1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263.
2024.PubMed/NCBI View Article : Google Scholar
|
2
|
Oguntade AS, Al-Amodi F, Alrumayh A,
Alobaida M and Bwalya M: Anti-angiogenesis in cancer therapeutics:
The magic bullet. J Egypt Natl Canc Inst. 33(15)2021.PubMed/NCBI View Article : Google Scholar
|
3
|
Al-Abd AM, Alamoudi AJ, Abdel-Naim AB,
Neamatallah TA and Ashour OM: Anti-angiogenic agents for the
treatment of solid tumors: Potential pathways, therapy and current
strategies-a review. J Adv Res. 8:591–605. 2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Ghalehbandi S, Yuzugulen J, Pranjol MZI
and Pourgholami MH: The role of VEGF in cancer-induced angiogenesis
and research progress of drugs targeting VEGF. Eur J Pharmacol.
949(175586)2023.PubMed/NCBI View Article : Google Scholar
|
5
|
Jung WY, Min KW and Oh YH: Increased
VEGF-A in solid type of lung adenocarcinoma reduces the patients'
survival. Sci Rep. 11(1321)2021.PubMed/NCBI View Article : Google Scholar
|
6
|
Seo Y, Baba H, Fukuda T, Takashima M and
Sugimachi K: High expression of vascular endothelial growth factor
is associated with liver metastasis and a poor prognosis for
patients with ductal pancreatic adenocarcinoma. Cancer.
88:2239–2245. 2000.PubMed/NCBI View Article : Google Scholar
|
7
|
Sindhura N and Kaumudi K: Vascular
endothelial growth factor expression by immunohistochemistry as a
possible indicator of prognosis in invasive breast carcinoma of no
special type. Int J Appl Basic Med Res. 14:124–130. 2024.PubMed/NCBI View Article : Google Scholar
|
8
|
Zirlik K and Duyster J: Anti-angiogenics:
Current situation and future perspectives. Oncol Res Treat.
41:166–171. 2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Rizzo A, Dadduzio V, Ricci AD, Massari F,
Di Federico A, Gadaleta-Caldarola G and Brandi G: Lenvatinib plus
pembrolizumab: The next frontier for the treatment of
hepatocellular carcinoma? Expert Opin Investig Drugs. 31:371–378.
2022.PubMed/NCBI View Article : Google Scholar
|
10
|
Santoni M, Rizzo A, Mollica V, Rosellini
M, Marchetti A, Fragomeno B, Battelli N and Massari F:
Pembrolizumab plus lenvatinib or axitinib compared to nivolumab
plus ipilimumab or cabozantinib in advanced renal cell carcinoma: A
number needed to treat analysis. Expert Rev Pharmacoecon Outcomes
Res. 22:45–51. 2022.PubMed/NCBI View Article : Google Scholar
|
11
|
Rizzo A: Immune checkpoint inhibitors and
mismatch repair status in advanced endometrial cancer: Elective
affinities. J Clin Med. 11(3912)2022.PubMed/NCBI View Article : Google Scholar
|
12
|
Rizzo A, Mollica V, Tateo V, Tassinari E,
Marchetti A, Rosellini M, De Luca R, Santoni M and Massari F:
Hypertransaminasemia in cancer patients receiving immunotherapy and
immune-based combinations: The MOUSEION-05 study. Cancer Immunol
Immunother. 72:1381–1394. 2023.PubMed/NCBI View Article : Google Scholar
|
13
|
Lopes-Coelho F, Martins F, Pereira SA and
Serpa J: Anti-angiogenic therapy: Current challenges and future
perspectives. Int J Mol Sci. 22(3765)2021.PubMed/NCBI View Article : Google Scholar
|
14
|
Potter M, Newport E and Morten KJ: The
Warburg effect: 80 Years on. Biochem Soc Trans. 44:1499–1505.
