmacother. 158:1142042023. View Article : Google Scholar : PubMed/NCBI | |
Chen CH, Shaikenov T, Peterson TR, Aimbetov R, Bissenbaev AK, Lee SW, Wu J, Lin HK and Sarbassov dos D: ER stress inhibits mTORC2 and Akt signaling through GSK-3β-mediated phosphorylation of rictor. Sci Signal. 4:ra102011. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Liu F, Lin X, Li L, Chen W, Zhang T, Liu Y, Niu L, Zhang Y and Hu P: Cucurbitacin E inhibits the proliferation of glioblastoma cells via FAK/AKT/GSK3β pathway. Oncol Rep. 50:2212023. View Article : Google Scholar : PubMed/NCBI | |
Şengelen A and Önay-Uçar E: Rosmarinic acid attenuates glioblastoma cells and spheroids' growth and EMT/stem-like state by PTEN/PI3K/AKT downregulation and ERK-induced apoptosis. Phytomedicine. 135:1560602024. View Article : Google Scholar : PubMed/NCBI | |
Mekala JR, Kurappalli RK, Ramalingam P and Moparthi NR: N-acetyl l-aspartate and Triacetin modulate tumor suppressor MicroRNA and class I and II HDAC gene expression induce apoptosis in Glioblastoma cancer cells in vitro. Life Sci. 286:1200242021. View Article : Google Scholar : PubMed/NCBI | |
Harachi M, Masui K, Honda H, Muragaki Y, Kawamata T, Cavenee WK, Mischel PS and Shibata N: Dual regulation of histone methylation by mTOR complexes controls glioblastoma tumor cell growth via EZH2 and SAM. Mol Cancer Res. 18:1142–1152. 2020. View Article : Google Scholar : PubMed/NCBI | |
Barrie U, Floyd K, Datta A and Wetzel DM: MAPK/ERK activation in macrophages promotes Leishmania internalization and pathogenesis. Microbes Infect. 26:1053532024. View Article : Google Scholar : PubMed/NCBI | |
Ullah R, Yin Q, Snell AH and Wan L: RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol. 85:123–154. 2022. View Article : Google Scholar : PubMed/NCBI | |
Park AK, Kim P, Ballester LY, Esquenazi Y and Zhao Z: Subtype-specific signaling pathways and genomic aberrations associated with prognosis of glioblastoma. Neuro Oncol. 21:59–70. 2019. View Article : Google Scholar : PubMed/NCBI | |
Angom RS, Mondal SK, Wang F, Madamsetty VS, Wang E, Dutta SK, Gulani Y, Sarabia-Estrada R, Sarkaria JN, Quiñones-Hinojosa A and Mukhopadhyay D: Ablation of neuropilin-1 improves the therapeutic response in conventional drug-resistant glioblastoma multiforme. Oncogene. 39:7114–7126. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li H, Niu X and Cheng R: Prevalence, prognostic and clinicopathological value of HIF-1α in glioblastoma patients: A systematic review and meta-analysis. Neurosurg Rev. 47:8602024. View Article : Google Scholar : PubMed/NCBI | |
Karkon-Shayan S, Aliashrafzadeh H, Dianat-Moghadam H, Rastegar-Pouyani N, Majidi M, Zarei M, Moradi-Vastegani S, Bahramvand Y, Babaniamansour S and Jafarzadeh E: Resveratrol as an antitumor agent for glioblastoma multiforme: Targeting resistance and promoting apoptotic cell deaths. Acta Histochem. 125:1520582023. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Wu S, Zhao W, Xue S, Zhang L and Ren J: MAPK-activated protein kinase 2 is associated with poor prognosis of glioma patients and immune inhibition in glioma. Front Oncol. 14:13079922024. View Article : Google Scholar : PubMed/NCBI | |
Golovin A, Dzarieva F, Rubetskaya K, Shamadykova D, Usachev D, Pavlova G and Kopylov A: In silico born designed Anti-EGFR aptamer gol1 has Anti-proliferative potential for patient glioblastoma Cells. Int J Mol Sci. 26:10722025. View Article : Google Scholar : PubMed/NCBI | |
Geribaldi-Doldán N, Hervás-Corpión I, Gómez-Oliva R, Domínguez-García S, Ruiz FA, Iglesias-Lozano I, Carrascal L, Pardillo-Díaz R, Gil-Salú JL, Nunez-Abades P, et al: Targeting protein Kinase C in glioblastoma treatment. Biomedicines. 9:3812021. View Article : Google Scholar : PubMed/NCBI | |
