|
1
|
Hanahan D: Hallmarks of cancer: New
dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lee MS, Kim JW, Park DG, Heo H, Kim J,
Yoon JH and Chang J: Autophagic signatures in peripheral blood
mononuclear cells from Parkinson's disease patients. Mol Cells.
48:1001732024. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Dopkins N and Nixon DF: Activation of
human endogenous retroviruses and its physiological consequences.
Nat Rev Mol Cell Biol. 25:212–222. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jakobsson J and Vincendeau M: SnapShot:
Human endogenous retroviruses. Cell. 185:400–400.e1. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Youngson NA, Kocialkowski S, Peel N and
Ferguson-Smith AC: A small family of sushi-class
retrotransposon-derived genes in mammals and their relation to
genomic imprinting. J Mol Evol. 61:481–490. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Iwasaki S, Suzuki S, Pelekanos M, Clark H,
Ono R, Shaw G, Renfree MB, Kaneko-Ishino T and Ishino F:
Identification of a novel PNMA-MS1 gene in marsupials suggests the
LTR retrotransposon-derived PNMA genes evolved differently in
marsupials and eutherians. DNA Res. 20:425–436. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ono R, Kobayashi S, Wagatsuma H, Aisaka K,
Kohda T, Kaneko-Ishino T and Ishino F: A retrotransposon-derived
gene, PEG10, is a novel imprinted gene located on human chromosome
7q21. Genomics. 73:232–237. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Renfree MB, Suzuki S and Kaneko-Ishino T:
The origin and evolution of genomic imprinting and viviparity in
mammals. Philos Trans R Soc Lond B Biol Sci. 368:201201512013.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Suzuki S, Ono R, Narita T, Pask AJ, Shaw
G, Wang C, Kohda T, Alsop AE, Marshall Graves JA, Kohara Y, et al:
Retrotransposon silencing by DNA methylation can drive mammalian
genomic imprinting. PLoS Genet. 3:e552007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Segel M, Lash B, Song J, Ladha A, Liu CC,
Jin X, Mekhedov SL, Macrae RK, Koonin EV and Zhang F: Mammalian
retrovirus-like protein PEG10 packages its own mRNA and can be
pseudotyped for mRNA delivery. Science. 373:882–889. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Tang R, Guo L, Wei T, Chen T, Yang H, Ye
H, Lin F, Zeng Y, Yu H, Cai Z and Liu X: Engineering PEG10
assembled endogenous virus-like particles with genetically encoded
neoantigen peptides for cancer vaccination. Elife. 13:RP985792024.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Campodonico W, Mohan HM, Huynh PT, Black
HH, Lau CI, Paulson HL, Sharkey LM and Whiteley AM: The gag-like
gene RTL8 antagonizes PEG10-mediated virus like particles. PLoS
One. 19:e03109462024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Li M, Liu Z, Wang D, Ye J, Shi Z, Pan C,
Zhang Q, Ju R, Zheng Y and Liu Y: Intraocular mRNA delivery with
endogenous MmPEG10-based virus-like particles. Exp Eye Res.
243:1098992024. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Abed M, Verschueren E, Budayeva H, Liu P,
Kirkpatrick DS, Reja R, Kummerfeld SK, Webster JD, Gierke S,
Reichelt M, et al: The Gag protein PEG10 binds to RNA and regulates
trophoblast stem cell lineage specification. PLoS One.
14:e02141102019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Pollard KS, Serre D, Wang X, Tao H,
Grundberg E, Hudson TJ, Clark AG and Frazer K: A genome-wide
approach to identifying novel-imprinted genes. Hum Genet.
122:625–634. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Smallwood A, Papageorghiou A, Nicolaides
K, Alley MK, Jim A, Nargund G, Ojha K, Campbell S and Banerjee S:
Temporal regulation of the expression of syncytin (HERV-W),
maternally imprinted PEG10, and SGCE in human placenta. Biol
Reprod. 69:286–293. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ono R, Nakamura K, Inoue K, Naruse M,
Usami T, Wakisaka-Saito N, Hino T, Suzuki-Migishima R, Ogonuki N,
Miki H, et al: Deletion of Peg10, an imprinted gene acquired from a
retrotransposon, causes early embryonic lethality. Nat Genet.
