Beyond brittle bones: Genetic mechanisms underlying osteogenesis imperfecta (Review)
- Authors:
- Hammal Khan
- Zaheer Ahmed
- Muhammad Umair
-
Affiliations: Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan, Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh 11481, Kingdom of Saudi Arabia - Published online on: October 7, 2024 https://doi.org/10.3892/wasj.2024.284
- Article Number: 69
-
Copyright : © Khan et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Roughley PJ, Rauch F and Glorieux FH: Osteogenesis Imperfecta-clinical and molecular diversity. Eur Cell Mater. 5:41–47. 2003.PubMed/NCBI View Article : Google Scholar | |
Cheung MS and Glorieux FH: Osteogenesis imperfecta: Update on presentation and management. Rev Endocr Metab Disord. 9:153–160. 2008.PubMed/NCBI View Article : Google Scholar | |
Panzaru MC, Florea A, Caba L and Gorduza EV: Classification of osteogenesis imperfecta: Importance for prophylaxis and genetic counseling. World J Clin Cases Apr. 11:2604–2620. 2023.PubMed/NCBI View Article : Google Scholar | |
Kuivaniemi H, Tromp G and Prockop DJ: Mutations in fibrillar collagens (types I, II, III, and XI), fibril-associated collagen (type IX), and Network-forming collagen (type X) cause a spectrum of diseases of bone, cartilage, and blood vessels. Hum Mut. 9:300–315. 1997.PubMed/NCBI View Article : Google Scholar | |
Glorieux FH: Osteogenesis imperfecta. Best Pract Res Clin Rheumatol. 22:85–100. 2008.PubMed/NCBI View Article : Google Scholar | |
Carter EM and Raggio CL: Genetic and orthopedic aspects of collagen disorders. Curr Opin Pediatr. 21:46–54. 2009.PubMed/NCBI View Article : Google Scholar | |
Hulmes DJS: Collagen diversity, synthesis and assembly. In Collagen. Springer London: 15-47, 2008. | |
Forlino A, Cabral WA, Barnes AM and Marini JC: New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol. 7:540–557. 2011.PubMed/NCBI View Article : Google Scholar | |
Sillence DO, Senn A and Danks DM: Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 16:101–116. 1979.PubMed/NCBI View Article : Google Scholar | |
Sam JE and Dharmalingam M: Osteogenesis Imperfecta. Indian J Endocrinol Metab. 21:903–908. 2017.PubMed/NCBI View Article : Google Scholar | |
Swinnen FK, Coucke PJ, De Paepe AM, Symoens S, Malfait F, Gentile FV, Sangiorgi L, D'Eufemia P, Celli M, Garretsen TJ, et al: Osteogenesis imperfecta: The audiological phenotype lacks correlation with the genotype. Orphanet J Rare Dis. 6(88)2011.PubMed/NCBI View Article : Google Scholar | |
Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, Hyland JC, Körkkö J, Prockop DJ, De Paepe A, et al: Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: Regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat. 28:209–221. 2007.PubMed/NCBI View Article : Google Scholar | |
van Dijk FS, Huizer M, Kariminejad A, Marcelis CL, Plomp AS, Terhal PA, Meijers-Heijboer H, Weiss MM, van Rijn RR, Cobben JM and Pals G: Complete COL1A1 allele deletions in osteogenesis imperfecta. Genet Med. 12:736–741. 2010.PubMed/NCBI View Article : Google Scholar | |
Sillence DO, Barlow KK, Garber AP, Hall JG and Rimoin DL: Osteogenesis imperfect type II delineation of the phenotype with reference to genetic heterogeneity. Am J Med Genet. 17:407–423. 1984.PubMed/NCBI View Article : Google Scholar | |
Yuan J, Li S, Xu Y and Cong L: Clinical application of antenatal genetic diagnosis of osteogenesis imperfecta type IV. Med Sci Monit. 21:964–969. 2015.PubMed/NCBI View Article : Google Scholar | |
Glorieux FH, Rauch F, Plotkin H, Ward L, Travers R, Roughley P, Lalic L, Glorieux DF, Fassier F and Bishop NJ: Type V osteogenesis imperfecta: A new form of brittle bone disease. J Bone Miner Res. 15:1650–1658. 2000.PubMed/NCBI View Article : Google Scholar | |