Hatipoglu OF, Nishinaka T, Nishibori M, Watanabe M, Toyomura T, Mori S, Yaykasli KO, Wake H and Takahashi H: Histamine promotes angiogenesis through a histamine H1 receptor-PKC-VEGF-mediated pathway in human endothelial cells. J Pharmacol Sci. 151:177–186. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang LH, Wu CF, Rajasekaran N and Shin YK: Loss of tumor suppressor gene function in human cancer: An overview. Cell Physiol Biochem. 51:2647–2693. 2018. View Article : Google Scholar : PubMed/NCBI | |
Solt LA and May MJ: The IkappaB kinase complex: Master regulator of NF-kappaB signaling. Immunol Res. 42:3–18. 2008. View Article : Google Scholar : PubMed/NCBI | |
Latour M, Her NG, Kesari S and Nurmemmedov E: WNT signaling as a therapeutic target for glioblastoma. Int J Mol Sci. 22:84282021. View Article : Google Scholar : PubMed/NCBI | |
Sedgwick AE and D'Souza-Schorey C: Wnt signaling in cell motility and invasion: Drawing parallels between development and cancer. Cancers (Basel). 8:802016. View Article : Google Scholar : PubMed/NCBI | |
Cadigan KM and Waterman ML: TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol. 4:a0079062012. View Article : Google Scholar : PubMed/NCBI | |
Desterke C, Fu Y, Bonifacio-Mundaca J, Monge C, Pineau P, Mata-Garrido J and Francés R: Single-cell RNA sequencing reveals LEF1-driven wnt pathway activation as a shared oncogenic program in hepatoblastoma and medulloblastoma. Curr Oncol. 32:352025. View Article : Google Scholar : PubMed/NCBI | |
Guan R, Zhang X and Guo M: Glioblastoma stem cells and Wnt signaling pathway: Molecular mechanisms and therapeutic targets. Chin Neurosurg J. 6:252020. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Zhao H, Wang S, Dong C, Yang F and Zhang J: LncRNA ADAMTS9-AS1 knockdown suppresses cell proliferation and migration in glioma through downregulating Wnt/β-catenin signaling pathway. Bosn J Basic Med Sci. 22:395–402. 2022.PubMed/NCBI | |
Butler M, Prasad S and Srivastava SK: Targeting glioblastoma tumor microenvironment. Adv Exp Med Biol. 1296:1–9. 2020. View Article : Google Scholar : PubMed/NCBI | |
DePalma TJ, Sivakumar H and Skardal A: Strategies for developing complex multi-component in vitro tumor models: Highlights in glioblastoma. Adv Drug Deliv Rev. 180:1140672022. View Article : Google Scholar : PubMed/NCBI | |
Read RD, Tapp ZM, Rajappa P and Hambardzumyan D: Glioblastoma microenvironment-from biology to therapy. Genes Dev. 38:360–379. 2024.PubMed/NCBI | |
De Leo A, Ugolini A and Veglia F: Myeloid cells in glioblastoma microenvironment. Cells. 10:182020. View Article : Google Scholar : PubMed/NCBI | |
Lakshmanachetty S, Cruz-Cruz J, Hoffmeyer E, Cole AP and Mitra SS: New insights into the multifaceted role of Myeloid-derived suppressor cells (MDSCs) in High-grade gliomas: From metabolic reprograming, immunosuppression, and therapeutic resistance to current strategies for targeting MDSCs. Cells. 10:8932021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Chen X, Xu Y, Yang T, Wang H, Wang Z, Hu Z, Chen L, Zhang Z and Wu Y: CTHRC1 promotes colorectal cancer progression by recruiting tumor-associated macrophages via up-regulation of CCL15. J Mol Med (Berl). 102:81–94. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ren J, Xu B, Ren J, Liu Z, Cai L, Zhang X, Wang W, Li S, Jin L and Ding L: The Importance of M1-and M2-Polarized macrophages in glioma and as potential treatment targets. Brain Sci. 13:12692023. View Article : Google Scholar : PubMed/NCBI | |