38:101–106. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
18
|
Xie T, Pan S, Zheng H, Luo Z, Tembo KM,
Jamal M, Yu Z, Yu Y, Xia J, Yin Q, et al: PEG10 as an oncogene:
Expression regulatory mechanisms and role in tumor progression.
Cancer Cell Inte. 18:1122018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Clark MB, Jänicke M, Gottesbühren U,
Kleffmann T, Legge M, Poole ES and Tate WP: Mammalian gene PEG10
expresses two reading frames by high efficiency-1 frameshifting in
embryonic-associated tissues. J Biol Chem. 282:37359–37369. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Manktelow E, Shigemoto K and Brierley I:
Characterization of the frameshift signal of Edr, a mammalian
example of programmed-1 ribosomal frameshifting. Nucleic Acids Res.
33:1553–1563. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cardno TS, Shimaki Y, Sleebs BE, Lackovic
K, Parisot JP, Moss RM, Crowe-McAuliffe C, Mathew SF, Edgar CD,
Kleffmann T and Tate WP: HIV-1 and human PEG10 frameshift elements
are functionally distinct and distinguished by novel small molecule
modulators. PLoS One. 10:e01390362015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lux H, Flammann H, Hafner M and Lux A:
Genetic and molecular analyses of PEG10 reveal new aspects of
genomic organization, transcription and translation. PLoS One.
5:e86862010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Liu F, Gao Y, Xu B, Xiong S, Yi S, Sun J,
Chen Z, Liu X, Li Y, Lin Y, et al: PEG10 amplification at 7q21.3
potentiates large-cell transformation in cutaneous T-cell lymphoma.
Blood. 139:554–571. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Black HH, Hanson JL, Roberts JE, Leslie
SN, Campodonico W, Ebmeier CC, Holling GA, Tay JW, Matthews AM, Ung
E, et al: UBQLN2 restrains the domesticated retrotransposon PEG10
to maintain neuronal health in ALS. Elife. 12:e794522023.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Pandya NJ, Wang C, Costa V, Lopatta P,
Meier S, Zampeta FI, Punt AM, Mientjes E, Grossen P, Distler T, et
al: Secreted retrovirus-like GAG-domain-containing protein PEG10 is
regulated by UBE3A and is involved in Angelman syndrome
pathophysiology. Cell Rep Med. 2:1003602021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Akamatsu S, Wyatt AW, Lin D, Lysakowski S,
Zhang F, Kim S, Tse C, Wang K, Mo F, Haegert A, et al: The
placental gene PEG10 promotes progression of neuroendocrine
prostate cancer. Cell Rep. 12:922–936. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yang J and Wang X: Role of long non-coding
RNAs in lymphoma: A systematic review and clinical perspectives.
Crit Rev Oncol Hematol. 141:13–22. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhao J, Su L and Jiang J: Long Non-coding
RNA paternally expressed imprinted gene 10 (PEG10) elevates diffuse
large B-Cell lymphoma progression by regulating kinesin family
member 2A (KIF2A) via targeting MiR-101-3p. Med Sci Monit.
26:e9228102020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Peng W, Fan H, Wu G, Wu J and Feng J:
Upregulation of long noncoding RNA PEG10 associates with poor
prognosis in diffuse large B cell lymphoma with facilitating
tumorigenicity. Clin Exp Med. 16:177–182. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhang J, Liu W, Ji P and Zhang Y:
Silencing of long chain noncoding RNA paternally expressed gene
(PEG10) inhibits the progression of neuroblastoma by regulating
microRNA-449a (miR-449a)/ribosomal protein S2 (RPS2) axis.
Bioengineered. 13:6309–6322. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ishii S, Yamashita K, Harada H, Ushiku H,
Tanaka T, Nishizawa N, Yokoi K, Washio M, Ema A, Mieno H, et al:
The H19-PEG10/IGF2BP3 axis promotes gastric cancer progression in
patients with high lymph node ratios. Oncotarget. 8:74567–74581.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang J, Chu XQ, Zhang D and Kong DF:
Knockdown of long non-coding RNA PEG10 inhibits growth, migration
and invasion of gastric carcinoma cells via up-regulating miR-3200.
