1
|
Yang Y, Islam MS, Wang J, Li Y and Chen X:
Traditional Chinese medicine in the treatment of patients infected
with 2019-new coronavirus (SARS-CoV-2): A review and perspective.
Int J Biol Sci. 16:1708–1717. 2020.PubMed/NCBI View Article : Google Scholar
|
2
|
Luo H, Gao Y, Zou J, Zhang S, Chen H, Liu
Q, Tan D, Han Y, Zhao Y and Wang S: Reflections on treatment of
COVID-19 with traditional Chinese medicine. Chin Med.
15(94)2020.PubMed/NCBI View Article : Google Scholar
|
3
|
Zhao Z, Li Y, Zhou L, Zhou X, Xie B, Zhang
W and Sun J: Prevention and treatment of COVID-19 using Traditional
Chinese Medicine: A review. Phytomedicine.
85(153308)2021.PubMed/NCBI View Article : Google Scholar
|
4
|
Wei PF: Diagnosis and treatment protocol
for novel coronavirus pneumonia (Trial Version 7). Chin Med J
(Engl). 133:1087–1095. 2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Tao Z, Yang Y, Shi W, Xue M, Yang W, Song
Z, Yao C, Yin J, Shi D, Zhang Y, et al: Complementary and
alternative medicine is expected to make greater contribution in
controlling the prevalence of influenza. Biosci Trends. 7:253–256.
2013.PubMed/NCBI
|
6
|
Li GQ, Zhao J, Tu ZT, Li JB, Liu QQ, Shi
LQ, Miao Q, Yuan HQ, Liu XQ, Long YY, et al: Treating influenza
patients of wind-heat affecting Fei syndrome by jinhua qinggan
granule: A double-blinded randomized control trial. Zhongguo Zhong
Xi Yi Jie He Za Zhi. 33:1631–1635. 2013.PubMed/NCBI(In Chinese).
|
7
|
Wu L, Chen Y, Ma Y, Yang Z, Yang N, Deng
W, Chen Y, Sun Y, Li Y and Lin L: Clinical practice guideline on
treating influenza in adult patients with Chinese patent medicines.
Pharmacol Res. 160(105101)2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Ang L, Song E, Lee HW and Lee MS: Herbal
medicine for the treatment of coronavirus disease 2019 (COVID-19):
A systematic review and meta-analysis of randomized controlled
trials. J Clin Med. 9(1583)2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Liu Z, Li X, Gou C, Li L, Luo X, Zhang C,
Zhang Y, Zhang J, Jin A, Li H, et al: Effect of Jinhua Qinggan
granules on novel coronavirus pneumonia in patients. J Tradit Chin
Med. 40:467–472. 2020.PubMed/NCBI View Article : Google Scholar
|
10
|
Wang J and Qi F: Traditional Chinese
medicine to treat COVID-19: The importance of evidence-based
research. Drug Discov Ther. 14:149–150. 2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Liu M, Gao Y, Yuan Y, Yang K, Shi S, Zhang
J and Tian J: Efficacy and safety of integrated traditional Chinese
and Western medicine for corona virus disease 2019 (COVID-19): A
systematic review and meta-analysis. Pharmacol Res.
158(104896)2020.PubMed/NCBI View Article : Google Scholar
|
12
|
Niu WH, Wu F, Cao WY, Wu ZG, Chao YC and
Liang C: Network pharmacology for the identification of
phytochemicals in traditional Chinese medicine for COVID-19 that
may regulate interleukin-6. Biosci Rep: Jan 29, 2021 (Epub ahead of
print). doi: 10.1042/BSR20202583.
|
13
|
Niu W, Wu F, Cui H, Cao W, Chao Y, Wu Z,
Fan M and Liang C: Network pharmacology analysis to identify
phytochemicals in traditional Chinese medicines that may regulate
ACE2 for the treatment of COVID-19. Evid Based Complement Alternat
Med. 2020(7493281)2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Kanda Y: Investigation of the freely
available easy-to-use software ‘EZR’ for medical statistics. Bone
Marrow Transplant. 48:452–458. 2013.PubMed/NCBI View Article : Google Scholar
|
15
|
Faul F, Erdfelder E, Lang AG and Buchner
A: G*Power 3: A flexible statistical power analysis program for the
social, behavioral, and biomedical sciences. Behav Res Methods.
