1
|
Mattiuzzi C and Lippi G: Current cancer
epidemiology. J Epidemiol Glob Health. 9:217–222. 2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Ferlay JEM, Lam F, Colombet M, Mery L,
Piñeros M, Znaor A, Soerjomataram I and Bray F: Global cancer
observatory: Cancer today. Lyon, France. International Agency for
Research on Cancer, 2020.
|
3
|
Nichol AM, Warde P and Bristow RG: Optimal
treatment of intermediate-risk prostate carcinoma with
radiotherapy: Clinical and translational issues. Cancer.
104:891–905. 2005.PubMed/NCBI View Article : Google Scholar
|
4
|
De Langhe S, De Ruyck K, Ost P, Fonteyne
V, Werbrouck J, De Meerleer G, De Neve W and Thierens H: Acute
radiation-induced nocturia in prostate cancer patients is
associated with pretreatment symptoms, radical prostatectomy, and
genetic markers in the TGFβ1 gene. Int J Radiat Oncol Biol Phys.
85:393–399. 2013.PubMed/NCBI View Article : Google Scholar
|
5
|
Redmond KJ, Robertson S, Lo SS, Soltys SG,
Ryu S, McNutt T, Chao ST, Yamada Y, Ghia A, Chang EL, et al:
Consensus contouring guidelines for postoperative stereotactic body
radiation therapy for metastatic solid tumor malignancies to the
spine. Int J Radiat Oncol Biol Phys. 97:64–74. 2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Baskar R, Lee KA, Yeo R and Yeoh KW:
Cancer and radiation therapy: Current advances and future
directions. Int J Med Sci. 9:193–199. 2012.PubMed/NCBI View Article : Google Scholar
|
7
|
Furst CJ: Radiotherapy for cancer. Quality
of life. Acta Oncol. 35 (Suppl 7):S141–S148. 1996.PubMed/NCBI View Article : Google Scholar
|
8
|
Berkey FJ: Managing the adverse effects of
radiation therapy. Am Fam Physician. 82:381–388, 394.
2010.PubMed/NCBI
|
9
|
Jereczek-Fossa BA, Zerini D, Fodor C,
Santoro L, Serafini F, Cambria R, Vavassori A, Cattani F, Garibaldi
C, Gherardi F, et al: Correlation between acute and late toxicity
in 973 prostate cancer patients treated with three-dimensional
conformal external beam radiotherapy. Int J Radiat Oncol Biol Phys.
78:26–34. 2010.PubMed/NCBI View Article : Google Scholar
|
10
|
Zelefsky MJ, Levin EJ, Hunt M, Yamada Y,
Shippy AM, Jackson A and Amols HI: Incidence of late rectal and
urinary toxicities after three-dimensional conformal radiotherapy
and intensity-modulated radiotherapy for localized prostate cancer.
Int J Radiat Oncol Biol Phys. 70:1124–1129. 2008.PubMed/NCBI View Article : Google Scholar
|
11
|
Ohri N, Dicker AP and Showalter TN: Late
toxicity rates following definitive radiotherapy for prostate
cancer. Can J Urol. 19:6373–6380. 2012.PubMed/NCBI
|
12
|
Christensen E, Pintilie M, Evans KR,
Lenarduzzi M, Ménard C, Catton CN, Diamandis EP and Bristow RG:
Longitudinal cytokine expression during IMRT for prostate cancer
and acute treatment toxicity. Clin Cancer Res. 15:5576–5583.
2009.PubMed/NCBI View Article : Google Scholar
|
13
|
Purkayastha A, Sharma N, Sarin A,
Bhatnagar S, Chakravarty N, Mukundan H, Suhag V and Singh S:
Radiation fibrosis syndrome: The evergreen menace of radiation
therapy. Asia Pac J Oncol Nurs. 6:238–245. 2019.PubMed/NCBI View Article : Google Scholar
|
14
|
Schaake W, Wiegman EM, de Groot M, van der
Laan HP, van der Schans CP, van den Bergh AC and Langendijk JA: The
impact of gastrointestinal and genitourinary toxicity on health
related quality of life among irradiated prostate cancer patients.
Radiother Oncol. 110:284–290. 2014.PubMed/NCBI View Article : Google Scholar
|
15
|
Singh J, Sohal SS, Ahuja K, Lim A, Duncan
H, Thachil T and De Ieso P: Investigation of circulatory cytokines
in patients undergoing intensity-modulated radiotherapy (IMRT) for
adenocarcinoma of the prostate and association with acute
RT-induced toxicity: A prospective clinical study. Cytokine.