Neoplasma. 65:769–778. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Xiao H, Ding N, Liao H, Yao Z, Cheng X,
Zhang J and Zhao M: Prediction of relapse and prognosis by
expression levels of long noncoding RNA PEG10 in glioma patients.
Medicine (Baltimore). 98:e175832019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Fu Y, Bi Y, Wang F, Chen X and Liu H:
Declination of long noncoding RNA paternally expressed gene 10
inhibits A375 cells proliferation, migration, and invasion via
mediating microRNA-33a. J Cell Biochem. 120:19868–19877. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zang W, Wang T, Huang J, Li M, Wang Y, Du
Y, Chen X and Zhao G: Long noncoding RNA PEG10 regulates
proliferation and invasion of esophageal cancer cells. Cancer Gene
Ther. 22:138–144. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhao M, Sun D, Li X, Xu Y, Zhang H, Qin Y
and Xia M: Overexpression of long noncoding RNA PEG10 promotes
proliferation, invasion and metastasis of hypopharyngeal squamous
cell carcinoma. Oncol Lett. 14:2919–2925. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kumar A, Kumar V, Rattan V, Jha V and
Bhattacharyya S: Secretome proteins regulate comparative osteogenic
and adipogenic potential in bone marrow and dental stem cells.
Biochimie. 155:129–139. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Jung S and Lee JS: Single-cell genomics
for investigating pathogenesis of inflammatory diseases. Mol Cells.
46:120–129. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo
B, Zheng MH, Li F, Yuan LQ and Li ZH: Epigenetic regulation in
metabolic diseases: Mechanisms and advances in clinical study.
Signal Transduct Target Ther. 8:982023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bar S, Vershkov D, Keshet G, Lezmi E,
Meller N, Yilmaz A, Yanuka O, Nissim-Rafinia M, Meshorer E,
Eldar-Geva T and Benvenisty N: Identifying regulators of parental
imprinting by CRISPR/Cas9 screening in haploid human embryonic stem
cells. Nat Commun. 12:67182021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Bretz CL, Langohr IM, Lee S and Kim J:
Epigenetic instability at imprinting control regions in a
Kras(G12D)-induced T-cell neoplasm. Epigenetics. 10:1111–1120.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yamaguchi S, Shen L, Liu Y, Sendler D and
Zhang Y: Role of Tet1 in erasure of genomic imprinting. Nature.
504:460–464. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kempinska K, Malik B, Borkin D, Klossowski
S, Shukla S, Miao H, Wang J, Cierpicki T and Grembecka J:
Pharmacologic inhibition of the Menin-MLL interaction leads to
transcriptional repression of PEG10 and blocks hepatocellular
carcinoma. Mol Cancer Ther. 17:26–38. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Shoshani O, Brunner SF, Yaeger R, Ly P,
Nechemia-Arbely Y, Kim DH, Fang R, Castillon GA, Yu M, Li JSZ, et
al: Chromothripsis drives the evolution of gene amplification in
cancer. Nature. 591:137–141. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Dong H, Zhang H, Liang J, Yan H, Chen Y,
Shen Y, Kong Y, Wang S, Zhao G and Jin W: Digital karyotyping
reveals probable target genes at 7q21.3 locus in hepatocellular
carcinoma. BMC Med Genomics. 4:602011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Tsuji K, Yasui K, Gen Y, Endo M, Dohi O,
Zen K, Mitsuyoshi H, Minami M, Itoh Y, Taniwaki M and Tanaka S:
PEG10 is a probable target for the amplification at 7q21 detected
in hepatocellular carcinoma. Cancer Genet Cytogenet. 198:118–125.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Huang J, Sheng HH, Shen T, Hu YJ, Xiao HS,
Zhang Q, Zhang QH and Han ZG: Correlation between genomic DNA copy
number alterations and transcriptional expression in hepatitis B
virus-associated hepatocellular carcinoma. FEBS Lett.