39:175–191. 2007.PubMed/NCBI View Article : Google Scholar
|
16
|
Kageyama Y, Aida K, Kawauchi K, Morimoto
M, Ebisui T, Akiyama T and Nakamura T: Qingfei Paidu decoction, a
Chinese herbal medicine against COVID 19, elevates the blood levels
of pro inflammatory cytokines: An open label, single arm pilot
study. World Acad Sci J. 3(25)2021.
|
17
|
Liu J, Li S, Liu J, Liang B, Wang X, Wang
H, Li W, Tong Q, Yi J, Zhao L, et al: Longitudinal characteristics
of lymphocyte responses and cytokine profiles in the peripheral
blood of SARS-CoV-2 infected patients. EBioMedicine.
55(102763)2020.PubMed/NCBI View Article : Google Scholar
|
18
|
Li X, Liu C, Mao Z, Xiao M, Wang L, Qi S
and Zhou F: Predictive values of neutrophil-to-lymphocyte ratio on
disease severity and mortality in COVID-19 patients: A systematic
review and meta-analysis. Crit Care. 24(647)2020.PubMed/NCBI View Article : Google Scholar
|
19
|
Barnes BJ, Adrover JM, Baxter-Stoltzfus A,
Borczuk A, Cools-Lartigue J, Crawford JM, Dassler-Plenker J, Guerci
P, Huynh C, Knight JS, et al: Targeting potential drivers of
COVID-19: Neutrophil extracellular traps. J Exp Med.
217(e20200652)2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Peiró T, Patel DF, Akthar S, Gregory LG,
Pyle CJ, Harker JA, Birrell MA, Lloyd CM and Snelgrove RJ:
Neutrophils drive alveolar macrophage IL-1β release during
respiratory viral infection. Thorax. 73:546–556. 2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo
M, Madison JA, Blair C, Weber A, Barnes BJ, Egeblad M, et al:
Neutrophil extracellular traps in COVID-19. JCI Insight.
5(e138999)2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Laforge M, Elbim C, Frère C, Hémadi M,
Massaad C, Nuss P, Benoliel JJ and Becker C: Tissue damage from
neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol.
20:515–516. 2020.PubMed/NCBI View Article : Google Scholar
|
23
|
Batiha GE, Beshbishy AM, Ikram M, Mulla
ZS, El-Hack ME, Taha AE, Algammal AM and Elewa YH: The
pharmacological activity, biochemical properties, and
pharmacokinetics of the major natural polyphenolic flavonoid:
Quercetin. Foods. 9(374)2020.PubMed/NCBI View Article : Google Scholar
|
24
|
Erlund I, Kosonen T, Alfthan G, Mäenpää J,
Perttunen K, Kenraali J, Parantainen J and Aro A: Pharmacokinetics
of quercetin from quercetin aglycone and rutin in healthy
volunteers. Eur J Clin Pharmacol. 56:545–553. 2000.PubMed/NCBI View Article : Google Scholar
|
25
|
Graefe EU, Wittig J, Mueller S, Riethling
AK, Uehleke B, Drewelow B, Pforte H, Jacobasch G, Derendorf H and
Veit M: Pharmacokinetics and bioavailability of quercetin
glycosides in humans. J Clin Pharmacol. 41:492–499. 2001.PubMed/NCBI View Article : Google Scholar
|
26
|
Lee J and Mitchell AE: Pharmacokinetics of
quercetin absorption from apples and onions in healthy humans. J
Agric Food Chem. 60:3874–3881. 2012.PubMed/NCBI View Article : Google Scholar
|
27
|
Wang Z, Zeng M, Wang Z, Qin F, Chen J and
He Z: Dietary luteolin: A narrative review focusing on its
pharmacokinetic properties and effects on glycolipid metabolism. J
Agric Food Chem. 69:1441–1454. 2021.PubMed/NCBI View Article : Google Scholar
|
28
|
Chen T, Li LP, Lu XY, Jiang HD and Zeng S:
Absorption and excretion of luteolin and apigenin in rats after
oral administration of Chrysanthemum morifolium extract. J Agric
Food Chem. 55:273–277. 2007.PubMed/NCBI View Article : Google Scholar
|
29
|
Yasuda MT, Fujita K, Hosoya T, Imai S and
Shimoi K: Absorption and metabolism of luteolin and its glycosides
from the extract of chrysanthemum morifolium flowers in rats and
Caco-2 cells. J Agric Food Chem. 63:7693–7699. 2015.PubMed/NCBI View Article : Google Scholar
|
30
|
Cao X: COVID-19: Immunopathology and its
implications for therapy. Nat Rev Immunol. 20:269–270.