131(155108)2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Xu T, Liao Z, O'Reilly MS, Levy LB, Welsh
JW, Wang LE, Lin SH, Komaki R, Liu Z, Wei Q and Gomez DR: Serum
inflammatory miRNAs predict radiation esophagitis in patients
receiving definitive radiochemotherapy for non-small cell lung
cancer. Radiother Oncol. 113:379–384. 2014.PubMed/NCBI View Article : Google Scholar
|
17
|
Isomura M, Oya N, Tachiiri S, Kaneyasu Y,
Nishimura Y, Akimoto T, Hareyama M, Sugita T, Mitsuhashi N,
Yamashita T, et al: IL12RB2 and ABCA1 genes are associated with
susceptibility to radiation dermatitis. Clin Cancer Res.
14:6683–6689. 2008.PubMed/NCBI View Article : Google Scholar
|
18
|
Hu H and Gatti RA: MicroRNAs: new players
in the DNA damage response. J Mol Cell Biol. 3:151–158.
2011.PubMed/NCBI View Article : Google Scholar
|
19
|
Bueno MJ, Pérez de Castro I and Malumbres
M: Control of cell proliferation pathways by microRNAs. Cell Cycle.
7:3143–3148. 2008.PubMed/NCBI View Article : Google Scholar
|
20
|
Xu P, Vernooy SY, Guo M and Hay BA: The
Drosophila microRNA Mir-14 suppresses cell death and is required
for normal fat metabolism. Curr Biol. 13:790–795. 2003.PubMed/NCBI View Article : Google Scholar
|
21
|
Croce CM: Causes and consequences of
microRNA dysregulation in cancer. Nat Rev Genet. 10:704–714.
2009.PubMed/NCBI View Article : Google Scholar
|
22
|
Egidi MG, Cochetti G, Serva MR, Guelfi G,
Zampini D, Mechelli L and Mearini E: Circulating microRNAs and
kallikreins before and after radical prostatectomy: Are they really
prostate cancer markers? Biomed Res Int.
2013(241780)2013.PubMed/NCBI View Article : Google Scholar
|
23
|
Matsuzaki J and Ochiya T: Circulating
microRNAs and extracellular vesicles as potential cancer
biomarkers: A systematic review. Int J Clin Oncol. 22:413–420.
2017.PubMed/NCBI View Article : Google Scholar
|
24
|
Song CJ, Chen H, Chen LZ, Ru GM, Guo JJ
and Ding QN: The potential of microRNAs as human prostate cancer
biomarkers: A meta-analysis of related studies. J Cell Biochem.
119:2763–2786. 2018.PubMed/NCBI View Article : Google Scholar
|
25
|
Weber JA, Baxter DH, Zhang S, Huang DY,
Huang KH, Lee MJ, Galas DJ and Wang K: The microRNA spectrum in 12
body fluids. Clin Chem. 56:1733–1741. 2010.PubMed/NCBI View Article : Google Scholar
|
26
|
Kopcalic K, Petrovic N, Stanojkovic TP,
Stankovic V, Bukumiric Z, Roganovic J, Malisic E and Nikitovic M:
Association between miR-21/146a/155 level changes and acute
genitourinary radiotoxicity in prostate cancer patients: A pilot
study. Pathol Res Pract. 215:626–631. 2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Bahtiyar N, Onaran İ, Aydemir B, Baykara
O, Toplan S, Agaoglu FY and Akyolcu MC: Monitoring of platelet
function parameters and microRNA expression levels in patients with
prostate cancer treated with volumetric modulated arc radiotherapy.
Oncol Lett. 16:4745–4753. 2018.PubMed/NCBI View Article : Google Scholar
|
28
|
Malla B, Aebersold DM and Dal Pra A:
Protocol for serum exosomal miRNAs analysis in prostate cancer
patients treated with radiotherapy. J Transl Med.
16(223)2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Someya M, Hori M, Gocho T, Nakata K,
Tsuchiya T, Kitagawa M, Hasegawa T, Fukushima Y and Sakata KI:
Prediction of acute gastrointestinal and genitourinary radiation
toxicity in prostate cancer patients using lymphocyte microRNA. Jpn
J Clin Oncol. 48:167–174. 2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Someya M, Yamamoto H, Nojima M, Hori M,
Tateoka K, Nakata K, Takagi M, Saito M, Hirokawa N, Tokino T and
Sakata K: Relation between Ku80 and microRNA-99a expression and
late rectal bleeding after radiotherapy for prostate cancer.
