Protective effects of Wenxin Keli against cardiac arrhythmias (Review)
- Authors:
- Shristi Dahal
- Mengqi Gong
- Shaohua Guo
- Gary Tse
- Tong Liu
-
Affiliations: Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China - Published online on: April 6, 2020 https://doi.org/10.3892/wasj.2020.43
- Article Number: 2
-
Copyright: © Dahal et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Tse G, Yan BP, Chan YW, Tian XY and Huang Y: Reactive oxygen species, endoplasmic reticulum stress and mitochondrial dysfunction: The link with cardiac arrhythmogenesis. Front Physiol. 7(313)2016.PubMed/NCBI View Article : Google Scholar | |
Lippi G, Sanchis.Gomar F and Cervellin G: Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. Int J Stroke: Jan 19, 2020 (Epub ahead of print). | |
Murakoshi N and Aonuma K: Epidemiology of arrhythmias and sudden cardiac death in Asia. Circ J. 77:2419–2431. 2013.PubMed/NCBI View Article : Google Scholar | |
Guo Y, Tian Y, Wang H, Si Q, Wang Y and Lip GYH: Prevalence, incidence, and lifetime risk of atrial fibrillation in China: New insights into the global burden of atrial fibrillation. Chest. 147:109–119. 2015.PubMed/NCBI View Article : Google Scholar | |
John RM, Tedrow UB, Koplan BA, Albert CM, Epstein LM, Sweeney MO, Miller AL, Michaud GF and Stevenson WG: Ventricular arrhythmias and sudden cardiac death. Lancet. 380:1520–1529. 2012.PubMed/NCBI View Article : Google Scholar | |
Wang T, Lu M, Du Q, Yao X, Zhang P, Chen X, Xie W, Li Z, Ma Y and Zhu Y: An integrated anti-arrhythmic target network of compound Chinese medicine Wenxin Keli revealed by combined machine learning and molecular pathway analysis [corrected]. Mol Biosyst. 13:1018–1030. 2017.PubMed/NCBI View Article : Google Scholar | |
Kalifa J and Avula UM: The Chinese herb extract Wenxin Keli: Atrial selectivity from the Far East. Hear Rhythm. 9:132–133. 2012.PubMed/NCBI View Article : Google Scholar | |
Wang X, Wang X, Gu Y, Wang T and Huang C: Wenxin Keli attenuates ischemia-induced ventricular arrhythmias in rats: Involvement of L-type calcium and transient outward potassium currents. Mol Med Rep. 7:519–524. 2012. | |
Tang Q: Effects of Nardostachys chinensis Batal extract on sodium and calcium channels in rabbit ventricular myocytes. Chin J Cardiol. 32:267–70. 2004.(In Chinese). | |
Brenyo A and Aktas MK: Review of complementary and alternative medical treatment of arrhythmias. Am J Cardiol. 113:897–903. 2014.PubMed/NCBI View Article : Google Scholar | |
He M, Lv Z, Yang ZW, Huang JL and Liu F: Efficacy and safety of Chinese herbal medicine Wenxin Keli for ventricular premature be ats: A systematic review. Complement Ther Med. 29:181–189. 2016.PubMed/NCBI View Article : Google Scholar | |
Hou J, Li W, Guo K, Chen XM, Chen YH, Li CY, Zhao BC, Zhao J, Wang H, Wang YP and Li YG: Antiarrhythmic effects and potential mechanism of WenXin KeLi in cardiac Purkinje cells. Hear Rhythm. 13:973–982. 2016.PubMed/NCBI View Article : Google Scholar | |
Dong Y, Liao J, Yao K, Jiang W and Wang J: Application of traditional Chinese medicine in treatment of atrial fibrillation. Evid Based Complement Alternat Med. 2017(1381732)2017.PubMed/NCBI View Article : Google Scholar | |
Yang X, Chen Y, Li Y, Ren X, Xing Y and Shang H: Effects of Wenxin Keli on Cardiac hypertrophy and arrhythmia via regulation of the Calcium/Calmodulin dependent Kinase II signaling pathway. Biomed Res Int. 2017(1569235)2017.PubMed/NCBI View Article : Google Scholar | |