2016.PubMed/NCBI View Article : Google Scholar
|
15
|
Ando H, Eshima K and Ishida T:
Neutralization of acidic tumor microenvironment (TME) with daily
oral dosing of sodium potassium citrate (K/Na Citrate) increases
therapeutic effect of anti-cancer agent in pancreatic cancer
xenograft mice model. Biol Pharm Bull. 44:266–270. 2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Saghiri MA, Asatourian A, Morgano SM, Wang
S and Sheibani N: Moderately acidic pH promotes angiogenesis: An in
vitro and in vivo study. J Endod. 46:1113–1119. 2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Rofstad EK, Mathiesen B, Kindem K and
Galappathi K: Acidic extracellular pH promotes experimental
metastasis of human melanoma cells in athymic nude mice. Cancer
Res. 66:6699–6707. 2006.PubMed/NCBI View Article : Google Scholar
|
18
|
Faes S, Uldry E, Planche A, Santoro T,
Pythoud C, Demartines N and Dormond O: Acidic pH reduces
VEGF-mediated endothelial cell responses by downregulation of
VEGFR-2; relevance for anti-angiogenic therapies. Oncotarget.
7:86026–86038. 2016.PubMed/NCBI View Article : Google Scholar
|
19
|
Lin YC, Chen JH, Han KW and Shen WC:
Ablation of liver tumor by injection of hypertonic saline. AJR Am J
Roentgenol. 184:212–219. 2005.PubMed/NCBI View Article : Google Scholar
|
20
|
Shields CJ, Winter DC, Geibel JP,
O'Sullivan GC, Wang JH and Redmond HP: Hypertonic saline attenuates
colonic tumor cell metastatic potential by activating transmembrane
sodium conductance. J Membr Biol. 211:35–42. 2006.PubMed/NCBI View Article : Google Scholar
|
21
|
Wang Y, Peng C, Wang G, Xu Z, Luo Y, Wang
J and Zhu W: Exploring binding mechanisms of VEGFR2 with three
drugs lenvatinib, sorafenib, and sunitinib by molecular dynamics
simulation and free energy calculation. Chem Biol Drug Des.
93:934–948. 2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Phillips JC, Braun R, Wang W, Gumbart J,
Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L and Schulten K:
Scalable molecular dynamics with NAMD. J Comput Chem. 26:1781–1802.
2005.PubMed/NCBI View Article : Google Scholar
|
23
|
Lee J, Cheng X, Swails JM, Yeom MS,
Eastman PK, Lemkul JA, Wei S, Buckner J, Jeong JC, Qi Y, et al:
CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and
CHARMM/OpenMM simulations using the CHARMM36 additive force field.
J Chem Theory Comput. 12:405–413. 2016.PubMed/NCBI View Article : Google Scholar
|
24
|
Jo S, Kim T, Iyer VG and Im W: CHARMM-GUI:
A web-based graphical user interface for CHARMM. J Comput Chem.
29:1859–1865. 2008.PubMed/NCBI View Article : Google Scholar
|
25
|
Anandakrishnan R, Aguilar B and Onufriev
AV: H++ 3.0: Automating pK prediction and the preparation of
biomolecular structures for atomistic molecular modeling and
simulations. Nucleic Acids Res. 40 (Web Server Issue):W537–W541.
2012.PubMed/NCBI View Article : Google Scholar
|
26
|
Bajbouj K, Qaisar R, Alshura MA, Ibrahim
Z, Alebaji MB, Al Ani AW, Janajrah HM, Bilalaga MM, Omara AI,
Assaleh RS, et al: Synergistic anti-angiogenic effect of combined
VEGFR kinase inhibitors, lenvatinib, and regorafenib: A therapeutic
potential for breast cancer. Int J Mol Sci. 23(4408)2022.PubMed/NCBI View Article : Google Scholar
|
27
|
Lee S and Shanti A: Effect of exogenous pH
on cell growth of breast cancer cells. Int J Mol Sci.