Guo M, Zhang J, Han J, Hu Y, Ni H, Yuan J, Sun Y, Liu M, Gao L, Liao W, et al: VEGFR2 blockade inhibits glioblastoma cell proliferation by enhancing mitochondrial biogenesis. J Transl Med. 22:4192024. View Article : Google Scholar : PubMed/NCBI | |
Jia S, Bode AM, Chen X and Luo X: Unlocking the potential: Targeting metabolic pathways in the tumor microenvironment for cancer therapy. Biochim Biophys Acta Rev Cancer. 1879:1891662024. View Article : Google Scholar : PubMed/NCBI | |
Agnihotri TG, Salave S, Shinde T, Srikanth I, Gyanani V, Haley JC and Jain A: Understanding the role of endothelial cells in brain tumor formation and metastasis: A proposition to be explored for better therapy. J Natl Cancer Cent. 3:222–235. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shimizu M, Shirakami Y and Moriwaki H: Targeting receptor tyrosine kinases for chemoprevention by green tea catechin, EGCG. Int J Mol Sci. 9:1034–1049. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Liu Y, Zuo Z, Cui D, Xu Y, Li L and Jiang Y: Dual role of exosomal circCMTM3 derived from GSCs in impeding degradation and promoting phosphorylation of STAT5A to facilitate vasculogenic mimicry formation in glioblastoma. Theranostics. 14:5698–5724. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Liao W, Li C and Zhu L: Silencing BMAL1 promotes M1/M2 polarization through the LDHA/lactate axis to promote GBM sensitivity to bevacizumab. Int Immunopharmacol. 134:1121872024. View Article : Google Scholar : PubMed/NCBI | |
Schor AM, Woolston AM, Kankova K, Harada K, Aljorani LE, Perrier S, Felts PA, Keatch RP and Schor SL: Migration stimulating factor (MSF): Its role in the tumour microenvironment. Adv Exp Med Biol. 1329:351–397. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Han X, Gao Q, Liu J, Li S, Zha W, Wang X, Guo X and Gao D: Enhancer II-targeted dsRNA decreases GDNF expression via histone H3K9 trimethylation to inhibit glioblastoma progression. Brain Res Bull. 167:22–32. 2021. View Article : Google Scholar : PubMed/NCBI | |
Meier C and Bischoff A: Oligodendroglial cell development in jimpy mice and controls. An electron-microscopic study in the optic nerve. J Neurol Sci. 26:517–528. 1975. View Article : Google Scholar : PubMed/NCBI | |
Slepak TI, Guyot M, Walters W, Eichberg DG and Ivan ME: Dual role of the adhesion G-protein coupled receptor ADRGE5/CD97 in glioblastoma invasion and proliferation. J Biol Chem. 299:1051052023. View Article : Google Scholar : PubMed/NCBI | |
Ishii H, Mimura Y, Zahra MH, Katayama S, Hassan G, Afify SM and Seno M: Isolation and characterization of cancer stem cells derived from human glioblastoma. Am J Cancer Res. 11:441–457. 2021.PubMed/NCBI | |
Ryskalin L, Gaglione A, Limanaqi F, Biagioni F, Familiari P, Frati A, Esposito V and Fornai F: The autophagy status of cancer stem cells in gliobastoma multiforme: From cancer promotion to therapeutic strategies. Int J Mol Sci. 20:38242019. View Article : Google Scholar : PubMed/NCBI | |
Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL and Rich JN: Cancer stem cells in glioblastoma. Genes Dev. 29:1203–1217. 2015. View Article : Google Scholar : PubMed/NCBI | |
Singh DK, Shivalingappa PKM, Sharma A, Mondal A, Muzumdar D, Shiras A and Bapat SA: NSG-70, a new glioblastoma cell line with mixed proneural-mesenchymal features, associates NOTCH1-WNT5A signaling with stem cell maintenance and angiogenesis. J Neurooncol. 157:575–591. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI | |
Comba A, Faisal SM, Varela ML, Hollon T, Al-Holou WN, Umemura Y, Nunez FJ, Motsch S, Castro MG and Lowenstein PR: Uncovering spatiotemporal heterogeneity of High-grade gliomas: From disease biology to therapeutic implications. Front Oncol. 11:7037642021. View Article : Google Scholar : PubMed/NCBI | |
