1
|
Li YY, Gao W, Pang SS, Min XY, Yang ZJ,
Wang H, Lu XZ, Wang LS, Wang XM, Qian Y, et al: TAP1 I333V gene
polymorphism and type 1 diabetes mellitus: A meta-analysis of 2248
cases. J Cell Mol Med. 18:929–937. 2014.PubMed/NCBI View Article : Google Scholar
|
2
|
Glessner JT, Bick AG, Ito K, Homsy J,
Rodriguez-Murillo L, Fromer M, Mazaika E, Vardarajan B, Italia M,
Leipzig J, et al: Increased frequency of de novo copy number
variants in congenital heart disease by integrative analysis of
single nucleotide polymorphism array and exome sequence data. Circ
Res. 115:884–896. 2014.PubMed/NCBI View Article : Google Scholar
|
3
|
Ziegler DA, Ashourian P, Wonderlick JS,
Sarokhan AK, Prelec D, Scherzer CR and Corkin S: Motor impulsivity
in Parkinson disease: Associations with COMT and DRD2
polymorphisms. Scand J Psychol. 55:278–286. 2014.PubMed/NCBI View Article : Google Scholar
|
4
|
Zhang J, Zhang J, Wu D, Wang J and Dong W:
Associations between TNFSF15 polymorphisms and susceptibility to
ulcerative colitis and Crohn's disease: A meta-analysis.
Autoimmunity. 47:512–518. 2014.PubMed/NCBI View Article : Google Scholar
|
5
|
Zhou LP, Yao F, Luan H, Wang YL, Dong XH,
Zhou WW and Wang QH: CYP3A4*1B polymorphism and cancer risk: A HuGE
review and meta-analysis. Tumour Biol. 34:649–660. 2013.PubMed/NCBI View Article : Google Scholar
|
6
|
Weng Y, Zhang J, Tang X, Xie X and Chen G:
Thymidylate synthase polymorphisms and hematological cancer risk: A
meta-analysis. Leuk Lymphoma. 53:1345–1351. 2012.PubMed/NCBI View Article : Google Scholar
|
7
|
Wang Y, Miller S, Roulston D, Bixby D and
Shao L: Genome-wide single-nucleotide polymorphism array analysis
improves prognostication of acute lymphoblastic leukemia/lymphoma.
J Mol Diagn. 18:595–603. 2016.PubMed/NCBI View Article : Google Scholar
|
8
|
Belson M, Kingsley B and Holmes A: Risk
factors for acute leukemia in children: A review. Environ Health
Perspect. 115:138–145. 2007.PubMed/NCBI View Article : Google Scholar
|
9
|
Vijayakrishnan J and Houlston RS:
Candidate gene association studies and risk of childhood acute
lymphoblastic leukemia: A systematic review and meta-analysis.
Haematologica. 95:1405–1414. 2010.PubMed/NCBI View Article : Google Scholar
|
10
|
Lu J, Zhao Q, Zhai YJ, He HR, Yang LH, Gao
F, Zhou RS, Zheng J and Ma XC: Genetic polymorphisms of CYP1A1 and
risk of leukemia: A meta-analysis. Onco Targets Ther. 8:2883–2902.
2015.PubMed/NCBI View Article : Google Scholar
|
11
|
Han F, Tan Y, Cui W, Dong L and Li W:
Novel insights into etiologies of leukemia: A HuGE review and
meta-analysis of CYP1A1 polymorphisms and leukemia risk. Am J
Epidemiol. 178:493–507. 2013.PubMed/NCBI View Article : Google Scholar
|
12
|
Huang GZ, Shan W, Zeng L and Huang LG: The
GSTP1 A1578G polymorphism and the risk of childhood acute
lymphoblastic leukemia: Results from an updated meta-analysis.
Genet Mol Res. 12:2481–2491. 2013.PubMed/NCBI View Article : Google Scholar
|
13
|
Zhao T, Ma F and Yin F: Role of
polymorphisms of GSTM1, GSTT1 and GSTP1 Ile105Val in childhood
acute lymphoblastic leukemia risk: An updated meta-analysis.