Marini JC and Blisset AR: New genes in bone development: What's new in osteogenesis imperfecta. J Clin Endocrinol Metab. 98:3095–3103. 2013.PubMed/NCBI View Article : Google Scholar | |
Cho TJ, Lee KE, Lee SK, Song SJ, Kim KJ, Jeon D, Lee G, Kim HN, Lee HR, Eom HH, et al: A single recurrent mutation in 5-UTR of IFITM5 causes osteogenesis imperfecta type V. Am J Hum Genet. 91:343–348. 2012.PubMed/NCBI View Article : Google Scholar | |
Becker J, Selmer O, Gilissen C, Li Y, Bolz HJ and Giunta C: Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 88:362–371. 2011.PubMed/NCBI View Article : Google Scholar | |
Homan EP, Rauch F, Grafe I, Lietman C, Dawson B and Bertin T: Mutations in SERPINF1 cause osteogenesis imperfecta type VI. J Bone Miner Res. 26:2798–2803. 2011.PubMed/NCBI View Article : Google Scholar | |
Jin Z, Burrage LC, Jiang MM, Lee YC, Bertin T and Chen Y: Whole exome sequencing identifies an intronic cryptic splice site in SERPINF1 causing osteogenesis imperfecta type VI. J Bone Min Res Plus. 2:235–239. 2018.PubMed/NCBI View Article : Google Scholar | |
Glorieux FH, Ward LM, Rauch F, Lalic L, Roughley PJ and Travers R: Osteogenesis imperfecta type VI: A form of brittle bone disease with a mineralization defect. J Bone Miner Res. 17:30–38. 2002.PubMed/NCBI View Article : Google Scholar | |
Barnes AM, Chang W and Morello R: Deficiency of Cartilage-associated protein in recessive lethal osteogenesis imperfecta. N Engl J Med. 355:2757–2764. 2006.PubMed/NCBI View Article : Google Scholar | |
Balasubramanian M, Pollitt RC, Chandler KE, Mughal MZ, Parker MJ and Dalton A: CRTAP mutation in a patient with Cole-carpenter syndrome. Am J Med Genet. 167:587–591. 2015.PubMed/NCBI View Article : Google Scholar | |
Ward LM, Rauch F, Travers R, Chabot G, Azouz EM, Lalic L, Roughley PJ and Glorieux FH: Osteogenesis imperfecta type VII: An autosomal recessive form of brittle bone disease. Bone. 31:12–18. 2002.PubMed/NCBI View Article : Google Scholar | |
Cabral WA, Chang W, Barnes AM, Weis M, Scott MA, Leikin S, Makareeva E, Kuznetsova NV, Rosenbaum KN, Tifft CJ, et al: Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet. 39:359–365. 2007.PubMed/NCBI View Article : Google Scholar | |
Peddada LB, Mc-Pherson JD, Law R, Wasmuth JJ, Youderian P and Deans RJ: Somatic cell mapping of the human cyclophilin B gene (PPIB) to chromosome 15. Cytogenet Cell Genet. 60:219–221. 1992.PubMed/NCBI View Article : Google Scholar | |
Price ER, Zydowsky LD, Jin M, Baker CH, McKeon FD and Walsh CT: Human cyclophilin B: A second cyclophilin gene encodes a Peptidyl-prolyl isomerase with a signal sequence. Proc Nat Acad Sci. 88:1903–1907. 1991.PubMed/NCBI View Article : Google Scholar | |
Yao Q, Li M, Yang H, Chai H, Fisher W and Chen C: Roles of cyclophilins in cancers and other organ systems. World J Surg. 29:276–280. 2005.PubMed/NCBI View Article : Google Scholar | |
Willaert A, Malfait F, Symoens S, Gevaert K, Kayserili H, Megarbane A, Mortier G, Leroy JG, Coucke PJ and De Paepe A: Recessive osteogenesis imperfecta caused by LEPRE1 mutations: Clinical documentation and identification of the splice form responsible for prolyl 3-hydroxylation. J Med Genet. 46:233–241. 2009.PubMed/NCBI View Article : Google Scholar | |
Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L and Monticone M: CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell. 127:291–304. 2006.PubMed/NCBI View Article : Google Scholar | |
Christiansen HE, Schwarze U, Pyott SM, Al Swaid A, Al Balwi M and Alrasheed S: Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet. 86:389–398. 2010.PubMed/NCBI View Article : Google Scholar | |