2020.PubMed/NCBI View Article : Google Scholar
|
31
|
Giamarellos-Bourboulis EJ, Netea MG,
Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, Damoraki G,
Gkavogianni T, Adami ME, Katsaounou P, et al: Complex immune
dysregulation in COVID-19 patients with severe respiratory failure.
Cell Host Microbe. 27:992–1000.e3. 2020.PubMed/NCBI View Article : Google Scholar
|
32
|
Zhang X, Tan Y, Ling Y, Lu G, Liu F, Yi Z,
Jia X, Wu M, Shi B, Xu S, et al: Viral and host factors related to
the clinical outcome of COVID-19. Nature. 583:437–440.
2020.PubMed/NCBI View Article : Google Scholar
|
33
|
Tleyjeh IM, Kashour Z, Damlaj M, Riaz M,
Tlayjeh H, Altannir M, Altannir Y, Al-Tannir M, Tleyjeh R, Hassett
L, et al: Efficacy and safety of tocilizumab in COVID-19 patients:
A living systematic review and meta-analysis. Clin Microbiol
Infect. 27:215–227. 2021.PubMed/NCBI View Article : Google Scholar
|
34
|
Hoffmann HH, Schneider WM and Rice CM:
Interferons and viruses: An evolutionary arms race of molecular
interactions. Trends Immunol. 36:124–138. 2015.PubMed/NCBI View Article : Google Scholar
|
35
|
Kang S, Brown HM and Hwang S: Direct
antiviral mechanisms of interferon-γ. Immune Netw.
18(e33)2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Kim MH, Salloum S, Wang JY, Wong LP, Regan
J, Lefteri K, Manickas-Hill Z, Gao C, Li JZ, Sadreyev RI, et al:
MGH COVID-19 Collection and Processing Team: Type I, II, and III
interferon signatures correspond to coronavirus disease 2019
severity. J Infect Dis. 224:777–782. 2021.PubMed/NCBI View Article : Google Scholar
|
37
|
Ruetsch C, Brglez V, Crémoni M, Zorzi K,
Fernandez C, Boyer-Suavet S, Benzaken S, Demonchy E, Risso K,
Courjon J, et al: Functional exhaustion of type I and II
interferons production in severe COVID-19 patients. Front Med
(Lausanne). 7(603961)2021.PubMed/NCBI View Article : Google Scholar
|
38
|
Hu ZJ, Xu J, Yin JM, Li L, Hou W, Zhang
LL, Zhou Z, Yu YZ, Li HJ, Feng YM, et al: Lower circulating
interferon-γ is a risk factor for lung fibrosis in COVID-19
patients. Front Immunol. 11(585647)2020.PubMed/NCBI View Article : Google Scholar
|
39
|
Chen G, Wu D, Guo W, Cao Y, Huang D, Wang
H, Wang T, Zhang X, Chen H, Yu H, et al: Clinical and immunological
features of severe and moderate coronavirus disease 2019. J Clin
Invest. 130:2620–2629. 2020.PubMed/NCBI View Article : Google Scholar
|
40
|
Mazzoni A, Salvati L, Maggi L, Capone M,
Vanni A, Spinicci M, Mencarini J, Caporale R, Peruzzi B, Antonelli
A, et al: Impaired immune cell cytotoxicity in severe COVID-19 is
IL-6 dependent. J Clin Invest. 130:4694–4703. 2020.PubMed/NCBI View Article : Google Scholar
|
41
|
Zheng M, Gao Y, Wang G, Song G, Liu S, Sun
D, Xu Y and Tian Z: Functional exhaustion of antiviral lymphocytes
in COVID-19 patients. Cell Mol Immunol. 17:533–535. 2020.PubMed/NCBI View Article : Google Scholar
|
42
|
Kyuwa S and Sugiura Y: Role of cytotoxic T
lymphocytes and interferon-γ in coronavirus infection: Lessons from
murine coronavirus infections in mice. J Vet Med Sci. 82:1410–1414.
2020.PubMed/NCBI View Article : Google Scholar
|
43
|
Lagunas-Rangel FA and Chávez-Valencia V:
High IL-6/IFN-γ ratio could be associated with severe disease in
COVID-19 patients. J Med Virol. 92:1789–1790. 2020.PubMed/NCBI View Article : Google Scholar
|
44
|
Acosta-Ampudia Y, Monsalve DM, Rojas M,
Rodríguez Y, Gallo JE, Salazar-Uribe JC, Santander MJ, Cala MP,
Zapata W, Zapata MI, et al: CP-COVID-19 group: COVID-19
convalescent plasma composition and immunological effects in severe
patients. J Autoimmun. 118(102598)2021.PubMed/NCBI View Article : Google Scholar
|