Wang X, Wang Y, Feng X, Lu Y, Zhang Y, Wang W and Zhu W: Systematic review and meta-analysis of randomized controlled trials on Wenxin Keli. Drug Des Devel Ther. 10:3725–3736. 2016.PubMed/NCBI View Article : Google Scholar | |
Li J, Hu D, Song X, Han T, Gao Y and Xing Y: The role of biologically active ingredients from natural drug treatments for arrhythmias in different mechanisms. Biomed Res Int. 2017(4615727)2017.PubMed/NCBI View Article : Google Scholar | |
Jiang M, Wang Q, Chen J, Wang Y, Fan G and Zhu Y: Comparative metabonomics of Wenxin Keli and verapamil reveals differential roles of gluconeogenesis and fatty acid β-oxidation in myocardial injury protection. Sci Rep. 7(8739)2017.PubMed/NCBI View Article : Google Scholar | |
Burashnikov A, Petroski A, Hu D, Barajas-Martinez H and Antzelevitch C: Atrial-selective inhibition of sodium-channel current by Wenxin Keli is effective in suppressing atrial fibrillation. Hear Rhythm. 9:125–131. 2012.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Li Y, Guo L, Chen W, Zhao M, Gao Y, Wu A, Lou L, Wang J, Liu X and Xing Y: Effects of Wenxin Keli on the action potential and L-type calcium current in rats with transverse aortic constriction-induced heart failure. Evid Based Complement Alternat Med. 2013(572078)2013.PubMed/NCBI View Article : Google Scholar | |
Li M, Qiu R, Tian G, Zhang X, Li C, Chen S, Zhang Q and Shang H: Wenxin Keli for Ventricular premature complexes with Heart failure: A systematic review and meta-analysis of randomized clinical trials. Complement Ther Med. 33:85–93. 2017.PubMed/NCBI View Article : Google Scholar | |
Tse G and Yeo JM: Conduction abnormalities and ventricular arrhythmogenesis: The roles of sodium channels and gap junctions. Int J Cardiol Heart Vasc. 9:75–82. 2015.PubMed/NCBI View Article : Google Scholar | |
Wu A, Zhao M, Lou L, Zhai J, Zhang D, Zhu H, Gao Y, Shang H and Chai L: Effect of Wenxin Granules on Gap Junction and miR-1 in rats with myocardial infarction. Biomed Res Int. 2017(3495021)2017.PubMed/NCBI View Article : Google Scholar | |
Du M, Huang K, Gao L, Yang L, Wang WS, Wang B, Huang K and Huang D: Nardosinone protects H9c2 cardiac cells from angiotensin II-induced hypertrophy. J Huazhong Univ Sci Technolog Med Sci. 33:822–826. 2013.PubMed/NCBI View Article : Google Scholar | |
Minoura Y, Panama BK, Nesterenko VV, Betzenhauser M, Barajas-Martínez H, Hu D, Di Diego JM and Antzelevitch C: Effect of Wenxin Keli and quinidine to suppress arrhythmogenesis in an experimental model of Brugada syndrome. Hear Rhythm. 10:1054–1062. 2013.PubMed/NCBI View Article : Google Scholar | |
Sun J, Sun G, Meng X, Wang H, Wang M, Qin M, Ma B, Luo Y, Yu Y, Chen R, et al: Ginsenoside RK3 prevents Hypoxia-Reoxygenation induced apoptosis in H9c2 Cardiomyocytes via AKT and MAPK pathway. Evid Based Complement Alternat Med. 2013(690190)2013.PubMed/NCBI View Article : Google Scholar | |
Li L, Pan CS, Yan L, Cui YC, Liu YY, Mu HN, He K, Hu BH, Chang X, Sun K, et al: Ginsenoside Rg1 ameliorates rat myocardial ischemia-reperfusion injury by modulating energy metabolism pathways. Front Physiol. 9(78)2018.PubMed/NCBI View Article : Google Scholar | |