580:3571–3581. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kwon HC, Bae Y and Lee SV: The role of
mRNA quality control in the aging of caenorhabditis elegans. Mole
Cells. 46:664–671. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhang Y, Dou X, Kong Q, Li Y and Zhou X:
Circ_0075804 promotes the malignant behaviors of retinoblastoma
cells by binding to miR-138-5p to induce PEG10 expression. Int
Ophthalmol. 42:509–523. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhang L, Wan Y, Zhang Z, Jiang Y, Gu Z, Ma
X, Nie S, Yang J, Lang J, Cheng W and Zhu L: IGF2BP1 overexpression
stabilizes PEG10 mRNA in an m6A-dependent manner and promotes
endometrial cancer progression. Theranostics. 11:1100–1114. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Santiago M, Antunes C, Guedes M, Iacovino
M, Kyba M, Reik W, Sousa N, Pinto L, Branco MR and Marques CJ: Tet3
regulates cellular identity and DNA methylation in neural
progenitor cells. Cell Mol Life Sci. 77:2871–2883. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Shyu YC, Lee TL, Lu MJ, Chen JR, Chien RN,
Chen HY, Lin JF, Tsou AP, Chen YH, Hsieh CW and Huang TS:
miR-122-mediated translational repression of PEG10 and its
suppression in human hepatocellular carcinoma. J Transl Med.
14:2002016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li Y, Guo D, Lu G, Mohiuddin Chowdhury
ATM, Zhang D, Ren M, Chen Y, Wang R and He S: LncRNA SNAI3-AS1
promotes PEG10-mediated proliferation and metastasis via decoying
of miR-27a-3p and miR-34a-5p in hepatocellular carcinoma. Cell
Death Dis. 11:6852020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Li B, Shi C, Li B, Zhao JM and Wang L: The
effects of Curcumin on HCT-116 cells proliferation and apoptosis
via the miR-491/PEG10 pathway. J Cell Biochem. 119:3091–3098. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ye M, Zhao L, Zhang L, Wu S, Li Z, Qin Y,
Lin F and Pan L: LncRNA NALT1 promotes colorectal cancer
progression via targeting PEG10 by sponging microRNA-574-5p. Cell
Death Dis. 13:9602022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Jiménez Martín O, Schlosser A, Furtwängler
R, Wegert J and Gessler M: MYCN and MAX alterations in Wilms tumor
and identification of novel N-MYC interaction partners as biomarker
candidates. Cancer Cell Int. 21:5552021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Li CM, Margolin AA, Salas M, Memeo L,
Mansukhani M, Hibshoosh H, Szabolcs M, Klinakis A and Tycko B:
PEG10 is a c-MYC target gene in cancer cells. Cancer Res.
66:665–672. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wang C, Xiao Y, Hu Z, Chen Y, Liu N and Hu
G: PEG10 directly regulated by E2Fs might have a role in the
development of hepatocellular carcinoma. FEBS Lett. 582:2793–2798.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Peng YP, Zhu Y, Yin LD, Zhang JJ, Wei JS,
Liu X, Liu XC, Gao WT, Jiang KR and Miao Y: PEG10 overexpression
induced by E2F-1 promotes cell proliferation, migration, and
invasion in pancreatic cancer. J Exp Clin Cancer Res. 36:302017.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhang M, Sui C, Dai B, Shen W, Lu J and
Yang J: PEG10 is imperative for TGF-β1-induced
epithelial-mesenchymal transition in hepatocellular carcinoma.
