1
|
Holshue ML, DeBolt C, Lindquist S, Lofy
KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural
A, et al: First case of 2019 novel coronavirus in the United
States. N Engl J Med. 382:929–936. 2020.PubMed/NCBI View Article : Google Scholar
|
2
|
Li JY, You Z, Wang Q, Zhou ZJ, Qiu Y, Luo
R and Ge XY: The epidemic of 2019-novel-coronavirus (2019-nCoV)
pneumonia and insights for emerging infectious diseases in the
future. Microbes Infect. 22:80–85. 2020.PubMed/NCBI View Article : Google Scholar
|
3
|
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu
Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. Lancet.
395:497–506. 2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong
Y, Ren R, Leung KSM, Lau EHY, Wong JY, et al: Early transmission
dynamics in wuhan, China, of novel coronavirus-infected pneumonia.
N Engl J Med. 382:1199–1207. 2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Chen N, Zhou M, Dong X, Qu J, Gong F, Han
Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and Clinical
characteristics of 99 cases of 2019 novel coronavirus pneumonia in
Wuhan, China: A descriptive study. Lancet. 395:507–513.
2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J,
Wang B, Xiang H, Cheng Z, Xiong Y, et al: Clinical characteristics
of 138 hospitalized patients with 2019 novel Coronavirus-infected
pneumonia in Wuhan, China. JAMA. 323:1061–1069. 2020.PubMed/NCBI View Article : Google Scholar
|
7
|
Jiang S, Du L and Shi Z: An emerging
coronavirus causing pneumonia outbreak in Wuhan, China: Calling for
developing therapeutic and prophylactic strategies. Emerg Microbes
Infect. 9:275–277. 2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Zhou Y, Hou Y, Shen J, Huang Y, Martin W
and Cheng F: Network-based drug repurposing for novel coronavirus
2019-nCoV/SARS-CoV-2. Cell Discov. 6(14)2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Nitulescu GM, Paunescu H, Moschos SA,
Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK,
Drakoulis N and Tsatsakis A: Comprehensive analysis of drugs to
treat SARSCoV2 infection: Mechanistic insights into current COVID19
therapies (Review). Int J Mol Med. 46:467–488. 2020.PubMed/NCBI View Article : Google Scholar
|
10
|
Wan Y, Shang J, Graham R, Baric RS and Li
F: Receptor recognition by the novel coronavirus from Wuhan: An
analysis Based on Decade-long structural studies of SARS
coronavirus. J Virol. 94:e00127–20. 2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara
H, Geng Q, Auerbach A and Li F: Structural basis of receptor
recognition by SARS-CoV-2. Nature. 581:221–224. 2020.PubMed/NCBI View Article : Google Scholar
|
12
|
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S,
Zhang Q, Shi X, Wang Q, Zhang L and Wang X: Structure of the
SARS-CoV-2 spike Receptor-binding domain bound to the ACE2
receptor. Nature. 581:215–220. 2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan
B, Huan Y, Yang P, Zhang Y, Deng W, et al: A crucial role of
angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced
lung injury. Nat Med. 11:875–879. 2005.PubMed/NCBI View
Article : Google Scholar
|
14
|
Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han
Q, Shan G, Meng F, Du D, Wang S, et al: Transplantation of ACE2(-)
mesenchymal stem cells improves the outcome of patients with
COVID-19 pneumonia. Aging Dis. 11:216–228. 2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Yu F, Du L, Ojcius DM, Pan C and Jiang S:
Measures for diagnosing and treating infections by a novel
coronavirus responsible for a pneumonia outbreak originating in
Wuhan, China. Microbes Infect. 22:74–79. 2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Zhou G and Zhao Q: Perspectives on
therapeutic neutralizing antibodies against the Novel Coronavirus
SARS-CoV-2. Int J Biol Sci. 16:1718–1723. 2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Dhama K, Sharun K, Tiwari R, Dadar M,
Malik YS, Singh KP and Chaicumpa W: COVID-19, an emerging
coronavirus infection: Advances and prospects in designing and
developing vaccines, immunotherapeutics, and therapeutics. Hum
Vaccin Immunother. 16:1232–1238. 2020.PubMed/NCBI View Article : Google Scholar
|
18
|
Shang L, Zhao J, Hu Y, Du R and Cao B: On
the use of corticosteroids for 2019-nCoV pneumonia. Lancet.
