Molecular mechanisms of zinc in alleviating obesity: Recent updates (Review)
- Authors:
- Ratih Dewi Yudhani
- Dyonisa Nasirochmi Pakha
- Nanang Wiyono
- Brian Wasita
-
Affiliations: Department of Pharmacology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java 57126, Indonesia, Department of Anatomy, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java 57126, Indonesia, Department of Anatomical Pathology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java 57126, Indonesia - Published online on: October 8, 2024 https://doi.org/10.3892/wasj.2024.285
- Article Number: 70
-
Copyright : © Yudhani et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Kelly T, Yang W, Chen CS, Reynolds K and He J: Global burden of obesity in 2005 and projections to 2030. Int J Obesity. 32:1431–1437. 2008.PubMed/NCBI View Article : Google Scholar | |
Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, Singh GM, Gutierrez HR, Lu Y, Bahalim AN, et al: National, regional, and global trends in body-mass index since 1980: Systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet. 377:557–567. 2011.PubMed/NCBI View Article : Google Scholar | |
de Oliveira S, Feijó GDS, Neto J, Jantsch J, Braga MF, Castro LFDS, Giovenardi M, Porawski M and Guedes RP: Zinc supplementation decreases obesity-related neuroinflammation and improves metabolic function and memory in rats. Obesity (Silver Spring). 29:116–124. 2021.PubMed/NCBI View Article : Google Scholar | |
Murphy L, Schwartz TA, Helmick CG, Renner JB, Tudor G, Koch G, Dragomir A, Kalsbeek WD, Luta G and Jordan JM: Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum. 59:1207–1213. 2008.PubMed/NCBI View Article : Google Scholar | |
Nedunchezhiyan U, Varughese I, Sun AR, Wu X, Crawford R and Prasadam I: Obesity, inflammation, and immune system in osteoarthritis. Front Immunol. 13(907750)2022.PubMed/NCBI View Article : Google Scholar | |
Hashimoto K and Akagi M: The role of oxidation of low-density lipids in pathogenesis of osteoarthritis: A narrative review. J Int Med Res. 48(300060520931609)2020.PubMed/NCBI View Article : Google Scholar | |
Abdali D, Samson SE and Grover AK: How effective are antioxidant supplements in obesity and diabetes? Med Princ Pract. 24:201–215. 2015.PubMed/NCBI View Article : Google Scholar | |
Reilly JJ and Kelly J: Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: Systematic review. Int J Obes (Lond). 35:891–898. 2011.PubMed/NCBI View Article : Google Scholar | |
Abdollahi S, Toupchian O, Jayedi A, Meyre D, Tam V and Soltani S: Zinc supplementation and body weight: A systematic review and dose-response Meta-analysis of randomized controlled trials. Adv Nutr. 11:398–411. 2020.PubMed/NCBI View Article : Google Scholar | |
Rios-Lugo MJ, Madrigal-Arellano C, Gaytán-Hernández D, Hernández-Mendoza H and Romero-Guzmán ET: Association of serum zinc levels in overweight and obesity. Biol Trace Elem Res. 198:51–57. 2020.PubMed/NCBI View Article : Google Scholar | |
Gunanti IR, Al-Mamun A, Schubert L and Long KZ: The effect of zinc supplementation on body composition and hormone levels related to adiposity among children: A systematic review. Public Health Nutr. 19:2924–2939. 2016.PubMed/NCBI View Article : Google Scholar | |
Costarelli L, Muti E, Malavolta M, Cipriano C, Giacconi R, Tesei S, Piacenza F, Pierpaoli S, Gasparini N, Faloia E, et al: Distinctive modulation of inflammatory and metabolic parameters in relation to zinc nutritional status in adult overweight/obese subjects. J Nutr Biochem. 21:432–437. 2010.PubMed/NCBI View Article : Google Scholar | |
