1
|
Bettelheim FR: Tyrosine-O-sulfate in a peptide from fibrinogen. J Am Chem Soc. 76:2838–2839. 1954.
|
2
|
Huttner WB: Sulphation of tyrosine residues-a widespread modification of proteins. Nature. 299:273–276. 1982.PubMed/NCBI View Article : Google Scholar
|
3
|
Huttner WB: Tyrosine sulfation and the secretory pathway. Annu Rev Physiol. 50:363–376. 1988.PubMed/NCBI View Article : Google Scholar
|
4
|
Hsu W, Rosenquist GL, Ansari AA and Gershwin ME: Autoimmunity and tyrosine sulfation. Autoimmun Rev. 4:429–435. 2005.PubMed/NCBI View Article : Google Scholar
|
5
|
Pouyani T and Seed B: PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus. Cell. 83:333–343. 1995.PubMed/NCBI View Article : Google Scholar
|
6
|
Bundgaard JR, Vuust J and Rehfeld JF: Tyrosine O-sulfation promotes proteolytic processing of progastrin. EMBO J. 14:3073–3079. 1995.PubMed/NCBI
|
7
|
Friederich E, Fritz HJ and Huttner WB: Inhibition of tyrosine sulfation in the trans-Golgi retards the transport of a constitutively secreted protein to the cell surface. J Cell Biol. 107:1655–1667. 1988.PubMed/NCBI View Article : Google Scholar
|
8
|
Leung AW, Backstrom I and Bally MB: Sulfonation, an underexploited area: From skeletal development to infectious diseases and cancer. Oncotarget. 7:55811–55827. 2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Nishimura Y, Wakita T and Shimizu H: Tyrosine sulfation of the amino terminus of PSGL-1 is critical for enterovirus 71 infection. PLoS Pathog. 6(e1001174)2010.PubMed/NCBI View Article : Google Scholar
|
10
|
Koltsova E and Ley K: Tyrosine sulfation of leukocyte adhesion molecules and chemokine receptors promotes atherosclerosis. Arterioscler Thromb Vasc Biol. 29:1709–1711. 2009.PubMed/NCBI View Article : Google Scholar
|
11
|
Huttner WB: Determination and occurrence of tyrosine O-sulfate in proteins. Methods Enzymol. 107:200–223. 1984.PubMed/NCBI View Article : Google Scholar
|
12
|
Yu Y, Hoffhines AJ, Moore KL and Leary JA: Determination of the sites of tyrosine O-sulfation in peptides and proteins. Nat Methods. 4:583–588. 2007.PubMed/NCBI View Article : Google Scholar
|
13
|
Monigatti F, Gasteiger E, Bairoch A and Jung E: The Sulfinator: Predicting tyrosine sulfation sites in protein sequences. Bioinformatics. 18:769–770. 2002.PubMed/NCBI View Article : Google Scholar
|
14
|
Hoffhines AJ, Damoc E, Bridges KG, Leary JA and Moore KL: Detection and purification of tyrosine-sulfated proteins using a novel anti-sulfotyrosine monoclonal antibody. J Biol Chem. 281:37877–37887. 2006.PubMed/NCBI View Article : Google Scholar
|
15
|
Kehoe JW, Velappan N, Walbolt M, Rasmussen J, King D, Lou J, Knopp K, Pavlik P, Marks JD, Bertozzi CR, et al: Using phage display to select antibodies recognizing post-translational modifications independently of sequence context. Mol Cell Proteomics. 5:2350–2363. 2006.PubMed/NCBI View Article : Google Scholar
|
16
|
Rodgers SD, Camphausen RT and Hammer DA: Tyrosine sulfation enhances but is not required for PSGL-1 rolling adhesion on P-selectin. Biophys J. 81:2001–2009. 2001.PubMed/NCBI View Article : Google Scholar
|
17
|
Yagami T, Kitagawa K, Aida C, Fujiwara H and Futaki S: Stabilization of a tyrosine O-sulfate residue by a cationic functional group: Formation of a conjugate acid-base pair. J Pept Res. 56:239–249. 2000.PubMed/NCBI View Article : Google Scholar
|
18
|
Balsved D, Bundgaard JR and Sen JW: Stability of tyrosine sulfate in acidic solutions. Anal Biochem. 363:70–76. 2007.PubMed/NCBI View Article : Google Scholar
|
19
|
Niewczas MA, Mathew AV, Croall S, Byun J, Major M, Sabisetti VS, Smiles A, Bonventre JV, Pennathur S and Krolewski AS: Circulating modified metabolites and a risk of ESRD in patients with type 1 diabetes and chronic kidney disease. Diabetes Care. 40:383–390. 2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Vanholder R, Hoefliger N, De Smet R, Ringoir S and Vogeleere P: Extraction of protein bound ligands from azotemic sera: Comparison of 12 deproteinization methods. Kidney Int. 41:1707–1712. 1992.PubMed/NCBI View Article : Google Scholar
|
21
|
Robinson MR, Moore KL and Brodbelt JS: Direct identification of tyrosine sulfation by using ultraviolet photodissociation mass spectrometry. J Am Soc Mass Spectrom. 25:1461–1471. 2014.PubMed/NCBI View Article : Google Scholar
|
22
|
Tallan HH, Bella ST, Stein WH and Moore S: Tyrosine-O-sulfate as a constituent of normal human urine. J Biol Chem. 217:703–708. 1955.PubMed/NCBI
|
23
|
Phillips LS and Kopple JD: Circulating somatomedin activity and sulfate levels in adults with normal and impaired kidney function. Metabolism. 30:1091–1095. 1981.PubMed/NCBI View Article : Google Scholar
|
24
|
Freeman RM and Richards CJ: Studies on sulfate in end-stage renal disease. Kidney Int. 15:167–175. 1979.PubMed/NCBI View Article : Google Scholar
|
25
|
Mulder GJ and Scholtens E: The availability of inorganic sulphate in blood for sulphate conjugation of drugs in rat liver in vivo. (35S)Sulphate incorporation into harmol sulphate. Biochem J. 172:247–251. 1978.PubMed/NCBI View Article : Google Scholar
|