Minerva Pediatr. 70:185–196. 2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Krajinovic M, Lamothe S, Labuda D,
Lemieux-Blanchard E, Theoret Y, Moghrabi A and Sinnett D: Role of
MTHFR genetic polymorphisms in the susceptibility to childhood
acute lymphoblastic leukemia. Blood. 103:252–257. 2004.PubMed/NCBI View Article : Google Scholar
|
15
|
de Jonge R, Tissing WJ, Hooijberg JH,
Jansen G, Kaspers GJ, Lindemans J, Peters GJ and Pieters R:
Polymorphisms in folate-related genes and risk of pediatric acute
lymphoblastic leukemia. Blood. 113:2284–2289. 2009.PubMed/NCBI View Article : Google Scholar
|
16
|
Milne E, Greenop KR, Scott RJ, Haber M,
Norris MD, Attia J, Jamieson SE, Miller M, Bower C, Bailey HD, et
al: Folate pathway gene polymorphisms, maternal folic acid use, and
risk of childhood acute lymphoblastic leukemia. Cancer Epidemiol
Biomarkers Prev. 24:48–56. 2015.PubMed/NCBI View Article : Google Scholar
|
17
|
Kreile M, Rots D, Piekuse L, Cebura E,
Grutupa M, Kovalova Z and Lace B: Lack of association between
polymorphisms in genes MTHFR and MDR1 with risk of childhood acute
lymphoblastic leukemia. Asian Pac J Cancer Prev. 15:9707–9711.
2014.PubMed/NCBI View Article : Google Scholar
|
18
|
Qiao Z, Lou D and Ruan L: TSER
polymorphism is not associated with risk of pediatric acute
lymphoblastic leukemia: A meta-analysis. Medicine (Baltimore).
96(e6143)2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Ma LM, Yang HP, Yang XW and Ruan LH:
Methionine synthase A2756G polymorphism influences pediatric acute
lymphoblastic leukemia risk: A meta-analysis. Biosci Rep.
39(BSR20181770)2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Tijchon E, Havinga J, van Leeuwen FN and
Scheijen B: B-lineage transcription factors and cooperating gene
lesions required for leukemia development. Leukemia. 27:541–552.
2013.PubMed/NCBI View Article : Google Scholar
|
21
|
Kastner P, Dupuis A, Gaub MP, Herbrecht R,
Lutz P and Chan S: Function of Ikaros as a tumor suppressor in B
cell acute lymphoblastic leukemia. Am J Blood Res. 3:1–13.
2013.PubMed/NCBI
|
22
|
Kuiper RP, Waanders E, van der Velden VH,
van Reijmersdal SV, Venkatachalam R, Scheijen B, Sonneveld E, van
Dongen JJ, Veerman AJ, van Leeuwen FN, et al: IKZF1 deletions
predict relapse in uniformly treated pediatric precursor B-ALL.
Leukemia. 24:1258–1264. 2010.PubMed/NCBI View Article : Google Scholar
|
23
|
Mullighan CG, Su X, Zhang J, Radtke I,
Phillips LA, Miller CB, Ma J, Liu W, Cheng C, Schulman BA, et al:
Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N
Engl J Med. 360:470–480. 2009.PubMed/NCBI View Article : Google Scholar
|
24
|
Papaemmanuil E, Hosking FJ, Vijayakrishnan
J, Price A, Olver B, Sheridan E, Kinsey SE, Lightfoot T, Roman E,
Irving JA, et al: Loci on 7p12.2, 10q21.2 and 14q11.2 are
associated with risk of childhood acute lymphoblastic leukemia. Nat
Genet. 41:1006–1010. 2009.PubMed/NCBI View
Article : Google Scholar
|
25
|
Rudant J, Orsi L, Bonaventure A,
Goujon-Bellec S, Baruchel A, Petit A, Bertrand Y, Nelken B, Pasquet
M, Michel G, et al: ARID5B, IKZF1 and non-genetic factors in the
etiology of childhood acute lymphoblastic leukemia: The ESCALE
study. PLoS One. 10(e0121348)2015.PubMed/NCBI View Article : Google Scholar
|
26
|
Archer NP, Perez-Andreu V, Stoltze U,
Scheurer ME, Wilkinson AV, Lin TN, Qian M, Goodings C, Swartz MD,
Ranjit N, et al: Family-based exome-wide association study of
childhood acute lymphoblastic leukemia among hispanics confirms
role of ARID5B in susceptibility. PLoS One.