Griessmair M, Delbridge C, Ziegenfeuter J, Jung K, Mueller T, Schramm S, Bernhardt D, Schmidt-Graf F, Kertels O, Thomas M, et al: Exploring molecular glioblastoma: Insights from advanced imaging for a nuanced understanding of the molecularly defined malignant biology. Neurooncol Adv. 6:vdae1062024.PubMed/NCBI | |
Liu M, Ji Z, Jain V, Smith VL, Hocke E, Patel AP, McLendon RE, Ashley DM, Gregory SG and López GY: Spatial transcriptomics reveals segregation of tumor cell states in glioblastoma and marked immunosuppression within the perinecrotic niche. Acta Neuropathol Commun. 12:642024. View Article : Google Scholar : PubMed/NCBI | |
Rojiani AM and Dorovini-Zis K: Glomeruloid vascular structures in glioblastoma multiforme: An immunohistochemical and ultrastructural study. J Neurosurg. 85:1078–1084. 1996. View Article : Google Scholar : PubMed/NCBI | |
Lista S, Imbimbo BP, Grasso M, Fidilio A, Emanuele E, Minoretti P, López-Ortiz S, Martín-Hernández J, Gabelle A, Caruso G, et al: Tracking neuroinflammatory biomarkers in Alzheimer's disease: A strategy for individualized therapeutic approaches? J Neuroinflammation. 21:1872024. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Wang X, Hawkins CA, Chen K, Vaynberg J, Mao X, Tu Y, Zuo X, Wang J, Wang YX, et al: Structural basis of focal adhesion localization of LIM-only adaptor PINCH by integrin-linked kinase. J Biol Chem. 284:5836–5844. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ainslie K: Modifying Post-surgical immunity: Controlled release of TLR7/8 agonist for immune mediated clearance of glioblastoma. Res Sq: rs.3.rs-5024510. 2024.doi: 10.21203/rs.3.rs-5024510/v1. | |
Zhang L, Liu Z, Dong Y and Kong L: E2F2 drives glioma progression via PI3K/AKT in a PFKFB4-dependent manner. Life Sci. 276:1194122021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Chen Q, Xu S, Wu J, Huang Q, Song P and Duan F: Down-regulation of BAG3 inhibits proliferation and promotes apoptosis of glioblastoma multiforme through BAG3/HSP70/HIF-1α signaling pathway. Int J Clin Exp Pathol. 11:4305–4318. 2018.PubMed/NCBI | |
Zhang L, He J, Zhao W, Zhou Y, Li J, Li S, Zhao W, Zhang L, Tang Z, Tan G, et al: CD2AP promotes the progression of glioblastoma multiforme via TRIM5-mediated NF-kB signaling. Cell Death Dis. 15:7222024. View Article : Google Scholar : PubMed/NCBI | |
Taheri E and Raeeszadeh-Sarmazdeh M: Effect of TIMPs and their minimally engineered variants in blocking invasion and migration of brain cancer cells. bioRxiv. 2024.06.05.597644. 2024. | |
Ghaffari SH, Yousefi M, Dizaji MZ, Momeny M, Bashash D, Zekri A, Alimoghaddam K and Ghavamzadeh A: Arsenic trioxide induces apoptosis and incapacitates proliferation and invasive properties of U87MG glioblastoma cells through a possible NF-κB-Mediated mechanism. Asian Pac J Cancer Prev. 17:1553–1564. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pham LC, Weller L, Gann CN, Schumacher KM, Vlassak S, Swanson T, Highsmith K, O'Brien BJ, Nash S, Aaroe A, et al: Prolonged complete response to adjuvant tepotinib in a patient with newly diagnosed disseminated glioblastoma harboring mesenchymal-epithelial transition fusion. Oncologist. 30:oyae1002025. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Wang M, Chen Y, Tang H, Tang K, Zhao M, Yang W, Zhou Z, Tian J, Xiang W, et al: Glioblastoma-derived migrasomes promote migration and invasion by releasing PAK4 and LAMA4. Commun Biol. 8:912025. View Article : Google Scholar : PubMed/NCBI | |