395:683–684. 2020.PubMed/NCBI View Article : Google Scholar
|
19
|
Russell CD, Millar JE and Baillie JK:
Clinical evidence does not support corticosteroid treatment for
2019-nCoV lung injury. Lancet. 395:473–475. 2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Zhao Q, Zhang L, Wei Y, Yu H, Zou L, Huo
J, Yang H, Song B, Wei T, Wu D, et al: Systematic comparison of
hUC-MSCs at various passages reveals the variations of signatures
and therapeutic effect on acute Graft-versus-host disease. Stem
Cell Res Ther. 10(354)2019.PubMed/NCBI View Article : Google Scholar
|
21
|
Yao J, Chen N, Wang X, Zhang L, Huo J, Chi
Y, Li Z and Han Z: Human supernumerary Teeth-derived apical
papillary stem cells possess preferable characteristics and
efficacy on hepatic fibrosis in mice. Stem Cells Int.
2020(6489396)2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Lu S, Ge M, Zheng Y, Li J, Feng X, Feng S,
Huang J, Feng Y, Yang D, Shi J, et al: CD106 is a novel mediator of
bone marrow mesenchymal stem cells via NF-κB in the bone marrow
failure of acquired aplastic anemia. Stem Cell Res Ther.
8(178)2017.PubMed/NCBI View Article : Google Scholar
|
23
|
Du W, Li X, Chi Y, Ma F, Li Z, Yang S,
Song B, Cui J, Ma T, Li J, et al: VCAM-1+ placenta chorionic
villi-derived mesenchymal stem cells display potent Pro-angiogenic
activity. Stem Cell Res Ther. 7(49)2016.PubMed/NCBI View Article : Google Scholar
|
24
|
Huo J, Zhang L, Ren X, Li C, Li X, Dong P,
Zheng X, Huang J, Shao Y, Ge M, et al: Multifaceted
characterization of the signatures and efficacy of mesenchymal
stem/stromal cells in acquired aplastic anemia. Stem Cell Res Ther.
11(59)2020.PubMed/NCBI View Article : Google Scholar
|
25
|
Samsonraj RM, Raghunath M, Nurcombe V, Hui
JH, van Wijnen AJ and Cool SM: Concise review: Multifaceted
characterization of human mesenchymal stem cells for use in
regenerative medicine. Stem Cells Transl Med. 6:2173–2185.
2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Pourgholaminejad A, Aghdami N, Baharvand H
and Moazzeni SM: The effect of pro-inflammatory cytokines on
immunophenotype, differentiation capacity and immunomodulatory
functions of human mesenchymal stem cells. Cytokine. 85:51–60.
2016.PubMed/NCBI View Article : Google Scholar
|
27
|
Fan XL, Zhang Y, Li X and Fu QL:
Mechanisms underlying the protective effects of mesenchymal stem
cell-based therapy. Cell Mol Life Sci. 77:2771–2794.
2020.PubMed/NCBI View Article : Google Scholar
|
28
|
Kfoury Y and Scadden DT: Mesenchymal cell
contributions to the stem cell niche. Cell Stem Cell. 16:239–253.
2015.PubMed/NCBI View Article : Google Scholar
|
29
|
Darwish I, Mubareka S and Liles WC:
Immunomodulatory therapy for severe influenza. Expert Rev Anti
Infect Ther. 9:807–822. 2011.PubMed/NCBI View Article : Google Scholar
|
30
|
Zhang X, Yang Y, Zhang L, Lu Y, Zhang Q,
Fan D, Zhang Y, Zhang Y, Ye Z and Xiong D: Mesenchymal stromal
cells as vehicles of tetravalent bispecific tandab (CD3/CD19) for
the treatment of B cell lymphoma combined with IDO pathway
inhibitor D-1-methyl-tryptophan. J Hematol Oncol.
10(56)2017.PubMed/NCBI View Article : Google Scholar
|
31
|
Wei Y, Zhang L, Chi Y, Ren X, Gao Y, Song
B, Li C and Han Z, Zhang L and Han Z: High-efficient generation of
VCAM-1(+) mesenchymal stem cells with multidimensional
superiorities in signatures and efficacy on aplastic anaemia mice.
Cell Prolif. 53(e12862)2020.PubMed/NCBI View Article : Google Scholar
|
32
|
Wang L, Liu T, Liang R, Wang G, Liu Y, Zou
J, Liu N, Zhang B, Liu Y, Ding X, et al: Mesenchymal stem cells
ameliorate β cell dysfunction of human type 2 diabetic islets by
reversing β cell dedifferentiation. EBioMedicine.