Thoen RU, Barther NN, Schemitt E, Bona S, Fernandes S, Coral G, Marroni NP, Tovo C, Guedes RP and Porawski M: Zinc supplementation reduces diet-induced obesity and improves insulin sensitivity in rats. Appl Physiol Nutr Metab. 44:580–586. 2019.PubMed/NCBI View Article : Google Scholar | |
Payahoo L, Ostadrahimi A, Mobasseri M, Khaje Bishak Y, Farrin N, Asghari Jafarabadi M and Mahluji S: Effects of zinc supplementation on the anthropometric measurements, lipid profiles and fasting blood glucose in the healthy obese adults. Adv Pharm Bull. 3:161–165. 2013.PubMed/NCBI View Article : Google Scholar | |
Khorsandi H, Nikpayam O, Yousefi R, Parandoosh M, Hosseinzadeh N, Saidpour A and Ghorbani A: Zinc supplementation improves body weight management, inflammatory biomarkers and insulin resistance in individuals with obesity: A randomized, placebo-controlled, double-blind trial. Diabetol Metab Syndr. 11(101)2019.PubMed/NCBI View Article : Google Scholar | |
Fukunaka A and Fujitani Y: Role of zinc homeostasis in the pathogenesis of diabetes and obesity. Int J Mol Sci. 19(476)2018.PubMed/NCBI View Article : Google Scholar | |
Franco C and Canzoniero LMT: Zinc homeostasis and redox alterations in obesity. Front Endocrinol (Lausanne). 14(1273177)2023.PubMed/NCBI View Article : Google Scholar | |
Wen X, Zhang B, Wu B, Xiao H, Li Z, Li R, Xu X and Li T: Signaling pathways in obesity: Mechanisms and therapeutic interventions. Signal Transduct Target Ther. 7(298)2022.PubMed/NCBI View Article : Google Scholar | |
Monsalve FA, Pyarasani RD, Delgado-Lopez F and Moore-Carrasco R: Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Mediators Inflamm. 2013(549627)2013.PubMed/NCBI View Article : Google Scholar | |
Severo JS, Morais JBS, Beserra JB, Dos Santos LR, de Sousa Melo SR, de Sousa GS, de Matos Neto EM, Henriques GS and do Nascimento Marreiro D: Role of Zinc in Zinc-α2-glycoprotein metabolism in obesity: A review of literature. Biol Trace Elem Res. 193:81–88. 2020.PubMed/NCBI View Article : Google Scholar | |
Bao B, Prasad AS, Beck FW, Fitzgerald JT, Snell D, Bao GW, Singh T and Cardozo LJ: Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: A potential implication of zinc as an atheroprotective agent. Am J Clin Nutr. 91:1634–1641. 2010.PubMed/NCBI View Article : Google Scholar | |
Olechnowicz J, Tinkov A, Skalny A and Suliburska J: Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci. 68:19–31. 2018.PubMed/NCBI View Article : Google Scholar | |
Bays HE, Toth PP, Kris-Etherton PM, Abate N, Aronne LJ, Brown WV, Gonzalez-Campoy JM, Jones SR, Kumar R, La Forge R and Samuel VT: Obesity, adiposity, and dyslipidemia: A consensus statement from the National Lipid Association. J Clin Lipidol. 7:304–383. 2013.PubMed/NCBI View Article : Google Scholar | |
Feingold KR: Obesity and Dyslipidemia: In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext [Internet]. South Dartmouth (MA), MDText.com, Inc., 2000 [updated 2023 Jun 19. Available from: https://www.ncbi.nlm.nih.gov/books/NBK305895/. | |
Klop B, Elte JW and Cabezas MC: Dyslipidemia in obesity: Mechanisms and potential targets. Nutrients. 5:1218–1240. 2013.PubMed/NCBI View Article : Google Scholar | |
Jacome-Sosa MM and Parks EJ: Fatty acid sources and their fluxes as they contribute to plasma triglyceride concentrations and fatty liver in humans. Curr Opin Lipidol. 25:213–220. 2014.PubMed/NCBI View Article : Google Scholar | |
Li S, Brown MS and Goldstein JL: Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc Natl Acad Sci USA. 107:3441–3446. 2010.PubMed/NCBI View Article : Google Scholar | |