Magalhaes YT and Forti FL: ROCK inhibition reduces the sensitivity of mutant p53 glioblastoma to genotoxic stress through a Rac1-driven ROS production. Int J Biochem Cell Biol. 164:1064742023. View Article : Google Scholar : PubMed/NCBI | |
Mulherkar S and Tolias KF: RhoA-ROCK signaling as a therapeutic target in traumatic brain injury. Cells. 9:2452020. View Article : Google Scholar : PubMed/NCBI | |
Velasquez C, Gutierrez O, Carcelen M and Fernandez-Luna JL: The invasion factor ODZ1 is upregulated through an epidermal growth factor Receptor-induced pathway in primary glioblastoma cells. Cells. 13:662024. View Article : Google Scholar | |
Xue Y, Bi F, Zhang X, Zhang S, Pan Y, Liu N, Shi Y, Yao X, Zheng Y and Fan D: Role of Rac1 and Cdc42 in hypoxia induced p53 and von Hippel-Lindau suppression and HIF1alpha activation. Int J Cancer. 118:2965–2972. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shi C, Luo W, Sun C, Yu L, Zhou X, Hua D, Jiang Z, Wang Q and Yu S: The miR-29 family members induce glioblastoma cell apoptosis by targeting cell division cycle 42 in a p53-dependent manner. Eur J Clin Invest. 53:e139642023. View Article : Google Scholar : PubMed/NCBI | |
Yin X, Xia K, Peng S, Tan B, Huang Y, Wang M and He M: ABCF1/CXCL12/CXCR4 enhances glioblastoma cell proliferation, migration, and invasion by activating the PI3K/AKT signal pathway. Dev Neurosci. 46:210–220. 2024. View Article : Google Scholar : PubMed/NCBI | |
Horowitz MA, Ghadiyaram A, Mehkri Y, Chakravarti S, Liu J, Fox K, Gendreau J and Mukherjee D: Surgical resection of glioblastoma in the very elderly: An analysis of survival outcomes using the surveillance, epidemiology, and end results database. Clin Neurol Neurosurg. 245:1084692024. View Article : Google Scholar : PubMed/NCBI | |
Montemurro N, Fanelli GN, Scatena C, Ortenzi V, Pasqualetti F, Mazzanti CM, Morganti R, Paiar F, Naccarato AG and Perrini P: Surgical outcome and molecular pattern characterization of recurrent glioblastoma multiforme: A single-center retrospective series. Clin Neurol Neurosurg. 207:1067352021. View Article : Google Scholar : PubMed/NCBI | |
Vanhove C and Goethals I: Magnetic resonance imaging-guided radiation therapy using animal models of glioblastoma. Br J Radiol. 92:201807132019. View Article : Google Scholar : PubMed/NCBI | |
Li R, Wang H, Liang Q, Chen L and Ren J: Radiotherapy for glioblastoma: Clinical issues and nanotechnology strategies. Biomater Sci. 10:892–908. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ashby LS, Smith KA and Stea B: Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: A systematic literature review. World J Surg Oncol. 14:2252016. View Article : Google Scholar : PubMed/NCBI | |
LiverTox, . Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases; Bethesda, MD: 2012 | |
Ou A, Yung WKA and Majd N: Molecular mechanisms of treatment resistance in glioblastoma. Int J Mol Sci. 22:3512020. View Article : Google Scholar : PubMed/NCBI | |
Dymova MA, Kuligina EV and Richter VA: Molecular mechanisms of drug resistance in glioblastoma. Int J Mol Sci. 22:63852021. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Wang A, Wang S, Sun Y, Chu L, Zhou L, Yang X, Liu X, Sha C, Sun K and Xu L: Efficacy of Temozolomide-conjugated gold nanoparticle photothermal therapy of Drug-resistant glioblastoma and its mechanism study. Mol Pharm. 19:1219–1229. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sherman JH, Bobak A, Arsiwala T, Lockman P and Aulakh S: Targeting drug resistance in glioblastoma (Review). Int J Oncol. 65:802024. View Article : Google Scholar : PubMed/NCBI | |