Oncol Rep. 37:510–518. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhang B, Liu ZY, Wu R, Zhang CM, Cao K,
Shan WG, Liu Z, Ji M, Tian ZL, Sethi G, et al: Transcriptional
regulator CTR9 promotes hepatocellular carcinoma progression and
metastasis via increasing PEG10 transcriptional activity. Acta
Pharmacol Sin. 43:2109–2118. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Yahiro Y, Maeda S, Shinohara N, Jokoji G,
Sakuma D, Setoguchi T, Ishidou Y, Nagano S, Komiya S and Taniguchi
N: PEG10 counteracts signaling pathways of TGF-β and BMP to
regulate growth, motility and invasion of SW1353 chondrosarcoma
cells. J Bone Miner Metab. 37:441–454. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Shinohara N, Maeda S, Yahiro Y, Sakuma D,
Matsuyama K, Imamura K, Kawamura I, Setoguchi T, Ishidou Y, Nagano
S and Komiya S: TGF-β signalling and PEG10 are mutually exclusive
and inhibitory in chondrosarcoma cells. Sci Rep. 7:134942017.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Rotinen M, You S, Yang J, Coetzee SG,
Reis-Sobreiro M, Huang WC, Huang F, Pan X, Yáñez A, Hazelett DJ, et
al: ONECUT2 is a targetable master regulator of lethal prostate
cancer that suppresses the androgen axis. Nat Med. 24:1887–1898.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chatterjee A, Gallent B, Katiki M, Qian C,
Harter MR, Silletti S, Komives EA, Freeman MR and Murali R: The
homeodomain regulates stable DNA binding of prostate cancer target
ONECUT2. Nat Commun. 15:90372024. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Akamatsu S, Inoue T, Ogawa O and Gleave
ME: Clinical and molecular features of treatment-related
neuroendocrine prostate cancer. Int J Urol. 25:345–351. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Feng H, Cheng AS, Tsang DP, Li MS, Go MY,
Cheung YS, Zhao GJ, Ng SS, Lin MC, Yu J, et al: Cell cycle-related
kinase is a direct androgen receptor-regulated gene that drives
β-catenin/T cell factor-dependent hepatocarcinogenesis. J Clin
Invest. 121:3159–3175. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Qin J, Liu M, Ding Q, Ji X, Hao Y, Wu X
and Xiong J: The direct effect of estrogen on cell viability and
apoptosis in human gastric cancer cells. Mol Cell Biochem.
395:99–107. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kreutz D, Sinthuvanich C, Bileck A, Janker
L, Muqaku B, Slany A and Gerner C: Curcumin exerts its antitumor
effects in a context dependent fashion. J Proteomics. 182:65–72.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Xu P, Wu Z, Yang W and Wang L:
Dysregulation of DNA methylation and expression of imprinted genes
in mouse placentas of fetal growth restriction induced by maternal
cadmium exposure. Toxicology. 390:109–116. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wu JJ, Cai A, Greenslade JE, Higgins NR,
Fan C, Le NTT, Tatman M, Whiteley AM, Prado MA, Dieriks BV, et al:
ALS/FTD mutations in UBQLN2 impede autophagy by reducing
autophagosome acidification through loss of function. Proc Natl
Acad Sci USA. 117:15230–15241. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhao H, Gao Y, Miao J, Chen S, Li J, Li Z,
Yin C and Yue W: Single-cell RNA-seq highlights a specific
carcinoembryonic cluster in ovarian cancer. Cell Death Dis.
12:10822021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Lux A, Beil C, Majety M, Barron S,
Gallione CJ, Kuhn HM, Berg JN, Kioschis P, Marchuk DA and Hafner M:
Human retroviral gag- and gag-pol-like proteins interact with the
transforming growth factor-beta receptor activin receptor-like
kinase 1. J Biol Chem. 280:8482–8493. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Liu Z, Tian Z, Cao K, Zhang B, Wen Q, Zhou
X, Yang W, Wang T, Shi H and Wang R: TSG101 promotes the
proliferation, migration and invasion of hepatocellular carcinoma
cells by regulating the PEG10. J Cell Mol Med. 23:70–82. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Xiong J, Qin J, Zheng Y, Peng X, Luo Y and
Meng X: PEG10 promotes the migration of human Burkitt's lymphoma
cells by up-regulating the expression of matrix metalloproteinase-2
and −9. Clin Invest Med. 35:E117–125. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Golda M, Mótyán JA, Mahdi M and Tőzsér J:
Functional study of the Retrotransposon-Derived human PEG10
Protease. Int J Mol Sci. 21:24242020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Okabe H, Satoh S, Furukawa Y, Kato T,
Hasegawa S, Nakajima Y, Yamaoka Y and Nakamura Y: Involvement of
PEG10 in human hepatocellular carcinogenesis through interaction
with SIAH1. Cancer Res. 63:3043–3048. 2003.PubMed/NCBI
|
|
78
|
Tang Y, Wu Y, Xue M, Zhu B, Fan W and Li
J: A 10-Gene signature identified by machine learning for
predicting the response to transarterial chemoembolization in
patients with hepatocellular carcinoma. J Oncol. 2022:38227732022.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Bang H, Ha SY, Hwang SH and Park CK:
Expression of PEG10 is associated with poor survival and tumor
recurrence in hepatocellular carcinoma. Cancer Res Treat.