12(e0180488)2017.PubMed/NCBI View Article : Google Scholar
|
27
|
Xu H, Yang W, Perez-Andreu V, Devidas M,
Fan Y, Cheng C, Pei D, Scheet P, Burchard EG, Eng C, et al: Novel
susceptibility variants at 10p12.31-12.2 for childhood acute
lymphoblastic leukemia in ethnically diverse populations. J Natl
Cancer Inst. 105:733–742. 2013.PubMed/NCBI View Article : Google Scholar
|
28
|
Walsh KM, de Smith AJ, Hansen HM, Smirnov
IV, Gonseth S, Endicott AA, Xiao J, Rice T, Fu CH, McCoy LS, et al:
A heritable missense polymorphism in CDKN2A confers strong risk of
childhood acute lymphoblastic leukemia and is preferentially
selected during clonal evolution. Cancer Res. 75:4884–4894.
2015.PubMed/NCBI View Article : Google Scholar
|
29
|
Bhandari P, Ahmad F, Mandava S and Das BR:
Association of genetic variants in ARID5B, IKZF1 and CEBPE with
risk of childhood de novo B-lineage acute lymphoblastic leukemia in
India. Asian Pac J Cancer Prev. 17:3989–3995. 2016.PubMed/NCBI
|
30
|
Hou Q, Liao F, Zhang S, Zhang D, Zhang Y,
Zhou X, Xia X, Ye Y, Yang H, Li Z, et al: Regulatory network of
GATA3 in pediatric acute lymphoblastic leukemia. Oncotarget.
8:36040–36053. 2017.PubMed/NCBI View Article : Google Scholar
|
31
|
de Lourdes Perim A, Guembarovski RL, Oda
JM, Lopes LF, Ariza CB, Amarante MK, Fungaro MH, de Oliveira KB and
Watanabe MA: CXCL12 and TP53 genetic polymorphisms as markers of
susceptibility in a Brazilian children population with acute
lymphoblastic leukemia (ALL). Mol Biol Rep. 40:4591–4596.
2013.PubMed/NCBI View Article : Google Scholar
|
32
|
Hashemi M, Bahari G, Naderi M, Sadeghi
Bojd S and Taheri M: Association of lnc-LAMC2-1:1 rs2147578 and
CASC8 rs10505477 Polymorphisms with risk of childhood acute
lymphoblastic leukemia. Asian Pac J Cancer Prev. 17:4985–4989.
2016.PubMed/NCBI View Article : Google Scholar
|
33
|
Xue Y, Yang X, Hu S, Kang M, Chen J and
Fang Y: A genetic variant in miR-100 is a protective factor of
childhood acute lymphoblastic leukemia. Cancer Med. 8:2553–2560.
2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Kishi S, Cheng C, French D, Pei D, Das S,
Cook EH, Hijiya N, Rizzari C, Rosner GL, Frudakis T, et al:
Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood.
109:4151–4157. 2007.PubMed/NCBI View Article : Google Scholar
|
35
|
Farfan MJ, Salas C, Canales C, Silva F,
Villarroel M, Kopp K, Torres JP, Santolaya ME and Morales J:
Prevalence of TPMT and ITPA gene polymorphisms and effect on
mercaptopurine dosage in Chilean children with acute lymphoblastic
leukemia. BMC Cancer. 14(299)2014.PubMed/NCBI View Article : Google Scholar
|
36
|
Linga VG, Patchva DB, Mallavarapu KM,
Tulasi V, Kalpathi KI, Pillai A, Gundeti S, Rajappa SJ and
Digumarti R: Thiopurine methyltransferase polymorphisms in children
with acute lymphoblastic leukemia. Indian J Med Paediatr Oncol.