22(9910)2021.PubMed/NCBI View Article : Google Scholar
|
28
|
Tan W, Zhang K, Chen X, Yang L, Zhu S, Wei
Y, Xie Z, Chen Y and Shang C: GPX2 is a potential therapeutic
target to induce cell apoptosis in lenvatinib against
hepatocellular carcinoma. J Adv Res. 44:173–183. 2023.PubMed/NCBI View Article : Google Scholar
|
29
|
Ye J, Qi L, Liang J, Zong K, Liu W, Li R,
Feng R and Zhai W: Lenvatinib induces anticancer activity in
gallbladder cancer by targeting AKT. J Cancer. 12:3548–3557.
2021.PubMed/NCBI View Article : Google Scholar
|
30
|
Almeida VM, Bezerra MA Jr, Nascimento JC
and Amorim LMF: Anticancer drug screening: Standardization of in
vitro wound healing assay. J Bras Patol Med Lab. 55:606–619.
2019.
|
31
|
Yu Z, Lou L and Zhao Y: Fibroblast growth
factor 18 promotes the growth, migration and invasion of MDA-MB-231
cells. Oncol Rep. 40:704–714. 2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Razak NA, Abu N, Ho WY, Zamberi NR, Tan
SW, Alitheen NB, Long K and Yeap SK: Cytotoxicity of eupatorin in
MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle
arrest, anti-angiogenesis and induction of apoptosis. Sci Rep.
9(1514)2019.PubMed/NCBI View Article : Google Scholar
|
33
|
Yin L, Gupta R, Vaught L, Grosche A,
Okunieff P and Vidyasagar S: An amino acid-based oral rehydration
solution (AA-ORS) enhanced intestinal epithelial proliferation in
mice exposed to radiation. Sci Rep. 6(37220)2016.PubMed/NCBI View Article : Google Scholar
|
34
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
35
|
Willebrand R, Hamad I, Van Zeebroeck L,
Kiss M, Bruderek K, Geuzens A, Swinnen D, Côrte-Real BF, Markó L,
Lebegge E, et al: High salt inhibits tumor growth by enhancing
anti-tumor immunity. Front Immunol. 10(1141)2019.PubMed/NCBI View Article : Google Scholar
|
36
|
Li T, Liu T, Zhu W, Xie S, Zhao Z, Feng B,
Guo H and Yang R: Targeting MDSC for immune-checkpoint blockade in
cancer immunotherapy: Current progress and new prospects. Clin Med
Insights Oncol. 15(11795549211035540)2021.PubMed/NCBI View Article : Google Scholar
|
37
|
Zhao Y, Du J and Shen X: Targeting
myeloid-derived suppressor cells in tumor immunotherapy: Current,
future and beyond. Front Immunol. 14(1157537)2023.PubMed/NCBI View Article : Google Scholar
|
38
|
He W, Xu J, Mu R, Li Q, Lv DL, Huang Z,
Zhang J, Wang C and Dong L: High-salt diet inhibits tumour growth
in mice via regulating myeloid-derived suppressor cell
differentiation. Nat Commun. 11(1732)2020.PubMed/NCBI View Article : Google Scholar
|
39
|
Petersen MC and Greene AS: Inhibition of
angiogenesis by high salt diet is associated with impaired muscle
performance following chronic muscle stimulation. Microcirculation.
15:405–416. 2008.PubMed/NCBI View Article : Google Scholar
|
40
|
Lankhorst S, Severs D, Markó L, Rakova N,
Titze J, Müller DN, Danser AHJ and van den Meiracker AH: Salt
sensitivity of angiogenesis inhibition-induced blood pressure rise:
Role of interstitial sodium accumulation? Hypertension. 69:919–926.
2017.PubMed/NCBI View Article : Google Scholar
|
41
|
Burbridge MF, West DC, Atassi G and Tucker
GC: The effect of extracellular pH on angiogenesis in vitro.
Angiogenesis. 3:281–288. 1999.PubMed/NCBI View Article : Google Scholar
|
42
|
Loges S, Schmidt T and Carmeliet P:
Mechanisms of resistance to anti-angiogenic therapy and development
of third-generation anti-angiogenic drug candidates. Genes Cancer.