47:844–852. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Peng W, Zhao G, Ma Y, Yu H and Wang X:
Dendritic cells transfected with PEG10 recombinant adenovirus
elicit anti-tumor immune response in vitro and in vivo. Vaccine.
29:3501–3506. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Jie X, Lang C, Jian Q, Chaoqun L, Dehua Y,
Yi S, Yanping J, Luokun X, Qiuping Z, Hui W, et al: Androgen
activates PEG10 to promote carcinogenesis in hepatic cancer cells.
Oncogene. 26:5741–5751. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Jia HL, Ye QH, Qin LX, Budhu A, Forgues M,
Chen Y, Liu YK, Sun HC, Wang L, Lu HZ, et al: Gene expression
profiling reveals potential biomarkers of human hepatocellular
carcinoma. Clin Cancer Res. 13:1133–1139. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ip WK, Lai PB, Wong NL, Sy SM, Beheshti B,
Squire JA and Wong N: Identification of PEG10 as a progression
related biomarker for hepatocellular carcinoma. Cancer Lett.
250:284–291. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wu X, Wang L, Feng F and Tian S: Weighted
gene expression profiles identify diagnostic and prognostic genes
for lung adenocarcinoma and squamous cell carcinoma. J Int Med Res.
48:3000605198938372020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Deng X, Hu Y, Ding Q, Han R, Guo Q, Qin J,
Li J, Xiao R, Tian S, Hu W, et al: PEG10 plays a crucial role in
human lung cancer proliferation, progression, prognosis and
metastasis. Oncol Rep. 32:2159–2167. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Sinha A, Zou Y, Patel AS, Yoo S, Jiang F,
Sato T, Kong R, Watanabe H, Zhu J, Massion PP, et al: Early-stage
lung adenocarcinoma MDM2 genomic amplification predicts clinical
outcome and response to targeted therapy. Cancers (Basel).
14:7082022. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wang D, Zhao J, Li S, Wei J, Nan L,
Mallampalli RK, Weathington NM, Ma H and Zhao Y: Phosphorylated
E2F1 is stabilized by nuclear USP11 to drive Peg10 gene expression
and activate lung epithelial cells. J Mol Cell Biol. 10:60–73.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Nakagawa N, Miyake N, Ochi N, Yamane H,
Takeyama M, Nagasaki Y, Ikeda T, Yokota E, Fukazawa T, Nakanishi H,
et al: Targeting ROR1 in combination with osimertinib in EGFR
mutant lung cancer cells. Exp Cell Res. 409:1129402021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
De Marco C, Laudanna C, Rinaldo N,
Oliveira DM, Ravo M, Weisz A, Ceccarelli M, Caira E, Rizzuto A,
Zoppoli P, et al: Specific gene expression signatures induced by
the multiple oncogenic alterations that occur within the
PTEN/PI3K/AKT pathway in lung cancer. PLoS One. 12:e01788652017.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Xing Q, Liu S, Luan J, Wang Y and Ma L: A
novel 13 RNA binding proteins (RBPs) signature could predict
prostate cancer biochemical recurrence. Pathol Res Pract.
225:1535872021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Lundin-Ström KB, Biloglav A, Lazarevic V,
Behrendtz M, Castor A and Johansson B: Parental origin of monosomy
7 in acute leukaemia. Br J Haematol. 192:e132–e135. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Yoshie H, Sedukhina AS, Minagawa K, Oda K,
Ohnuma S, Yanagisawa N, Maeda I, Takagi M, Kudo H, Nakazawa R, et
al: A bioinformatics-to-clinic sequential approach to analysis of
prostate cancer biomarkers using TCGA datasets and clinical
samples: A new method for precision oncology? Oncotarget.