Breslau-Siderius EJ, Engelbert RH, Pals G and van der Sluijs JA: Bruck syndrome: A rare combination of bone fragility and multiple congenital joint contractures. J Pediatr Orthop B. 7:35–38. 1998.PubMed/NCBI | |
Patterson CE, Gao J, Rooney AP and Davis EC: Genomic organization of mouse and human 65 kDa FK506-binding protein genes and evolution of the FKBP multigene family. Genomics. 79:881–889. 2002.PubMed/NCBI View Article : Google Scholar | |
Shaheen R, Alazami AM, Alshammari MJ, Faqeih E, Alhashmi N, Mousa N, Alsinani A, Ansari S, Alzahrani F, Al-Owain M, et al: Study of autosomal recessive osteogenesis imperfecta in Arabia reveals a novel locus defined by TMEM38B mutation. J Med Genet. 49:630–635. 2012.PubMed/NCBI View Article : Google Scholar | |
Alanay Y, Avaygan H, Camacho N, Utine GE, Boduroglu K, Aktas D, Alikasifoglu M, Tuncbilek E, Orhan D, Bakar FT, et al: Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 86:551–559. 2010.PubMed/NCBI View Article : Google Scholar | |
Kelley BP, Malfait F, Bonafe L, Baldridge D, Homan E, Symoens S, Willaert A, Elcioglu N, Van Maldergem L, Verellen-Dumoulin C, et al: Mutations in FKBP10 cause recessive osteogenesis imperfecta and Bruck syndrome. J Bone Miner Res. 26:666–672. 2011.PubMed/NCBI View Article : Google Scholar | |
Umair M, Hassan A, Jan A, Ahmad F, Imran M, Samman MI, Basit S and Ahmad W: Homozygous sequence variants in the FKBP10 gene underlie osteogenesis imperfecta in consanguineous families. J Hum Genet. 61:207–213. 2016.PubMed/NCBI View Article : Google Scholar | |
Fiscaletti M, Biggin A, Bennetts B, Wong K, Briody J, Pacey V, Birman C and Munns CF: Novel variant in Sp7/Osx associated with recessive osteogenesis imperfecta with bone fragility and hearing impairment. Bone. 110:66–75. 2018.PubMed/NCBI View Article : Google Scholar | |
Ludwig K, Ward LM, Khan N, Robinson ME, Miranda V, Bardai G, Moffatt P and Rauch F: Dominant osteogenesis imperfecta with low bone turnover caused by a heterozygous SP7 variant. Bone. 160(116400)2022.PubMed/NCBI View Article : Google Scholar | |
Lapunzina P, Aglan M, Temtamy S, Caparrós-Martín JA, Valencia M, Letón R, Martínez-Glez V, Elhossini R, Amr K, Vilaboa N and Ruiz-Perez VL: Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. Am J Hum Genet. 87:110–114. 2010.PubMed/NCBI View Article : Google Scholar | |
Martínez-Glez V, Valencia M, Caparrós-Martín JA, Aglan M, Temtamy S, Tenorio J, Pulido V, Lindert U, Rohrbach M, Eyre D, et al: Identification of a mutation causing deficient BMP1/mTLD proteolytic activity in autosomal recessive osteogenesis imperfecta. Hum Mutat. 33:343–350. 2012.PubMed/NCBI View Article : Google Scholar | |
Fahiminiya S, Majewski J, Mort J, Moffatt P, Glorieux FH and Rauch F: Mutations in WNT1 are a cause of osteogenesis imperfecta. J Med Genet. 50:345–348. 2013.PubMed/NCBI View Article : Google Scholar | |
Keupp K, Beleggia F, Kayserili H, Barnes AM, Steiner M, Semler O, Fischer B, Yigit G, Janda CY, Becker J, et al: Mutations in WNT1 cause different forms of bone fragility. Am J Hum Genet. 92:565–574. 2013.PubMed/NCBI View Article : Google Scholar | |
Umair M, Alhaddad B, Rafique A, Jan A, Haack TB, Graf E, Ullah A, Ahmad F, Strom TM, Meitinger T and Ahmad W: Exome sequencing reveals a novel homozygous splice site variant in the WNT1 gene underlying osteogenesis imperfecta type 3. Pediatr Res. 82:753–758. 2017.PubMed/NCBI View Article : Google Scholar | |
Laine CM, Joeng KS, Campeau PM, Kiviranta R, Tarkkonen K, Grover M, Lu JT, Pekkinen M, Wessman M, Heino TJ, et al: WNT1 mutations in Early-onset osteoporosis and osteogenesis imperfecta. N Engl J Med. 368:1809–1816. 2013.PubMed/NCBI View Article : Google Scholar | |