Yu YH and Ginsberg HN: Adipocyte signaling and lipid homeostasis: Sequelae of insulin-resistant adipose tissue. Circ Res. 96:1042–1052. 2005.PubMed/NCBI View Article : Google Scholar | |
Franssen R, Monajemi H, Stroes ESG and Kastelein JJP: Obesity and Dyslipidemia. Endocrinol Metab Clin North Am. 37:623–633. 2008.PubMed/NCBI View Article : Google Scholar | |
Mangaraj M, Nanda R and Panda S: Apolipoprotein A-I: A molecule of diverse function. Indian J Clin Biochem. 31:253–259. 2016.PubMed/NCBI View Article : Google Scholar | |
Björnson E, Adiels M, Taskinen MR and Borén J: Kinetics of plasma triglycerides in abdominal obesity. Curr Opin Lipidol. 28:11–18. 2017.PubMed/NCBI View Article : Google Scholar | |
Kohan AB: Apolipoprotein C-III: A potent modulator of hypertriglyceridemia and cardiovascular disease. Curr Opin Endocrinol Diabetes Obes. 22:119–125. 2015.PubMed/NCBI View Article : Google Scholar | |
Christou GA and Kiortsis DN: Adiponectin and lipoprotein metabolism. Obesity Rev. 14:939–949. 2013.PubMed/NCBI View Article : Google Scholar | |
Rashid S and Kastelein JJ: PCSK9 and resistin at the crossroads of the atherogenic dyslipidemia. Expert Rev Cardiovasc Ther. 11:1567–1577. 2013.PubMed/NCBI View Article : Google Scholar | |
Ranasinghe P, Wathurapatha WS, Ishara MH, Jayawardana R, Galappatthy P, Katulanda P and Constantine GR: Effects of Zinc supplementation on serum lipids: A systematic review and meta-analysis. Nutr Metab (Lond). 12(26)2015.PubMed/NCBI View Article : Google Scholar | |
Braun LA, Ou R, Kure C, Trang A and Rosenfeldt F: Prevalence of zinc deficiency in cardiac surgery patients. Heart Lung Circ. 27:760–762. 2018.PubMed/NCBI View Article : Google Scholar | |
Hernández-Mendoza H, Martínez-Navarro I, Hernández-Ochoa E, Espinoza-Ruiz M, Lugo-Trampe A, Trujillo-Murillo KDC, López-García MA, Rios-Lugo MJ and Chang-Rueda C: Serum zinc levels are associated with obesity and low-density lipoprotein cholesterol in Mexican adults. J Trace Elem Med Biol. 73(127002)2022.PubMed/NCBI View Article : Google Scholar | |
Zaky DSE, Sultan EA, Salim MF and Dawod RS: Zinc level and obesity. Egyp J Internal Med. 25:209–212. 2013. | |
Laillou A, Yakes E, Le TH, Wieringa FT, Le BM, Moench-Pfanner R and Berger J: Intra-individual double burden of overweight and micronutrient deficiencies among Vietnamese women. PLoS One. 9(e110499)2014.PubMed/NCBI View Article : Google Scholar | |
Via M: The malnutrition of obesity: Micronutrient deficiencies that promote diabetes. ISRN Endocrinol. 2012(103472)2012.PubMed/NCBI View Article : Google Scholar | |
de Vargas LDS, Jantsch J, Fontoura JR, Dorneles GP, Peres A and Guedes RP: Effects of zinc supplementation on inflammatory and cognitive parameters in middle-aged women with overweight or obesity. Nutrients. 15(4396)2023.PubMed/NCBI View Article : Google Scholar | |
Friedman JM: Leptin and the endocrine control of energy balance. Nat Metab. 1:754–764. 2019.PubMed/NCBI View Article : Google Scholar | |
Briggs DB, Giron RM, Schnittker K, Hart MV, Park CK, Hausrath AC and Tsao TS: Zinc enhances adiponectin oligomerization to octadecamers but decreases the rate of disulfide bond formation. Biometals. 25:469–486. 2012.PubMed/NCBI View Article : Google Scholar | |
Asghari S, Hosseinzadeh-Attar MJ, Alipoor E, Sehat M and Mohajeri-Tehrani MR: Effects of zinc supplementation on serum adiponectin concentration and glycemic control in patients with type 2 diabetes. J Trace Elem Med Biol. 55:20–25. 2019.PubMed/NCBI View Article : Google Scholar | |