Zhu D, Wu L, Li CR, Wang XW, Ma YJ, Zhong ZY, Zhao HB, Cui J, Xun SF, Huang XL, et al: Ginsenoside Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. J Cell Biochem. 108:117–124. 2009.PubMed/NCBI View Article : Google Scholar | |
Song H, Wang P, Liu J and Wang C: Panax notoginseng preparations for unstable angina pectoris: A systematic review and meta-analysis. Phyther Res. 31:1162–1172. 2017.PubMed/NCBI View Article : Google Scholar | |
Yu G and Wang J: Exploring mechanisms of Panax notoginseng saponins in treating coronary heart disease by integrating gene interaction network and functional enrichment analysis. Chin J Integr Med. 22:589–596. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhou Z, Wang J, Song Y, He Y, Zhang C, Liu C, Zhao H, Dun Y, Yuan D and Wang T: Panax notoginseng saponins attenuate cardiomyocyte apoptosis through mitochondrial pathway in natural aging rats. Phyther Res. 32:243–250. 2018.PubMed/NCBI View Article : Google Scholar | |
Cui X, Wang S, Cao H, Guo H, Li Y, Xu F, Zheng M, Xi X and Han C: A review: The bioactivities and pharmacological applications of polygonatum sibiricum polysaccharides. Molecules. 23(pii: E1170)2018.PubMed/NCBI View Article : Google Scholar | |
Zhu X, Wu W, Chen X, Yang F, Zhang J and Hou J: Protective effects of Polygonatum sibiricum polysaccharide on acute heart failure in rats 1. Acta Cir Bras. 33:868–878. 2018.PubMed/NCBI View Article : Google Scholar | |
Chang KS, Lee NH, Kuo WW, Hu WS, Chang MH, Tsai FJ, Tsai KH, Yang YS, Chen TS and Huang CY: Dung-Shen downregulates the synergistic apoptotic effects of angiotensin II plus Leu 27-IGF II on cardiomyoblasts. Acta Cardiol Sin. 30:56–66. 2014.PubMed/NCBI | |
Tsai KH, Lee NH, Chen GY, Hu WS, Tsai CY, Chang MH, Jong GP, Kuo CH, Tzang BS, Tsai FJ, et al: Dung-Shen (Codonopsis pilosula) attenuated the cardiac-impaired insulin-like growth factor II receptor pathway on myocardial cells. Food Chem. 138:1856–1867. 2013.PubMed/NCBI View Article : Google Scholar | |
Aguilar M and Nattel S: The past, present, and potential future of sodium channel block as an atrial fibrillation suppressing strategy. J Cardiovasc Pharmacol. 66:432–440. 2015.PubMed/NCBI View Article : Google Scholar | |
Burashnikov A, Di Diego JM, Zygmunt AC, Belardinelli L and Antzelevitch C: Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation: Differences in sodium channel inactivation between atria and ventricles and the role of ranolazine. Circulation. 116:1449–1457. 2007.PubMed/NCBI View Article : Google Scholar | |
Burashnikov A and Antzelevitch C: Role of late sodium channel current block in the management of atrial fibrillation. Cardiovasc Drugs Ther. 27:79–89. 2013.PubMed/NCBI View Article : Google Scholar | |
Gharaviri A, Verheule S, Eckstein J, Potse M, Krause R, Auricchio A, Kuijpers NHL and Schotten U: Effect of Na+-channel blockade on the three-dimensional substrate of atrial fibrillation in a model of Endo-Epicardial dissociation and transmural conduction. Europace. 20 (Suppl 3):iii69–iii76. 2018.PubMed/NCBI View Article : Google Scholar | |
Hu D, Barajas-Martínez H, Burashnikov A, Panama BK, Cordeiro JM and Antzelevitch C: Mechanisms underlying atrial-selective block of sodium channels by Wenxin Keli: Experimental and theoretical analysis. Int J Cardiol. 207:326–334. 2016.PubMed/NCBI View Article : Google Scholar | |