Radiother Oncol. 115:235–239. 2015.PubMed/NCBI View Article : Google Scholar
|
31
|
Rana P, Ghosh P, Anscher MS, Mikkelsen RB
and Yakovlev VA: Abstract 1802: Exosomal miRNA as a non-invasive
prediction marker of normal tissue toxicity after radiotherapy for
prostate cancer. Cancer Res. 79 (13 Suppl)(S1802)2019.
|
32
|
Metheetrairut C and Slack FJ: MicroRNAs in
the ionizing radiation response and in radiotherapy. Curr Opin
Genet Dev. 23:12–19. 2013.PubMed/NCBI View Article : Google Scholar
|
33
|
Cellini F, Morganti AG, Genovesi D,
Silvestris N and Valentini V: Role of microRNA in response to
ionizing radiations: Evidences and potential impact on clinical
practice for radiotherapy. Molecules. 19:5379–5401. 2014.PubMed/NCBI View Article : Google Scholar
|
34
|
Konoshenko MY, Bryzgunova OE and Laktionov
PP: miRNAs and radiotherapy response in prostate cancer. Andrology.
9:529–545. 2021.PubMed/NCBI View Article : Google Scholar
|
35
|
Singh VK and Pollard HB: Ionizing
radiation-induced altered microRNA expression as biomarkers for
assessing acute radiation injury. Expert Rev Mol Diagn. 17:871–874.
2017.PubMed/NCBI View Article : Google Scholar
|
36
|
Oliveira MA: BJCVS/RBCCV and endnote. Rev
Bras Cir Cardiovasc. 30(127)2015.PubMed/NCBI View Article : Google Scholar
|
37
|
Whiting P, Rutjes AWS, Reitsma JB, Bossuyt
PMM and Kleijnen J: The development of QUADAS: A tool for the
quality assessment of studies of diagnostic accuracy included in
systematic reviews. BMC Med Res Methodol. 3(25)2003.PubMed/NCBI View Article : Google Scholar
|
38
|
Cooper H: Research synthesis and
meta-analysis: A step-by-step approach. Vol. 2. Sage publications,
2015.
|
39
|
Dettori JR, Norvell DC and Chapman JR:
Fixed-effect vs random-effects models for meta-analysis: 3 Points
to consider. Global Spine J. 12:1624–1626. 2022.PubMed/NCBI View Article : Google Scholar
|
40
|
Cohen J: Statistical power analysis for
the behavioral sciences. 2nd edition. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1988.
|
41
|
Higgins JPT, Thompson SG, Deeks JJ and
Altman DG: Measuring inconsistency in meta-analyses. BMJ.
327:557–560. 2003.PubMed/NCBI View Article : Google Scholar
|
42
|
Zedan AH, Hansen TF, Assenholt J, Madsen
JS and Osther PJS: Circulating miRNAs in localized/locally advanced
prostate cancer patients after radical prostatectomy and
radiotherapy. Prostate. 79:425–432. 2019.PubMed/NCBI View Article : Google Scholar
|
43
|
Weg ES, Pei X, Kollmeier MA, McBride SM
and Zelefsky MJ: Dose-escalated intensity modulated radiation
therapy for prostate cancer: 15-Year outcomes data. Adv Radiat
Oncol. 4:492–499. 2019.PubMed/NCBI View Article : Google Scholar
|
44
|
Barnett GC, West CML, Dunning AM, Elliott
RM, Coles CE, Pharoah PDP and Burnet NG: Normal tissue reactions to
radiotherapy: Towards tailoring treatment dose by genotype. Nat Rev
Cancer. 9:134–142. 2009.PubMed/NCBI View Article : Google Scholar
|
45
|
Barker HE, Paget JT, Khan AA and
Harrington KJ: The tumour microenvironment after radiotherapy:
Mechanisms of resistance and recurrence. Nat Rev Cancer.
15:409–425. 2015.PubMed/NCBI View Article : Google Scholar
|
46
|
Kim JH, Jenrow KA and Brown SL: Mechanisms
of radiation-induced normal tissue toxicity and implications for
future clinical trials. Radiat Oncol J. 32:103–115. 2014.PubMed/NCBI View Article : Google Scholar
|
47
|
Staedel C, Tran TPA, Giraud J, Darfeuille
F, Di Giorgio A, Tourasse NJ, Salin F, Uriac P and Duca M:
Modulation of oncogenic miRNA biogenesis using functionalized
polyamines. Sci Rep. 8(1667)2018.PubMed/NCBI View Article : Google Scholar
|
48
|
Di Giorgio A, Tran TPA and Duca M:
Small-molecule approaches toward the targeting of oncogenic miRNAs:
Roadmap for the discovery of RNA modulators. Future Med Chem.