Soheylikhah S, Dehestani MR, Mohammadi SM, Afkhami-Ardekani M, Eghbali SA and Dehghan F: The effect of zinc supplementation on serum adiponectin concentration and insulin resistance in first degree relatives of diabetic patients. IJDO. 4:57–62. 2012. | |
Banaszak M, Górna I and Przysławski J: Zinc and the innovative Zinc-α2-glycoprotein Adipokine play an important role in lipid metabolism: A critical review. Nutrients. 13(2023)2021.PubMed/NCBI View Article : Google Scholar | |
Bing C, Mracek T, Gao D and Trayhurn P: Zinc-α2-glycoprotein: An adipokine modulator of body fat mass? Int J Obes (Lond). 34:1559–1565. 2010.PubMed/NCBI View Article : Google Scholar | |
Elattar S, Dimri M and Satyanarayana A: The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting. FASEB J. 32:4727–4743. 2018.PubMed/NCBI View Article : Google Scholar | |
Althaher AR: An overview of hormone-sensitive lipase (HSL). ScientificWorldJournal. 2022(1964684)2022.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Yu W, Li S, Guo D, He J and Wang Y: Acetyl-CoA carboxylases and diseases. Front Oncol. 12(836058)2022.PubMed/NCBI View Article : Google Scholar | |
Demirci Ş and Gün C: Zinc supplementation improved neuropeptide Y, Nesfatin-1, Leptin, C-reactive protein, and HOMA-IR of Diet-induced obese rats. Biol Trace Elem Res. 200:3996–4006. 2022.PubMed/NCBI View Article : Google Scholar | |
Leachman JR, Cincinelli C, Ahmed N, Dalmasso C, Xu M, Gatineau E, Nikolajczyk BS, Yiannikouris F, Hinds TD Jr and Loria AS: Early life stress exacerbates obesity in adult female mice via mineralocorticoid receptor-dependent increases in adipocyte triglyceride and glycerol content. Life Sci. 304(120718)2022.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Lin YC, Zimmerman CA, Essner RA and Knight ZA: Hunger neurons drive feeding through a sustained, positive reinforcement signal. Elife. 5(e18640)2016.PubMed/NCBI View Article : Google Scholar | |
Krashes MJ, Shah BP, Madara JC, Olson DP, Strochlic DE, Garfield AS, Vong L, Pei H, Watabe-Uchida M, Uchida N, et al: An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature. 507:238–242. 2014.PubMed/NCBI View Article : Google Scholar | |
Berrios J, Li C, Madara JC, Garfield AS, Steger JS, Krashes MJ and Lowell BB: Food cue regulation of AGRP hunger neurons guides learning. Nature. 595:695–700. 2021.PubMed/NCBI View Article : Google Scholar | |
Baver SB, Hope K, Guyot S, Bjørbaek C, Kaczorowski C and O'Connell KM: Leptin modulates the intrinsic excitability of AgRP/NPY neurons in the arcuate nucleus of the hypothalamus. J Neurosci. 34:5486–5496. 2014.PubMed/NCBI View Article : Google Scholar | |
Yu JH and Kim MS: Molecular mechanisms of appetite regulation. Diabetes Metab J. 36:391–398. 2012.PubMed/NCBI View Article : Google Scholar | |
Ye Z, Liu G, Guo J and Su Z: Hypothalamic endoplasmic reticulum stress as a key mediator of obesity-induced leptin resistance. Obes Rev. 19:770–785. 2018.PubMed/NCBI View Article : Google Scholar | |
de Git KCG, den Outer JA, Wolterink-Donselaar IG, Luijendijk MCM, Schéle E, Dickson SL and Adan RAH: Rats that are predisposed to excessive obesity show reduced (leptin-induced) thermoregulation even in the preobese state. Physiol Rep. 7(e14102)2019.PubMed/NCBI View Article : Google Scholar | |
Myers MG Jr, Heymsfield SB, Haft C, Kahn BB, Laughlin M, Leibel RL, Tschöp MH and Yanovski JA: Challenges and opportunities of defining clinical leptin resistance. Cell Metab. 15:150–156. 2012.PubMed/NCBI View Article : Google Scholar | |
Jung CH and Kim MS: Molecular mechanisms of central leptin resistance in obesity. Arch Pharm Res. 36:201–207. 2013.PubMed/NCBI View Article : Google Scholar | |