Asija S, Chatterjee A, Yadav S, Chekuri G, Karulkar A, Jaiswal AK, Goda JS and Purwar R: Combinatorial approaches to effective therapy in glioblastoma (GBM): Current status and what the future holds. Int Rev Immunol. 41:582–605. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lv W, Yang F, Ge Z, Xin L, Zhang L, Zhai Y, Liu X, Guo Q, Mao X, Luo P, et al: Aberrant overexpression of myosin 1b in glioblastoma promotes angiogenesis via VEGF-myc-myosin 1b-Piezo1 axis. J Biol Chem. 300:1078072024. View Article : Google Scholar : PubMed/NCBI | |
Yuan Z: From origin to present: Establishment, mechanism, evolutions and biomedical applications of CRISPR/Cas-based Macromolecular System in Brief. Biol Biotechnol. 2024.doi: 10.20944/preprints202408.1715.v2. | |
Fang Y, Li X and Tian R: Unlocking glioblastoma vulnerabilities with CRISPR-Based genetic screening. Int J Mol Sci. 25:57022024. View Article : Google Scholar : PubMed/NCBI | |
Chow RD, Guzman CD, Wang G, Schmidt F, Youngblood MW, Ye L, Errami Y, Dong MB, Martinez MA, Zhang S, et al: AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nat Neurosci. 20:1329–1341. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tu KJ, Stewart CE, Hendrickson PG, Regal JA, Kim SY, Ashley DM, Waitkus MS and Reitman ZJ: Pooled genetic screens to identify vulnerabilities in TERT-promoter-mutant glioblastoma. Oncogene. 42:3274–3286. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lin P, Chen W, Long Z, Yu J, Yang J, Xia Z, Wu Q, Min X, Tang J, Cui Y, et al: RBBP6 maintains glioblastoma stem cells through CPSF3-dependent alternative polyadenylation. Cell Discov. 10:322024. View Article : Google Scholar : PubMed/NCBI | |
Waldman AD, Fritz JM and Lenardo MJ: A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat Rev Immunol. 20:651–668. 2020. View Article : Google Scholar : PubMed/NCBI | |
Farahzadi R, Fathi E, Vandghanooni S and Valipour B: Hydrogel encapsulation of mesenchymal stem cells-derived extracellular vesicles as a novel therapeutic approach in cancer therapy. Biochim Biophys Acta Rev Cancer. 1879:1891772024. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Hu D, Lian L, Zhao L, Li M, Bao H and Xu S: Stem Cell-derived extracellular vesicles: A promising nano delivery platform to the brain? Stem Cell Rev Rep. 19:285–308. 2023. View Article : Google Scholar : PubMed/NCBI | |
Luksik AS, Yazigi E, Shah P and Jackson CM: CAR T cell therapy in glioblastoma: Overcoming challenges related to antigen expression. Cancers (Basel). 15:14142023. View Article : Google Scholar : PubMed/NCBI | |
Xie HY, Mao M, Lei Y and Ma X: Challenges and emerging strategies of immunotherapy for glioblastoma. Chembiochem. e2024008482025.doi: 10.1002/cbic.202400848 (Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Quan Q, Guo L, Huang L, Liu Z, Guo T, Shen Y, Ding S, Liu C and Cao L: Expression and clinical significance of PD-L1 and infiltrated immune cells in the gastric adenocarcinoma microenvironment. Medicine (Baltimore). 102:e363232023. View Article : Google Scholar : PubMed/NCBI | |
Mamdani H, Matosevic S, Khalid AB, Durm G and Jalal SI: Immunotherapy in lung cancer: Current landscape and future directions. Front Immunol. 13:8236182022. View Article : Google Scholar : PubMed/NCBI | |
Ribatti D, Cazzato G, Tamma R, Annese T, Ingravallo G and Specchia G: Immune checkpoint inhibitors targeting PD-1/PD-L1 in the treatment of human lymphomas. Front Oncol. 14:14209202024. View Article : Google Scholar : PubMed/NCBI | |
Maghrouni A, Givari M, Jalili-Nik M, Mollazadeh H, Bibak B, Sadeghi MM, Afshari AR, Johnston TP and Sahebkar A: Targeting the PD-1/PD-L1 pathway in glioblastoma multiforme: Preclinical evidence and clinical interventions. Int Immunopharmacol. 93:1074032021. View Article : Google Scholar : PubMed/NCBI | |