8:803–816. 2016.PubMed/NCBI View Article : Google Scholar
|
49
|
Iorio MV and Croce CM: microRNA
involvement in human cancer. Carcinogenesis. 33:1126–1133.
2012.PubMed/NCBI View Article : Google Scholar
|
50
|
Gu LQ, Wanunu M, Wang MX, McReynolds L and
Wang Y: Detection of miRNAs with a nanopore single-molecule
counter. Expert Rev Mol Diagn. 12:573–584. 2012.PubMed/NCBI View Article : Google Scholar
|
51
|
Rothschild SI: microRNA therapies in
cancer. Mol Cell Ther. 2(7)2014.PubMed/NCBI View Article : Google Scholar
|
52
|
Balázs K, Antal L, Sáfrány G and Lumniczky
K: Blood-derived biomarkers of diagnosis, prognosis and therapy
response in prostate cancer patients. J Pers Med.
11(296)2021.PubMed/NCBI View Article : Google Scholar
|
53
|
Beckendorf V, Guerif S, Le Prisé E, Cosset
JM, Bougnoux A, Chauvet B, Salem N, Chapet O, Bourdain S, Bachaud
JM, et al: 70 Gy versus 80 Gy in localized prostate cancer: 5-Year
results of GETUG 06 randomized trial. Int J Radiat Oncol Biol Phys.
80:1056–1063. 2011.PubMed/NCBI View Article : Google Scholar
|
54
|
Dearnaley DP, Sydes MR, Graham JD, Aird
EG, Bottomley D, Cowan RA, Huddart RA, Jose CC, Matthews JH, Millar
J, et al: Escalated-dose versus standard-dose conformal
radiotherapy in prostate cancer: First results from the MRC RT01
randomised controlled trial. Lancet Oncol. 8:475–487.
2007.PubMed/NCBI View Article : Google Scholar
|
55
|
Michalski JM, Gay H, Jackson A, Tucker SL
and Deasy JO: Radiation dose-volume effects in radiation-induced
rectal injury. Int J Radiat Oncol Biol Phys. 76 (3
Suppl):S123–S129. 2010.PubMed/NCBI View Article : Google Scholar
|
56
|
Chaudhry MA, Omaruddin RA, Brumbaugh CD,
Tariq MA and Pourmand N: Identification of radiation-induced
microRNA transcriptome by next-generation massively parallel
sequencing. J Radiat Res. 54:808–822. 2013.PubMed/NCBI View Article : Google Scholar
|
57
|
Korpela E, Vesprini D and Liu SK: MicroRNA
in radiotherapy: miRage or miRador? Br J Cancer. 112:777–782.
2015.PubMed/NCBI View Article : Google Scholar
|
58
|
Xu S, Ding N, Pei H, Hu W, Wei W, Zhang X,
Zhou G and Wang J: MiR-21 is involved in radiation-induced
bystander effects. RNA Biol. 11:1161–1170. 2014.PubMed/NCBI View Article : Google Scholar
|
59
|
Stepanović A, Nikitović M, Stanojković TP,
Grujičić D, Bukumirić Z, Srbljak I, Ilić R, Milošević S,
Arsenijević T and Petrović N: Association between microRNAs
10b/21/34a and acute toxicity in glioblastoma patients treated with
radiotherapy and temozolomide. Sci Rep. 12(7505)2022.PubMed/NCBI View Article : Google Scholar
|
60
|
Schwarzenbach H, Nishida N, Calin GA and
Pantel K: Clinical relevance of circulating cell-free microRNAs in
cancer. Nat Rev Clin Oncol. 11:145–156. 2014.PubMed/NCBI View Article : Google Scholar
|
61
|
Mitchell PS, Parkin RK, Kroh EM, Fritz BR,
Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant
KC, Allen A, et al: Circulating microRNAs as stable blood-based
markers for cancer detection. Proc Natl Acad Sci USA.
105:10513–10518. 2008.PubMed/NCBI View Article : Google Scholar
|
62
|
Kabacik S, Manning G, Raffy C, Bouffler S
and Badie C: Time, dose and ataxia telangiectasia mutated (ATM)
status dependency of coding and noncoding RNA expression after
ionizing radiation exposure. Radiat Res. 183:325–337.
2015.PubMed/NCBI View Article : Google Scholar
|
63
|
Kerns SL, Fachal L, Dorling L, Barnett GC,
Baran A, Peterson DR, Hollenberg M, Hao K, Narzo AD, Ahsen ME, et
al: Radiogenomics consortium genome-wide association study
meta-analysis of late toxicity after prostate cancer radiotherapy.