Xiao J, Zhao Q, Kebbati AH, Deng H, Wang X, Dai Z, Yu S and Huang C: Wenxin Keli suppresses atrial substrate remodeling after epicardial ganglionic Plexi ablation. Exp Clin Cardiol. 18:153–157. 2013.PubMed/NCBI | |
Zhang N, Tse G, Dahal S, Yang Y, Gong M, Chan CZY, Liu E, Xu G, Letsas KP, Korantzopoulos P, et al: Efficacy of Wenxin Keli Plus Amiodarone versus Amiodarone Monotherapy in treating recent-onset atrial fibrillation. Cardiol Res Pract. 2018(6047271)2018.PubMed/NCBI View Article : Google Scholar | |
Meng Z, Tan J, He Q, Zhu M, Li X, Zhang J, Jia Q, Wang S, Zhang G and Zheng W: Wenxin Keli versus Sotalol for paroxysmal atrial fibrillation caused by hyperthyroidism: A prospective, open label, and randomized study. Evid Based Complement Alternat Med. 2015(101904)2015.PubMed/NCBI View Article : Google Scholar | |
Guo D, Lian J, Liu T, Cox R, Margulies KB, Kowey PR and Yan GX: Contribution of late sodium current (INa-L) to rate adaptation of ventricular repolarization and reverse use-dependence of QT-prolonging agents. Hear Rhythm. 8:762–769. 2011.PubMed/NCBI View Article : Google Scholar | |
Antzelevitch C: Electrical heterogeneity, cardiac arrhythmias, and the sodium channel. Circ Res. 87:964–965. 2000.PubMed/NCBI View Article : Google Scholar | |
Sicouri S, Timothy KW, Zygmunt AC, Glass A, Goodrow RJ, Belardinelli L and Antzelevitch C: Cellular basis for the electrocardiographic and arrhythmic manifestations of Timothy syndrome: Effects of ranolazine. Hear Rhythm. 4:638–647. 2007.PubMed/NCBI View Article : Google Scholar | |
Qi D, Yang Z, Robinson VM, Li J, Gao C, Guo D, Kowey PR and Yan GX: Heterogeneous distribution of INa-L determines interregional differences in rate adaptation of repolarization. Hear Rhythm. 12:1295–1303. 2015.PubMed/NCBI View Article : Google Scholar | |
Burashnikov A: Late INa Inhibition as an Antiarrhythmic Strategy. J Cardiovasc Pharmacol. 70:159–167. 2017.PubMed/NCBI View Article : Google Scholar | |
Xue X, Guo D, Sun H, Wang D, Li J, Liu T, Yang L, Shu J and Yan GX: Wenxin Keli suppresses ventricular triggered arrhythmias via selective inhibition of late sodium current. Pacing Clin Electrophysiol. 36:732–740. 2013.PubMed/NCBI View Article : Google Scholar | |
Xiao L, Koopmann TT, Ördög B, Postema PG, Verkerk AO, Iyer V, Sampson KJ, Boink GJ, Mamarbachi MA, Varro A, et al: Unique cardiac Purkinje fiber transient outward current β-subunit composition: A potential molecular link to idiopathic ventricular fibrillation. Circ Res. 112:1310–1322. 2013.PubMed/NCBI View Article : Google Scholar | |
Li J, Xie D, Huang J, Lv F, Shi D, Liu Y, Lin L, Geng L, Wu Y, Liang D and Chen YH: Cold-inducible RNA-binding protein regulates cardiac repolarization by targeting transient outward potassium channels. Circ Res. 116:1655–1659. 2015.PubMed/NCBI View Article : Google Scholar | |
Bohnen MS, Iyer V, Sampson KJ and Kass RS: Novel mechanism of transient outward potassium channel current regulation in the heart: Implications for cardiac electrophysiology in health and disease. Circ Res. 116:1633–1635. 2015.PubMed/NCBI View Article : Google Scholar | |
Cho JH, Zhang R, Kilfoil PJ, Gallet R, de Couto G, Bresee C, Goldhaber JI, Marbán E and Cingolani E: Delayed repolarization underlies ventricular arrhythmias in rats with heart failure and preserved ejection fraction. Circulation. 136:2037–2050. 2017.PubMed/NCBI View Article : Google Scholar | |