35:276–280. 2014.PubMed/NCBI View Article : Google Scholar
|
37
|
Smid A, Karas-Kuzelicki N, Jazbec J and
Mlinaric-Rascan I: PACSIN2 polymorphism is associated with
thiopurine-induced hematological toxicity in children with acute
lymphoblastic leukaemia undergoing maintenance therapy. Sci Rep.
6(30244)2016.PubMed/NCBI View Article : Google Scholar
|
38
|
Ogungbenro K and Aarons L: CRESim &
Epi-CRESim Project Groups. Physiologically based pharmacokinetic
model for 6-mercpatopurine: Exploring the role of genetic
polymorphism in TPMT enzyme activity. Br J Clin Pharmacol.
80:86–100. 2015.PubMed/NCBI View Article : Google Scholar
|
39
|
Ben Tanfous M, Sharif-Askari B, Ceppi F,
Laaribi H, Gagne V, Rousseau J, Labuda M, Silverman LB, Sallan SE,
Neuberg D, et al: Polymorphisms of asparaginase pathway and
asparaginase-related complications in children with acute
lymphoblastic leukemia. Clin Cancer Res. 21:329–334.
2015.PubMed/NCBI View Article : Google Scholar
|
40
|
Diouf B, Crews KR, Lew G, Pei D, Cheng C,
Bao J, Zheng JJ, Yang W, Fan Y, Wheeler HE, et al: Association of
an inherited genetic variant with vincristine-related peripheral
neuropathy in children with acute lymphoblastic leukemia. JAMA.
313:815–823. 2015.PubMed/NCBI View Article : Google Scholar
|
41
|
Huang L, Tissing WJ, de Jonge R, van Zelst
BD and Pieters R: Polymorphisms in folate-related genes:
Association with side effects of high-dose methotrexate in
childhood acute lymphoblastic leukemia. Leukemia. 22:1798–1800.
2008.PubMed/NCBI View Article : Google Scholar
|
42
|
Radtke S, Zolk O, Renner B, Paulides M,
Zimmermann M, Möricke A, Stanulla M, Schrappe M and Langer T:
Germline genetic variations in methotrexate candidate genes are
associated with pharmacokinetics, toxicity, and outcome in
childhood acute lymphoblastic leukemia. Blood. 121:5145–5153.
2013.PubMed/NCBI View Article : Google Scholar
|
43
|
Liu SG, Gao C, Zhang RD, Zhao XX, Cui L,
Li WJ, Chen ZP, Yue ZX, Zhang YY, Wu MY, et al: Polymorphisms in
methotrexate transporters and their relationship to plasma
methotrexate levels, toxicity of high-dose methotrexate, and
outcome of pediatric acute lymphoblastic leukemia. Oncotarget.
8:37761–37772. 2017.PubMed/NCBI View Article : Google Scholar
|
44
|
Lopez-Lopez E, Martin-Guerrero I,
Ballesteros J, Piñan MA, Garcia-Miguel P, Navajas A and Garcia-Orad
A: Polymorphisms of the SLCO1B1 gene predict methotrexate-related
toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood
Cancer. 57:612–619. 2011.PubMed/NCBI View Article : Google Scholar
|
45
|
Gregers J, Gréen H, Christensen IJ,
Dalhoff K, Schroeder H, Carlsen N, Rosthoej S, Lausen B,
Schmiegelow K and Peterson C: Polymorphisms in the ABCB1 gene and
effect on outcome and toxicity in childhood acute lymphoblastic
leukemia. Pharmacogenomics J. 15:372–379. 2015.PubMed/NCBI View Article : Google Scholar
|
46
|
Umerez M, Gutierrez-Camino Á,
Muñoz-Maldonado C, Martin-Guerrero I and Garcia-Orad A: MTHFR
polymorphisms in childhood acute lymphoblastic leukemia: Influence
on methotrexate therapy. Pharmgenomics Pers Med. 10:69–78.