8:99601–99611. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Shapovalova M, Lee JK, Li Y, Vander Griend
DJ, Coleman IM, Nelson PS, Dehm SM and LeBeau AM: PEG10
Promoter-driven expression of reporter genes enables molecular
imaging of lethal prostate cancer. Cancer Res. 79:5668–5680. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kim S, Thaper D, Bidnur S, Toren P,
Akamatsu S, Bishop JL, Colins C, Vahid S and Zoubeidi A: PEG10 is
associated with treatment-induced neuroendocrine prostate cancer. J
Mol Endocrinol. 63:39–49. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Hu C, Xiong J, Zhang L, Huang B, Zhang Q,
Li Q, Yang M, Wu Y, Wu Q, Shen Q, et al: PEG10 activation by
co-stimulation of CXCR5 and CCR7 essentially contributes to
resistance to apoptosis in CD19+CD34+ B cells from patients with B
cell lineage acute and chronic lymphocytic leukemia. Cell Mol
Immunol. 1:280–294. 2004.PubMed/NCBI
|
|
96
|
Wu H, Luo H, Wang M, Du Y and Li J: NAP1L5
promotes epithelial-mesenchymal transition by regulating PEG10
expression in acute myeloid leukaemia. Leuk Res. 148:1076232025.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Haider Z, Landfors M, Golovleva I,
Erlanson M, Schmiegelow K, Flægstad T, Kanerva J, Norén-Nyström U,
Hultdin M and Degerman S: DNA methylation and copy number variation
profiling of T-cell lymphoblastic leukemia and lymphoma. Blood
Cancer J. 10:452020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Xiong S, Liu F, Sun J, Gao S, Wong CCL, Tu
P and Wang Y: Abrogation of USP9X is a potential strategy to
decrease PEG10 levels and impede tumor progression in cutaneous
T-cell lymphoma. J Invest Dermatol. 144:2778–2788.e9. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Kainz B, Shehata M, Bilban M, Kienle D,
Heintel D, Krömer-Holzinger E, Le T, Kröber A, Heller G,
Schwarzinger I, et al: Overexpression of the paternally expressed
gene 10 (PEG10) from the imprinted locus on chromosome 7q21 in
high-risk B-cell chronic lymphocytic leukemia. Int J Cancer.
121:1984–1993. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Alanazi I, Hoffmann P and Adelson DL:
MicroRNAs are part of the regulatory network that controls EGF
induced apoptosis, including elements of the JAK/STAT pathway, in
A431 cells. PLoS One. 10:e01203372015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Lee Y, Park S, Lee SH and Lee H:
Characterization of genetic aberrations in a single case of
metastatic thymic adenocarcinoma. BMC Cancer. 17:3302017.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Yan S, Du L, Jiang X, Duan W, Li J, Xie Y,
Zhan Y, Zhang S, Wang L, Li S and Wang C: Evaluation of serum
exosomal lncRNAs as diagnostic and prognostic biomarkers for
esophageal squamous cell carcinoma. Cancer Manag Res. 12:9753–9763.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Ge H, Yan Y, Wu D, Huang Y and Tian F:
Prognostic value of PEG10 in Asian solid tumors: A meta-analysis.
Clin Chim Acta. 483:197–203. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Sumitani N, Ishida K, Sawada K, Kimura T,
Kaneda Y and Nimura K: Identification of malignant cell populations
associated with poor prognosis in High-grade serous ovarian cancer
using Single-Cell RNA sequencing. Cancers (Basel). 14:35802022.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Gov E: Co-expressed functional
module-related genes in ovarian cancer stem cells represent novel
prognostic biomarkers in ovarian cancer. Syst Biol Reprod Med.
66:255–266. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Hua Y, Ma X, Liu X, Yuan X, Qin H and
Zhang X: Identification of the potential biomarkers for the
metastasis of rectal adenocarcinoma. APMIS. 125:93–100. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Watson KM, Gardner IH, Byrne RM, Ruhl RR,
Lanciault CP, Dewey EN, Anand S and Tsikitis VL: Differential
expression of PEG10 contributes to aggressive disease in early
versus Late-onset colorectal cancer. Dis Colon Rectum.