Zheng M, Liu Z, Liu N, Hou C, Pu J and Zhang S: The effect of Wenxin Keli on the mRNA expression profile of rabbits with myocardial infarction. Evid Based Complement Alternat Med. 2016(2352614)2016.PubMed/NCBI View Article : Google Scholar | |
Zheng R, Tian G, Zhang Q, Wu L, Xing Y and Shang H: Clinical safety and efficacy of Wenxin keli-amiodarone combination on heart failure complicated by ventricular arrhythmia: A systematic review and meta-analysis. Front Physiol. 9(487)2018.PubMed/NCBI View Article : Google Scholar | |
Yang G, Sau C, Lai W, Cichon J and Li W: Sleep promotes branch-specific formation of dendritic spines after learning. Science. 344:1173–1178. 2014.PubMed/NCBI View Article : Google Scholar | |
Antzelevitch C and Patocskai B: Brugada Syndrome: Clinical, Genetic, Molecular, Cellular, and Ionic Aspects. Curr Probl Cardiol. 41:7–57. 2016.PubMed/NCBI View Article : Google Scholar | |
van Opbergen CJM, den Braven L, Delmar M and van Veen TAB: Mitochondrial Dysfunction as Substrate for Arrhythmogenic Cardiomyopathy: A search for new disease mechanisms. Front Physiol. 10(1496)2019.PubMed/NCBI View Article : Google Scholar | |
Ilkan Z and Akar FG: The mitochondrial translocator protein and the emerging link between oxidative stress and arrhythmias in the diabetic heart. Front Physiol. 9(1518)2018.PubMed/NCBI View Article : Google Scholar | |
Ren X, Wang X, Yuan M, Tian C, Li H, Yang X, Li X, Li Y, Yang Y, Liu N, et al: Mechanisms and treatments of oxidative stress in atrial fibrillation. Curr Pharm Des. 24:3062–3071. 2018.PubMed/NCBI View Article : Google Scholar | |
Faria A and Persaud SJ: Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential. Pharmacol Ther. 172:50–62. 2017.PubMed/NCBI View Article : Google Scholar | |
Köhler AC, Sag CM and Maier LS: Reactive oxygen species and excitation-contraction coupling in the context of cardiac pathology. J Mol Cell Cardiol. 73:92–102. 2014.PubMed/NCBI View Article : Google Scholar | |
Gong M, Yuan M, Meng L, Zhang Z, Tse G, Zhao Y, Zhang Y, Yuan M, Liang X, Fan G, et al: Wenxin Keli regulates mitochondrial oxidative stress and homeostasis and improves atrial remodeling in diabetic rats. Oxid Med Cell Longev. 2020(2468031)2020.PubMed/NCBI View Article : Google Scholar | |
Tian G, Sun Y, Liu S, Li C, Chen S, Qiu R, Zhang X, Li Y, Li M and Shang H: Therapeutic effects of Wenxin Keli in cardiovascular diseases: An experimental and mechanism overview. Front Pharmacol. 9(1005)2018.PubMed/NCBI View Article : Google Scholar | |
Nagibin V, Egan Benova T, Viczenczova C, Szeiffova Bacova B, Dovinova I, Barancik M and Tribulova N: Ageing related down-regulation of myocardial connexin-43 and up-regulation of MMP-2 may predict propensity to atrial fibrillation in experimental animals. Physiol Res. 65 (Suppl 1):S91–S100. 2016.PubMed/NCBI View Article : Google Scholar | |
Kato T, Iwasaki Y and Nattel S: Connexins and atrial fibrillation. Circulation. 125:203–206. 2011. | |
Shu C, Huang W, Zeng Z, He Y, Luo B, Liu H, Li J and Xu J: Connexin 43 is involved in the sympathetic atrial fibrillation in canine and canine atrial myocytes. Anatol J Cardiol. 18:3–9. 2017.PubMed/NCBI View Article : Google Scholar | |