2017.PubMed/NCBI View Article : Google Scholar
|
47
|
Lopez-Lopez E, Ballesteros J, Piñan MA,
Sanchez de Toledo J, Garcia de Andoin N, Garcia-Miguel P, Navajas A
and Garcia-Orad A: Polymorphisms in the methotrexate transport
pathway: A new tool for MTX plasma level prediction in pediatric
acute lymphoblastic leukemia. Pharmacogenet Genomics. 23:53–61.
2013.PubMed/NCBI View Article : Google Scholar
|
48
|
Xue Y, Rong L, Tong N, Wang M, Zhang Z and
Fang Y: CCND1 G870A polymorphism is associated with toxicity of
methotrexate in childhood acute lymphoblastic leukemia. Int J Clin
Exp Pathol. 8:11594–11600. 2015.PubMed/NCBI
|
49
|
He HR, Liu P, He GH, Dong WH, Wang MY,
Dong YL and Lu J: Association between reduced folate carrier G80A
polymorphism and methotrexate toxicity in childhood acute
lymphoblastic leukemia: A meta-analysis. Leuk Lymphoma.
55:2793–2800. 2014.PubMed/NCBI View Article : Google Scholar
|
50
|
Huang Z, Tong HF, Li Y, Qian JC, Wang JX,
Wang Z and Ruan JC: Effect of the polymorphism of
folylpolyglutamate synthetase on treatment of high-dose
methotrexate in pediatric patients with acute lymphocytic leukemia.
Med Sci Monit. 22:4967–4973. 2016.PubMed/NCBI View Article : Google Scholar
|
51
|
Huang Z, Wang J, Qian J, Li Y, Xu Z, Chen
M and Tong H: Effects of cytochrome P450 family 3 subfamily A
member 5 gene polymorphisms on daunorubicin metabolism and adverse
reactions in patients with acute leukemia. Mol Med Rep.
15:3493–3498. 2017.PubMed/NCBI View Article : Google Scholar
|
52
|
Gabor KM, Schermann G, Lautner-Csorba O,
Rarosi F, Erdelyi DJ, Endreffy E, Berek K, Bartyik K, Bereczki C,
Szalai C and Semsei AF: Impact of single nucleotide polymorphisms
of cytarabine metabolic genes on drug toxicity in childhood acute
lymphoblastic leukemia. Pediatr Blood Cancer. 62:622–628.
2015.PubMed/NCBI View Article : Google Scholar
|
53
|
Kaymak Cihan M, Karabulut HG, Yürür Kutlay
N, Ilgın Ruhi H, Tükün A and Olcay L: Association between N363S and
BclI polymorphisms of the glucocorticoid receptor gene (NR3C1) and
glucocorticoid side effects during childhood acute lymphoblastic
leukemia treatment. Turk J Haematol. 34:151–158. 2017.PubMed/NCBI View Article : Google Scholar
|
54
|
Finkelstein Y, Blonquist TM, Vijayanathan
V, Stevenson KE, Neuberg DS, Silverman LB, Vrooman LM, Sallan SE
and Cole PD: A thymidylate synthase polymorphism is associated with
increased risk for bone toxicity among children treated for acute
lymphoblastic leukemia. Pediatr Blood Cancer 64, 2017.
|
55
|
Tantawy M, Amer M, Raafat T and Hamdy N:
Vitamin D receptor gene polymorphism in Egyptian pediatric acute
lymphoblastic leukemia correlation with BMD. Meta Gene. 9:42–46.