1:12–25. 2010.PubMed/NCBI View Article : Google Scholar
|
43
|
Chen D, Walsh K and Wang J: Regulation of
cdk2 activity in endothelial cells that are inhibited from growth
by cell contact. Arterioscler Thromb Vasc Biol. 20:629–635.
2000.PubMed/NCBI View Article : Google Scholar
|
44
|
Vleugel MM, Greijer AE, Bos R, van der
Wall E and van Diest PJ: c-Jun activation is associated with
proliferation and angiogenesis in invasive breast cancer. Hum
Pathol. 37:668–674. 2006.PubMed/NCBI View Article : Google Scholar
|
45
|
Vanauberg D, Schulz C and Lefebvre T:
Involvement of the pro-oncogenic enzyme fatty acid synthase in the
hallmarks of cancer: A promising target in anti-cancer therapies.
Oncogenesis. 12(16)2023.PubMed/NCBI View Article : Google Scholar
|
46
|
Hsu SF, Lee YB, Lee YC, Chung AL, Apaya
MK, Shyur LF, Cheng CF, Ho FM and Meng TC: Dual specificity
phosphatase DUSP6 promotes endothelial inflammation through
inducible expression of ICAM-1. FEBS J. 285:1593–1610.
2018.PubMed/NCBI View Article : Google Scholar
|
47
|
Ran R, Lu A, Zhang L, Tang Y, Zhu H, Xu H,
Feng Y, Han C, Zhou G and Sharp FR: Hsp70 promotes TNF-mediated
apoptosis by binding IKK gamma and impairing NF-kappa B survival
signaling. Genes Dev. 18:1466–1481. 2004.PubMed/NCBI View Article : Google Scholar
|
48
|
Hammond CM, Bao H, Hendriks IA, Carraro M,
Garcia-Nieto A, Liu Y, Reverón-Gómez N, Spanos C, Chen L,
Rappsilber J, et al: DNAJC9 integrates heat shock molecular
chaperones into the histone chaperone network. Mol Cell.
81:2533–2548.e9. 2021.PubMed/NCBI View Article : Google Scholar
|
49
|
Ward C, Meehan J, Gray ME, Murray AF,
Argyle DJ, Kunkler IH and Langdon SP: The impact of tumour pH on
cancer progression: strategies for clinical intervention. Explor
Target Antitumor Ther. 1:71–100. 2020.PubMed/NCBI View Article : Google Scholar
|
50
|
Swietach P, Hulikova A, Vaughan-Jones RD
and Harris AL: New insights into the physiological role of carbonic
anhydrase IX in tumour pH regulation. Oncogene. 29:6509–6521.
2010.PubMed/NCBI View Article : Google Scholar
|
51
|
McIntyre A, Patiar S, Wigfield S, Li JL,
Ledaki I, Turley H, Leek R, Snell C, Gatter K, Sly WS, et al:
Carbonic anhydrase IX promotes tumor growth and necrosis in vivo
and inhibition enhances anti-VEGF therapy. Clin Cancer Res.
18:3100–3111. 2012.PubMed/NCBI View Article : Google Scholar
|
52
|
Neri D and Supuran CT: Interfering with pH
regulation in tumours as a therapeutic strategy. Nat Rev Drug
Discov. 10:767–777. 2011.PubMed/NCBI View Article : Google Scholar
|
53
|
Parks SK, Chiche J and Pouysségur J:
Disrupting proton dynamics and energy metabolism for cancer
therapy. Nat Rev Cancer. 13:611–623. 2013.PubMed/NCBI View Article : Google Scholar
|
54
|
Faes S, Duval AP, Planche A, Uldry E,
Santoro T, Pythoud C, Stehle JC, Horlbeck J, Letovanec I, Riggi N,
et al: Acidic tumor microenvironment abrogates the efficacy of
mTORC1 inhibitors. Mol Cancer. 15(78)2016.PubMed/NCBI View Article : Google Scholar
|