J Natl Cancer Inst. 112:179–190. 2020.PubMed/NCBI View Article : Google Scholar
|
64
|
Buscaglia LEB and Li Y: Apoptosis and the
target genes of microRNA-21. Chin J Cancer. 30:371–380.
2011.PubMed/NCBI View Article : Google Scholar
|
65
|
Chen C, Zhao Z, Liu Y and Mu D:
microRNA-99a is downregulated and promotes proliferation, migration
and invasion in non-small cell lung cancer A549 and H1299 cells.
Oncol Lett. 9:1128–1134. 2015.PubMed/NCBI View Article : Google Scholar
|
66
|
Zhang Q, Song LR, Huo XL, Wang L, Zhang
GB, Hao SY, Jia HW, Kong CL, Jia W, Wu Z, et al: MicroRNA-221/222
inhibits the radiation-induced invasiveness and promotes the
radiosensitivity of malignant meningioma cells. Front Oncol.
10(1441)2020.PubMed/NCBI View Article : Google Scholar
|
67
|
John-Aryankalayil M, Palayoor ST, Makinde
AY, Cerna D, Simone CB II, Falduto MT, Magnuson SR and Coleman CN:
Fractionated radiation alters oncomir and tumor suppressor miRNAs
in human prostate cancer cells. Radiat Res. 178:105–117.
2012.PubMed/NCBI View Article : Google Scholar
|
68
|
O'Reilly S: MicroRNAs in fibrosis:
Opportunities and challenges. Arthritis Res Ther.
18(11)2016.PubMed/NCBI View Article : Google Scholar
|
69
|
Cabral BCA, Hoffmann L, Bottaro T, Costa
PF, Ramos ALA, Coelho HSM, Villela-Nogueira CA, Ürményi TP, Faffe
DS and Silva R: Circulating microRNAs associated with liver
fibrosis in chronic hepatitis C patients. Biochem Biophys Rep.
24(100814)2020.PubMed/NCBI View Article : Google Scholar
|
70
|
Sheng S, Zou M, Yang Y, Guan M, Ren S,
Wang X, Wang L and Xue Y: miR-23a-3p regulates the inflammatory
response and fibrosis in diabetic kidney disease by targeting early
growth response 1. In Vitro Cell Dev Biol Anim. 57:763–774.
2021.PubMed/NCBI View Article : Google Scholar
|
71
|
Wang Y, Xu N, Zhao S, Jiao T, Fu W, Yang L
and Zhang N: miR-410-3p suppresses cytokine release from
fibroblast-like synoviocytes by regulating NF-κB signaling in
rheumatoid arthritis. Inflammation. 42:331–341. 2019.PubMed/NCBI View Article : Google Scholar
|
72
|
Wagner RH, Boles MA and Henkin RE:
Treatment of radiation exposure and contamination. Radiographics.
14:387–396. 1994.PubMed/NCBI View Article : Google Scholar
|
73
|
McBride WH and Schaue D: Radiation-induced
tissue damage and response. J Pathol. 250:647–655. 2020.PubMed/NCBI View Article : Google Scholar
|
74
|
Chiba M: Radiation-responsive
transcriptome analysis in human lymphoid cells. Radiat Prot
Dosimetry. 152:164–167. 2012.PubMed/NCBI View Article : Google Scholar
|
75
|
Mittelbrunn M and Sánchez-Madrid F:
Intercellular communication: Diverse structures for exchange of
genetic information. Nat Rev Mol Cell Biol. 13:328–335.
2012.PubMed/NCBI View Article : Google Scholar
|
76
|
Moreno-Villanueva M, Zhang Y, Feiveson A,
Mistretta B, Pan Y, Chatterjee S, Wu W, Clanton R, Nelman-Gonzalez
M, Krieger S, et al: Single-Cell RNA-sequencing identifies
activation of TP53 and STAT1 pathways in human T lymphocyte
subpopulations in response to ex vivo radiation exposure. Int J Mol
Sci. 20(2316)2019.PubMed/NCBI View Article : Google Scholar
|
77
|
Zhang J, Li S, Li L, Li M, Guo C, Yao J
and Mi S: Exosome and exosomal microRNA: Trafficking, sorting, and
function. Genomics Proteomics Bioinformatics. 13:17–24.
2015.PubMed/NCBI View Article : Google Scholar
|
78
|
Petrović N, Stanojković TP and Nikitović
M: MicroRNAs in prostate cancer following radiotherapy: Towards
predicting response to radiation treatment. Curr Med Chem.
29:1543–1560. 2022.PubMed/NCBI View Article : Google Scholar
|