2016.PubMed/NCBI View Article : Google Scholar
|
56
|
Erdem M, Tüfekçi Ö, Kızıldağ S, Yılmaz Ş,
Kızmazoğlu D, Eroğlu Filibeli B and Ören H: Investigation of the
relationship between Fok1 and Col1A1 gene polymorphisms and
development of treatment-related bone complications in children
with acute lymphoblastic leukemia. Turk J Haematol. 36:12–18.
2019.PubMed/NCBI View Article : Google Scholar
|
57
|
Glisovic SJ, Pastore YD, Gagne V, Plesa M,
Laverdière C, Leclerc JM, Sinnett D and Krajinovic M: Impact of
genetic polymorphisms determining leukocyte/neutrophil count on
chemotherapy toxicity. Pharmacogenomics J. 18:270–274.
2018.PubMed/NCBI View Article : Google Scholar
|
58
|
Abo-Bakr A, Mossallam G, El Azhary N,
Hafez H and Badawy R: Impact of CYP1A1, GSTP1 and XRCC1 genes
polymorphisms on toxicity and response to chemotherapy in childhood
acute lymphoblastic leukemia. J Egypt Natl Canc Inst. 29:127–133.
2017.PubMed/NCBI View Article : Google Scholar
|
59
|
Gutierrez-Camino Á, Umerez M, Lopez-Lopez
E, Santos-Zorrozua B, Martin-Guerrero I, de Andoin NG, Ana S,
Navajas A, Astigarraga I and Garcia-Orad A: Involvement of miRNA
polymorphism in mucositis development in childhood acute
lymphoblastic leukemia treatment. Pharmacogenomics. 19:1403–1412.
2018.PubMed/NCBI View Article : Google Scholar
|
60
|
Krajinovic M, Labuda D, Mathonnet G,
Labuda M, Moghrabi A, Champagne J and Sinnett D: Polymorphisms in
genes encoding drugs and xenobiotic metabolizing enzymes, DNA
repair enzymes, and response to treatment of childhood acute
lymphoblastic leukemia. Clin Cancer Res. 8:802–810. 2002.PubMed/NCBI
|
61
|
Sanchez R, St-Cyr J, Lalonde ME, Healy J,
Richer C, Gagne V, Laverdiere C, Silverman LB, Sallan SE, Neuberg
D, et al: Impact of promoter polymorphisms in key regulators of the
intrinsic apoptosis pathway on the outcome of childhood acute
lymphoblastic leukemia. Haematologica. 99:314–321. 2014.PubMed/NCBI View Article : Google Scholar
|
62
|
Valibeigi B, Amirghofran Z, Golmoghaddam
H, Hajihosseini R and Kamazani FM: Fas gene variants in childhood
acute lymphoblastic leukemia and association with prognosis. Pathol
Oncol Res. 20:367–374. 2014.PubMed/NCBI View Article : Google Scholar
|
63
|
Leonardi DB, Abbate M, Riccheri MC, Nuñez
M, Alfonso G, Gueron G, De Siervi A, Vazquez E and Cotignola J:
Improving risk stratification of patients with childhood acute
lymphoblastic leukemia: Glutathione-S-Transferases polymorphisms
are associated with increased risk of relapse. Oncotarget.
8:110–117. 2017.PubMed/NCBI View Article : Google Scholar
|
64
|
Hammrich J, Wittig S, Ernst T and Gruhn B:
CTLA-4 polymorphisms: Influence on transplant-related mortality and
survival in children undergoing allogeneic hematopoietic stem cell
transplantation. J Cancer Res Clin Oncol. 144:587–592.
2018.PubMed/NCBI View Article : Google Scholar
|
65
|
Alachkar H, Fulton N, Sanford B, Malnassy
G, Mutonga M, Larson RA, Bloomfield CD, Marcucci G, Nakamura Y and
Stock W: Expression and polymorphism (rs4880) of mitochondrial
superoxide dismutase (SOD2) and asparaginase induced hepatotoxicity
in adult patients with acute lymphoblastic leukemia.
Pharmacogenomics J. 17:274–279. 2017.PubMed/NCBI View Article : Google Scholar
|