51(102615)2020.PubMed/NCBI View Article : Google Scholar
|
33
|
Xu Z, Shi L, Wang Y, Zhang J, Huang L,
Zhang C, Liu S, Zhao P, Liu H, Zhu L, et al: Pathological findings
of COVID-19 associated with acute respiratory distress syndrome.
Lancet Respir Med. 8:420–422. 2020.PubMed/NCBI View Article : Google Scholar
|
34
|
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H,
Wang W, Song H, Huang B, Zhu N, et al: Genomic characterisation and
epidemiology of 2019 novel coronavirus: implications for virus
origins and receptor binding. Lancet. 395:565–574. 2020.PubMed/NCBI View Article : Google Scholar
|
35
|
Guarner J: Three emerging coronaviruses in
two decades. Am J Clin Pathol. 153:420–421. 2020.PubMed/NCBI View Article : Google Scholar
|
36
|
Meo SA, Alhowikan AM, Al-Khlaiwi T, Meo
IM, Halepoto DM, Iqbal M, Usmani AM, Hajjar W and Ahmed N: Novel
coronavirus 2019-nCoV: Prevalence, biological and clinical
characteristics comparison with SARS-CoV and MERS-CoV. Eur Rev Med
Pharmacol Sci. 24:2012–2019. 2020.PubMed/NCBI View Article : Google Scholar
|
37
|
Forster P, Forster L, Renfrew C and
Forster M: Phylogenetic network analysis of SARS-CoV-2 genomes.
Proc Natl Acad Sci USA. 117:9241–9243. 2020.PubMed/NCBI View Article : Google Scholar
|
38
|
Li X, Zai J, Zhao Q, Nie Q, Li Y, Foley BT
and Chaillon A: Evolutionary history, potential intermediate animal
host, and cross-species analyses of SARS-CoV-2. J Med Virol.
92:602–611. 2020.PubMed/NCBI View Article : Google Scholar
|
39
|
Riou J and Althaus CL: Pattern of early
human-to-human transmission of Wuhan 2019 novel coronavirus
(2019-nCoV), December 2019 to January 2020. Euro Surveill.
25(2000058)2020.PubMed/NCBI View Article : Google Scholar
|
40
|
Colson P, Rolain JM and Raoult D:
Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int J
Antimicrob Agents. 55(105923)2020.PubMed/NCBI View Article : Google Scholar
|
41
|
Nazeam J, Mohammed EZ, Raafat M, Houssein
M, Elkafoury A, Hamdy D and Jamil L: Based on principles and
insights of COVID-19 epidemiology, genome sequencing, and
pathogenesis: Retrospective analysis of sinigrin and Prolixin(RX)
(Fluphenazine) provides Off-label drug candidates. SLAS Discov: Aug
17, 2020 (Epub ahead of print). doi: 10.1177/2472555220950236.
|
42
|
Zhang L, Wang H, Liu C, Wu Q, Su P, Wu D,
Guo J, Zhou W, Xu Y, Shi L and Zhou J: MSX2 initiates and
accelerates mesenchymal stem/stromal cell specification of hPSCs by
regulating TWIST1 and PRAME. Stem Cell Reports. 11:497–513.
2018.PubMed/NCBI View Article : Google Scholar
|
43
|
Wei Y, Hou H, Zhang L, Zhao N, Li C, Huo
J, Liu Y, Zhang W, Li Z, Liu D, et al: JNKi- and DAC-programmed
mesenchymal stem/stromal cells from hESCs facilitate hematopoiesis
and alleviate hind limb ischemia. Stem Cell Res Ther.
10(186)2019.PubMed/NCBI View Article : Google Scholar
|
44
|
Soontararak S, Chow L, Johnson V, Coy J,
Wheat W, Regan D and Dow S: Mesenchymal stem cells (MSC) derived
from induced pluripotent stem cells (iPSC) equivalent to
Adipose-derived MSC in promoting intestinal healing and microbiome
normalization in mouse inflammatory bowel disease model. Stem Cells
Transl Med. 7:456–467. 2018.PubMed/NCBI View Article : Google Scholar
|
45
|
Liang X, Ding Y, Zhang Y, Tse HF and Lian
Q: Paracrine mechanisms of mesenchymal stem cell-based therapy:
Current status and perspectives. Cell Transplant. 23:1045–1059.
2014.PubMed/NCBI View Article : Google Scholar
|
46
|
Ye J and Gimble JM: Regulation of stem
cell differentiation in adipose tissue by chronic inflammation.
Clin Exp Pharmacol Physiol. 38:872–878. 2011.PubMed/NCBI View Article : Google Scholar
|