Sarkar S, Greer J, Marlowe NJ, Medvid A, Ivan ME, Kolishetti N and Dhar S: Stemness, invasion, and immunosuppression modulation in recurrent glioblastoma using nanotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 16:e19762024. View Article : Google Scholar : PubMed/NCBI | |
Sousa F: Emerging cytokine delivery with nanomedicine for brain cancer treatment. Expert Opin Drug Deliv. 21:513–516. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hameedat F, Mendes BB, Conniot J, Di Filippo LD, Chorilli M, Schroeder A, Conde J and Sousa F: Engineering nanomaterials for glioblastoma nanovaccination. Nat Rev Materials. 9:628–642. 2024. View Article : Google Scholar | |
Lim SH, Yee GT and Khang D: Nanoparticle-based combinational strategies for overcoming the Blood-brain barrier and Blood-tumor barrier. Int J Nanomedicine. 19:2529–2552. 2024. View Article : Google Scholar : PubMed/NCBI | |
Song M, Tian J, Wang L, Dong S, Fu K, Chen S and Liu C: Efficient delivery of lomitapide using hybrid Membrane-coated tetrahedral DNA nanostructures for glioblastoma therapy. Adv Mater. 36:e23117602024. View Article : Google Scholar : PubMed/NCBI | |
Song Z, Zhao L, Fang W, Guo S, Xu A, Zhan Z, Cai Y, Xue SS, Chai P, Jiang Q, et al: Glioma cell membrane camouflaged cinobufotalin delivery system for combinatorial orthotopic glioblastoma therapy. Nano Res. 16:11164–11175. 2023. View Article : Google Scholar | |
Ruan W, Xu S, An Y, Cui Y, Liu Y, Wang Y, Ismail M, Liu Y and Zheng M: Brain-Targeted Cas12a ribonucleoprotein nanocapsules enable synergetic gene Co-editing leading to potent inhibition of orthotopic glioblastoma. Adv Sci (Weinh). 11:e24021782024. View Article : Google Scholar : PubMed/NCBI | |
Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, Toms S, Idbaih A, Ahluwalia MS, Fink K, et al: Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA. 318:2306–2316. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rominiyi O, Vanderlinden A, Clenton SJ, Bridgewater C, Al-Tamimi Y and Collis SJ: Tumour treating fields therapy for glioblastoma: Current advances and future directions. Br J Cancer. 124:697–709. 2021. View Article : Google Scholar : PubMed/NCBI | |
Khagi S, Kotecha R, Gatson NTN, Jeyapalan S, Abdullah HI, Avgeropoulos NG, Batzianouli ET, Giladi M, Lustgarten L and Goldlust SA: Recent advances in tumor treating fields (TTFields) therapy for glioblastoma. Oncologist. Oct 14;oyae227, 2024 doi: 10.1093/oncolo/oyae227 (Epub ahead of print). PubMed/NCBI | |
Chen D, Le SB, Hutchinson TE, Calinescu AA, Sebastian M, Jin D, Liu T, Ghiaseddin A, Rahman M and Tran DD: Tumor treating fields dually activate STING and AIM2 inflammasomes to induce adjuvant immunity in glioblastoma. J Clin Invest. 132:e1492582022. View Article : Google Scholar : PubMed/NCBI | |
Hendricks-Wenger A, Hutchison R, Vlaisavljevich E and Allen IC: Immunological effects of histotripsy for cancer therapy. Front Oncol. 11:6816292021. View Article : Google Scholar : PubMed/NCBI | |
Sørensen BS and Horsman MR: Tumor hypoxia: Impact on radiation therapy and molecular pathways. Front Oncol. 10:5622020. View Article : Google Scholar : PubMed/NCBI | |
El Kaffas A, Gangeh MJ, Farhat G, Tran WT, Hashim A, Giles A and Czarnota GJ: Tumour vascular shutdown and cell death following Ultrasound-microbubble enhanced radiation therapy. Theranostics. 8:314–327. 2018. View Article : Google Scholar : PubMed/NCBI | |
D'Ammando A, Raspagliesi L, Gionso M, Franzini A, Porto E, Di Meco F, Durando G, Pellegatta S and Prada FJ: Sonodynamic therapy for the treatment of intracranial gliomas. J Clin Med. 10:11012021. View Article : Google Scholar : PubMed/NCBI | |