Symoens S, Malfait F, D'hondt S, Callewaert B, Dheedene A, Steyaert W, Bächinger HP, De Paepe A, Kayserili H, Coucke PJ, et al: Deficiency for the ER-stress transducer OASIS causes severe recessive osteogenesis imperfecta in humans. Orphanet J Rare Dis. 8(154)2013.PubMed/NCBI View Article : Google Scholar | |
Mellor P, Deibert L, Calvert B, Bonham K, Carlsen SA and Anderson DH: CREB3L1 is a metastasis suppressor that represses expression of genes regulating metastasis, invasion, and angiogenesis. Mol Cell Biol. 33:4985–4995. 2013.PubMed/NCBI View Article : Google Scholar | |
Villarreal XC, Mann KG and Long GL: Structure of human osteonectin based upon analysis of cDNA and genomic sequences. Biochemistry. 28:6483–6491. 1989.PubMed/NCBI View Article : Google Scholar | |
Bradshaw AD, Graves DC, Motamed K and Sage EH: SPARC-null mice exhibit increased adiposity without significant differences in overall body weight. Proc Natl Acad Sci USA. 100:6045–6050. 2003.PubMed/NCBI View Article : Google Scholar | |
Mendoza-Londono R, Fahiminiya S and Majewski J: Care4Rare Canada Consortium. Tétreault M, Nadaf J, Kannu P, Sochett E, Howard A, Stimec J, et al: Recessive osteogenesis imperfecta caused by missense mutations in SPARC. Am J Hum Genet. 96:979–985. 2015.PubMed/NCBI View Article : Google Scholar | |
Doyard M, Bacrot S, Huber C, Di Rocco M, Goldenberg A, Aglan MS, Brunelle P, Temtamy S, Michot C, Otaify GA, et al: FAM46A mutations are responsible for autosomal recessive osteogenesis imperfecta. J Med Genet. 55:278–284. 2018.PubMed/NCBI View Article : Google Scholar | |
Lindert U, Cabral WA, Ausavarat S, Tongkobpetch S, Ludin K, Barnes AM, Yeetong P, Weis M, Krabichler B, Srichomthong C, et al: MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta. Nat Commun. 7(11920)2016.PubMed/NCBI View Article : Google Scholar | |
Moosa S, Yamamoto GL, Garbes L, Keupp K, Beleza-Meireles A, Moreno CA, Valadares ER, de Sousa SB, Maia S, Saraiva J, et al: Autosomal-recessive mutations in MESD cause osteogenesis imperfecta. Am J Hum Genet. 105:836–843. 2019.PubMed/NCBI View Article : Google Scholar | |
van Dijk FS, Semler O, Etich J, Köhler A, Jimenez-Estrada JA, Bravenboer N, Claeys L, Riesebos E, Gegic S, Piersma SR, et al: Interaction between KDELR2 and HSP47 as a Key determinant in osteogenesis imperfecta caused by Bi-allelic variants in KDELR2. Am J Hum Genet. 107:989–999. 2020.PubMed/NCBI View Article : Google Scholar | |
Efthymiou S, Herman I, Rahman F, Anwar N, Maroofian R, Yip J, Mitani T, Calame DG, Hunter JV, Sutton VR, et al: Two novel bi-allelic KDELR2 missense variants cause osteogenesis imperfecta with neurodevelopmental features. Am J Med Genet A. 185:2241–2249. 2021.PubMed/NCBI View Article : Google Scholar | |
Ruggiero C, Fragassi G, Grossi M, Picciani B, Di Martino R, Capitani M, Buccione R, Luini A and Sallese M: A Golgi-based KDELR-dependent signalling pathway controls extracellular matrix degradation. Oncotarget. 6:3375–3393. 2015.PubMed/NCBI View Article : Google Scholar | |
Dubail J, Brunelle P, Baujat G, Huber C, Doyard M, Michot C, Chavassieux P, Khairouni A, Topouchian V, Monnot S, et al: Homozygous Loss-of-function mutations in CCDC134 are responsible for a severe form of osteogenesis imperfecta. J Bone Miner Res. 35:1470–1480. 2020.PubMed/NCBI View Article : Google Scholar | |
Ali TM, Linnenkamp BDW, Yamamoto GL, Honjo RS, Cabral de Menezes Filho H, Kim CA and Bertola DR: The recurrent homozygous translation start site variant in CCDC134 in an individual with severe osteogenesis imperfecta of non-Morrocan ancestry. Am J Med Genet A. 188:1545–1549. 2022.PubMed/NCBI View Article : Google Scholar | |