63:1610–1620. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Kawai Y, Imada K, Akamatsu S, Zhang F,
Seiler R, Hayashi T, Leong J, Beraldi E, Saxena N, Kretschmer A, et
al: Paternally expressed gene 10 (PEG10) promotes growth, invasion,
and survival of bladder cancer. Mol Cancer Ther. 19:2210–2220.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Liu Z, Yang Z, Liu D, Li D, Zou Q, Yuan Y,
Li J, Liang L, Chen M and Chen S: TSG101 and PEG10 are prognostic
markers in squamous cell/adenosquamous carcinomas and
adenocarcinoma of the gallbladder. Oncol Lett. 7:1128–1138. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Liu DC, Yang ZL and Jiang S:
Identification of PEG10 and TSG101 as carcinogenesis, progression,
and poor-prognosis related biomarkers for gallbladder
adenocarcinoma. Pathol Oncol Res. 17:859–866. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Li X, Xiao R, Tembo K, Hao L, Xiong M, Pan
S, Yang X, Yuan W, Xiong J and Zhang Q: PEG10 promotes human breast
cancer cell proliferation, migration and invasion. Int J Oncol.
48:1933–1942. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Katuwal NB, Kang MS, Ghosh M, Hong SD,
Jeong YG, Park SM, Kim SG, Sohn J, Kim TH, Moon YW, et al:
Targeting PEG10 as a novel therapeutic approach to overcome CDK4/6
inhibitor resistance in breast cancer. J Exp Clin Cancer Res.
42:3252023. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Tang FH, Chang WA, Tsai EM, Tsai MJ and
Kuo PL: Investigating novel genes potentially involved in
endometrial adenocarcinoma using Next-generation sequencing and
bioinformatic approaches. Inte J Med Sci. 16:1338–1348. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Sharan Singh S, Kumar R, Singh Kushwaha V,
Bhatt MLBB, Singh A, Mishra A, Ram H, Parmar D and Gupta R:
Expression of radioresistant gene PEG10 in OSCC patients and its
prognostic significance. Asian Pac J Cancer Prev. 18:1513–1518.
2017.PubMed/NCBI
|
|
115
|
Liang J, Liu N and Xin H: Knockdown long
non-coding RNA PEG10 inhibits proliferation, migration and invasion
of glioma cell line U251 by regulating miR-506. Gen Physiol
Biophys. 38:295–304. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Deng HX, Chen W, Hong ST, Boycott KM,
Gorrie GH, Siddique N, Yang Y, Fecto F, Shi Y, Zhai H, et al:
Mutations in UBQLN2 cause dominant X-linked juvenile and
adult-onset ALS and ALS/dementia. Nature. 477:211–215. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Kim SH, Nichols KD, Anderson EN, Liu Y,
Ramesh N, Jia W, Kuerbis CJ, Scalf M, Smith LM, Pandey UB and
Tibbetts RS: Axon guidance genes modulate neurotoxicity of
ALS-associated UBQLN2. Elife. 12:e843822023. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Whiteley AM, Prado MA, de Poot SAH, Paulo
JA, Ashton M, Dominguez S, Weber M, Ngu H, Szpyt J, Jedrychowski
MP, et al: Global proteomics of Ubqln2-based murine models of ALS.
J Biol Chem. 296:1001532021. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Huber F, Arnaud M, Stevenson BJ, Michaux
J, Benedetti F, Thevenet J, Bobisse S, Chiffelle J, Gehert T,
Müller M, et al: A comprehensive proteogenomic pipeline for
neoantigen discovery to advance personalized cancer immunotherapy.
Nat Biotechnol. October 11–2024.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Tang Q and Khvorova A: RNAi-based drug
design: Considerations and future directions. Nat Rev Drug Discov.
23:341–364. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Hill CH and Brierley I: Structural and
functional insights into viral programmed ribosomal frameshifting.
Annu Rev Virol. 10:217–242. 2023. View Article : Google Scholar : PubMed/NCBI
|