Paul M, Wichter T, Gerss J, Arps V, Schulze-Bahr E, Robenek H, Breithardt G and Weissen-Plenz G: Connexin expression patterns in arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol. 111:1488–1495. 2013.PubMed/NCBI View Article : Google Scholar | |
Milberg P, Fink M, Pott C, Frommeyer G, Biertz J, Osada N, Stypmann J, Mönnig G, Koopmann M, Breithardt G and Eckardt L: Blockade of I(Ca) suppresses early afterdepolarizations and reduces transmural dispersion of repolarization in a whole heart model of chronic heart failure. Br J Pharmacol. 166:557–568. 2012.PubMed/NCBI View Article : Google Scholar | |
Xing Y, Gao Y, Chen J, Zhu H, Wu A, Yang Q, Teng F, Zhang DM, Xing Y, Gao K, et al: Wenxin-Keli regulates the calcium/calmodulin-dependent protein kinase II signal transduction pathway and inhibits cardiac arrhythmia in rats with myocardial infarction. Evid Based Complement Alternat Med. 2013(464508)2013.PubMed/NCBI View Article : Google Scholar | |
Luo A, Liu Z, Cao Z, Hao J, Wu L, Fu C, Zeng M, Jiang W, Zhang P, Zhao B, et al: Wenxin Keli diminishes Ca2+ overload induced by hypoxia/reoxygenation in cardiomyocytes through inhibiting INaL and ICaL. Pacing Clin Electrophysiol. 40:1412–1425. 2017.PubMed/NCBI View Article : Google Scholar | |
Maier LS and Bers DM: Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart. Cardiovasc Res. 73:631–640. 2007.PubMed/NCBI View Article : Google Scholar | |
Heijman J, Voigt N, Wehrens XH and Dobrev D: Calcium dysregulation in atrial fibrillation: The role of CaMKII. Front Pharmacol. 5(30)2014.PubMed/NCBI View Article : Google Scholar | |
Lai Y, Yu L and Jiang H: Autonomic neuromodulation for preventing and treating ventricular arrhythmias. Front Physiol. 10(200)2019.PubMed/NCBI View Article : Google Scholar | |
Inoue H and Zipes DP: Results of sympathetic denervation in the canine heart: Supersensitivity that may be arrhythmogenic. Circulation. 75:877–887. 1987.PubMed/NCBI View Article : Google Scholar | |
Yanowitz F, Preston JB and Abildskov JA: Functional distribution of right and left stellate innervation to the ventricles. Production of neurogenic electrocardiographic changes by unilateral alteration of sympathetic tone. Circ Res. 18:416–428. 1966.PubMed/NCBI View Article : Google Scholar | |
Chen PS, Chen LS, Cao JM, Sharifi B, Karagueuzian HS and Fishbein MC: Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res. 50:409–416. 2001.PubMed/NCBI View Article : Google Scholar | |
Ng GA: Vagal modulation of cardiac ventricular arrhythmia. Exp Physiol. 99:295–299. 2014.PubMed/NCBI View Article : Google Scholar | |
Naggar I, Uchida S, Kamran H, Lazar J and Stewart M: Autonomic boundary conditions for ventricular fibrillation and their implications for a novel defibrillation technique. J Physiol Sci. 62:479–492. 2012.PubMed/NCBI View Article : Google Scholar | |
Meng L, Shivkumar K and Ajijola O: Autonomic regulation and ventricular arrhythmias. Curr Treat Options Cardiovasc Med. 20(38)2018.PubMed/NCBI View Article : Google Scholar | |
Takigawa M, Noda T, Shimizu W, Miyamoto K, Okamura H, Satomi K, Suyama K, Aihara N, Kamakura S and Kurita T: Seasonal and circadian distributions of ventricular fibrillation in patients with Brugada syndrome. Hear Rhythm. 5:1523–1527. 2008.PubMed/NCBI View Article : Google Scholar | |
Shen MJ and Zipes DP: Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 114:1004–1021. 2014.PubMed/NCBI View Article : Google Scholar |