Huang J, Shi T, Ma T, Zhang Y, Ma X, Lu Y, Song Q, Liu W, Ma D and Qiu X: CCDC134, a novel secretory protein, inhibits activation of ERK and JNK, but not p38 MAPK. Cell Mol Life Sci. 65:338–349. 2008.PubMed/NCBI View Article : Google Scholar | |
Tuysuz B, Uludag Alkaya D, Geyik F, Alaylıoğlu M, Kasap B, Kurugoğlu S, Akman YE, Vural M and Bilguvar K: Biallelic frameshift variants in PHLDB1 cause mild-type osteogenesis imperfecta with regressive spondylometaphyseal changes. J Med Genet. 60:819–826. 2023.PubMed/NCBI View Article : Google Scholar | |
Hu J, Li LJ, Zheng WB, Zhao DC, Wang O, Jiang Y, Xing XP, Li M and Xia W: A novel mutation in PLS3 causes extremely rare X-linked osteogenesis imperfecta. Mol Genet Genomic Med. 8(e1525)2020.PubMed/NCBI View Article : Google Scholar | |
Brlek P, Antičević D, Molnar V, Matišić V, Robinson K, Aradhya S, Krpan D and Primorac D: X-Linked osteogenesis imperfecta possibly caused by a novel variant in PLS3. Genes (Basel). 12(1851)2021.PubMed/NCBI View Article : Google Scholar | |
Umair M, Ahmad F, Bilal M and Abbas S: Syndactyly genes and classification: A mini review. JBCGenetics. 1:10–18. 2018. | |
Alyafee Y, Al Tuwaijri A, Alam Q, Umair M, Haddad S, Alharbi M, Ballow M, Al Drees M, AlAbdulrahman A, Al Khaldi A and Alfadhel M: Next generation sequencing based Non-invasive prenatal testing (NIPT): First report from Saudi Arabia. Front. Genet. 12(630787)2021.PubMed/NCBI View Article : Google Scholar | |
Alyafee Y, Al Tuwaijri A, Umair M, Alharbi M, Haddad S, Ballow M, Alayyar L, Alam Q, Althenayyan S, Al Ghilan N, et al: Non-invasive prenatal testing for autosomal recessive disorders: A new promising approach. Front Genet. 13(1047474)2022.PubMed/NCBI View Article : Google Scholar | |
Umair M, Younus M, Shafiq S, Nayab A and Alfadhel M: Clinical genetics of spondylocostal dysostosis: A mini review. Front Genet. 13(996364)2022.PubMed/NCBI View Article : Google Scholar | |
Gutta R and Louis PJ: Bisphosphonates and osteonecrosis of the jaws: Science and rationale. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 104:186–193. 2007.PubMed/NCBI View Article : Google Scholar | |
Gatti AA, Keir PJ, Noseworthy MD and Maly MR: Investigating acute changes in osteoarthritic cartilage by integrating biomechanics and statistical shape models of bone: Data from the osteoarthritis initiative. MAGMA. 35:861–873. 2022.PubMed/NCBI View Article : Google Scholar | |
Nijhuis W, Verhoef M, van Bergen C, Weinans H and Sakkers R: Fractures in osteogenesis imperfecta: Pathogenesis, treatment, rehabilitation and prevention. Children (Basel). 9(268)2022.PubMed/NCBI View Article : Google Scholar | |
Rogers MJ, Watts DJ and Russell RG: Overview of bisphosphonates. Cancer. 80 (Suppl 8):S1652–S1660. 1997.PubMed/NCBI View Article : Google Scholar | |
Schindeler A, Lee LR, O'Donohue AK, Ginn SL and Munns CF: Curative cell and gene therapy for osteogenesis imperfecta. J Bone Miner Res. 37:826–836. 2022.PubMed/NCBI View Article : Google Scholar | |
Xu H, Wang W, Liu X, Huang W, Zhu C, Xu Y, Yang H, Bai J and Geng D: Targeting strategies for bone diseases: Signaling pathways and clinical studies. Signal Transduct Target Ther. 8(202)2023.PubMed/NCBI View Article : Google Scholar | |
Berti S, Luppi E, Seri M and Zavatta G: A New COL1A1 mutation associated with type I osteogenesis imperfecta: Treatment options for a woman of childbearing age. JCEM Case Rep. 1(luad096)2023.PubMed/NCBI View Article : Google Scholar | |
Matsushiro M, Harada D, Ueyama K, Kashiwagi H, Ishiura Y, Yamada H and Seino Y: Intracranial aneurysm as a possible complication of osteogenesis imperfecta: A case series and literature review. Endocr J. 70:697–702. 2023.PubMed/NCBI View Article : Google Scholar |