Verma J, Lal S and Van Noorden CJ: Nanoparticles for hyperthermic therapy: Synthesis strategies and applications in glioblastoma. Int J Nanomedicine. 9:2863–2877. 2014.PubMed/NCBI | |
Rego GNA, Nucci MP, Mamani JB, Oliveira FA, Marti LC, Filgueiras IS, Ferreira JM, Real CC, Faria DP, Espinha PL, et al: Therapeutic efficiency of multiple applications of magnetic hyperthermia technique in glioblastoma using aminosilane coated iron oxide nanoparticles: In vitro and in vivo study. Int J Mol Sci. 21:9582020. View Article : Google Scholar : PubMed/NCBI | |
Tabatabaei SN, Tabatabaei MS, Girouard H and Martel S: Hyperthermia of magnetic nanoparticles allows passage of sodium fluorescein and Evans blue dye across the blood-retinal barrier. Int J Hyperthermia. 32:657–665. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qi G, Chen K, Guan W, Xie J, Chen X, Zhang G, Yan R and Yang G: One-Pot synthesis of a pH-Sensitive MOF integrated with glucose oxidase for amplified tumor Photodynamic/Photothermal therapy. ACS Appl Mater Interfaces. 16:613952024. View Article : Google Scholar : PubMed/NCBI | |
Lim KY, Won JK, Park CK, Kim SK, Choi SH, Kim T, Yun H and Park SH: H3 G34-mutant high-grade glioma. Brain Tumor Pathol. 38:4–13. 2021. View Article : Google Scholar : PubMed/NCBI | |
Goldman MJ, Baskin AM, Sharpe MA and Baskin DS: Advances in gene therapy for high-grade glioma: A review of the clinical evidence. Expert Rev Neurother. 24:879–895. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xing Z, Jiang X, Chen Y, Wang T, Li X, Wei X, Fan Q, Yang J, Wu H, Cheng J and Cai R: Glutamine deprivation in glioblastoma stem cells triggers autophagic SIRT3 degradation to epigenetically restrict CD133 expression and stemness. Apoptosis. 29:1619–1631. 2024. View Article : Google Scholar : PubMed/NCBI | |
Garros-Regulez L, Aldaz P, Arrizabalaga O, Moncho-Amor V, Carrasco-Garcia E, Manterola L, Moreno-Cugnon L, Barrena C, Villanua J, Ruiz I, et al: mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance. Expert Opin Ther Targets. 20:393–405. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bouchart C, Trépant AL, Hein M, Van Gestel D and Demetter P: Prognostic impact of glioblastoma stem cell markers OLIG2 and CCND2. Cancer Med. 9:1069–1078. 2020. View Article : Google Scholar : PubMed/NCBI | |
Anido J, Sáez-Borderías A, Gonzàlez-Juncà A, Rodón L, Folch G, Carmona MA, Prieto-Sánchez RM, Barba I, Martínez-Sáez E, Prudkin L, et al: TGF-β receptor inhibitors target the CD44(high)/Id1(high) Glioma-initiating cell population in human glioblastoma. Cancer Cell. 18:655–668. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tchoghandjian A, Baeza N, Colin C, Cayre M, Metellus P, Beclin C, Ouafik L and Figarella-Branger D: A2B5 cells from human glioblastoma have cancer stem cell properties. Brain Pathol. 20:211–221. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang YK, Wang TM, Chen CY, Li CY, Wang SC, Irshad K, Pan Y and Chang KC: The role of ALDH1A1 in glioblastoma proliferation and invasion. Chem Biol Interact. 402:1112022024. View Article : Google Scholar : PubMed/NCBI | |
Kiefel H, Bondong S, Hazin J, Ridinger J, Schirmer U, Riedle S and Altevogt P: L1CAM: A major driver for tumor cell invasion and motility. Cell Adh Migr. 6:374–384. 2012. View Article : Google Scholar : PubMed/NCBI | |
Selvaraj S, Srinivas BH, Verma SK and Ms G: Significance of Nestin and CD133 as cancer stem cell markers in diffuse glioma and association with p53 expression and IDH status. Int J Clin Exp Pathol. 17:208–218. 2024. View Article : Google Scholar : PubMed/NCBI |