Khorshidi M, Zarezadeh M, Sadeghi A, Teymouri A, Emami MR, Kord-Varkaneh H, Aryaeian N, Rahmani J and Mousavi SM: The effect of zinc supplementation on serum leptin levels: A systematic review and meta-analysis of randomized controlled trials. Horm Metab Res. 51:503–510. 2019.PubMed/NCBI View Article : Google Scholar | |
Kwun IS, Cho YE, Lomeda RA, Kwon ST, Kim Y and Beattie JH: Marginal zinc deficiency in rats decreases leptin expression independently of food intake and corticotrophin-releasing hormone in relation to food intake. Br J Nutr. 98:485–489. 2007.PubMed/NCBI View Article : Google Scholar | |
Hasani M, Saidpour A, Irandoost P, Golab F, Khazdouz M, Qorbani M, Agh F, Mohammad Sharifi A and Vafa M: Beneficial effects of Se/Zn co-supplementation on body weight and adipose tissue inflammation in high-fat diet-induced obese rats. Food Sci Nutr. 9:3414–3425. 2021.PubMed/NCBI View Article : Google Scholar | |
Baltaci AK and Mogulkoc R: Leptin and zinc relation: In regulation of food intake and immunity. Indian J Endocrinol Metab. 16 (Suppl 3):S611–S616. 2012.PubMed/NCBI View Article : Google Scholar | |
Lee RG, Rains TM, Tovar-Palacio C, Beverly JL and Shay NF: Zinc deficiency increases hypothalamic neuropeptide Y and neuropeptide Y mRNA levels and does not block neuropeptide Y-induced feeding in rats. J Nutr. 128:1218–1223. 1998.PubMed/NCBI View Article : Google Scholar | |
Jin X, Qiu T, Li L, Yu R, Chen X, Li C, Proud CG and Jiang T: Pathophysiology of obesity and its associated diseases. Acta Pharm Sin B. 13:2403–2424. 2023.PubMed/NCBI View Article : Google Scholar | |
Yudhani RD, Sari Y, Nugrahaningsih DAA, Sholikhah EN, Rochmanti M, Purba AKR, Khotimah H, Nugrahenny D and Mustofa M: In vitro insulin resistance model: A recent update. J Obes. 2023(1964732)2023.PubMed/NCBI View Article : Google Scholar | |
Wiza C, Nascimento EB and Ouwens DM: Role of PRAS40 in Akt and mTOR signaling in health and disease. Am J Physiol Endocrinol Metab. 302:E1453–E1460. 2012.PubMed/NCBI View Article : Google Scholar | |
Wijesekara N, Dai FF, Hardy AB, Giglou PR, Bhattacharjee A, Koshkin V, Chimienti F, Gaisano HY, Rutter GA and Wheeler MB: Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia. 53:1656–1668. 2010.PubMed/NCBI View Article : Google Scholar | |
Chimienti F, Devergnas S, Favier A and Seve M: Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes. 53:2330–2337. 2004.PubMed/NCBI View Article : Google Scholar | |
Chimienti F, Devergnas S, Pattou F, Schuit F, Garcia-Cuenca R, Vandewalle B, Kerr-Conte J, Van Lommel L, Grunwald D, Favier A and Seve M: In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci. 119:4199–4206. 2006.PubMed/NCBI View Article : Google Scholar | |
Norouzi S, Adulcikas J, Sohal SS and Myers S: Zinc stimulates glucose oxidation and glycemic control by modulating the insulin signaling pathway in human and mouse skeletal muscle cell lines. PLoS One. 13(e0191727)2018.PubMed/NCBI View Article : Google Scholar | |
Wu Y, Lu H, Yang H, Li C, Sang Q, Liu X, Liu Y, Wang Y and Sun Z: Zinc stimulates glucose consumption by modulating the insulin signaling pathway in L6 myotubes: Essential roles of Akt-GLUT4, GSK3β and mTOR-S6K1. J Nutr Biochem. 34:126–135. 2016.PubMed/NCBI View Article : Google Scholar | |
Tang S, Le-Tien H, Goldstein BJ, Shin P, Lai R and Fantus IG: Decreased in situ insulin receptor dephosphorylation in hyperglycemia-induced insulin resistance in rat adipocytes. Diabetes. 50:83–90. 2001.PubMed/NCBI View Article : Google Scholar | |
Cruz KJC, de Oliveira ARS, Morais JBS, Severo JS, Mendes PMV, de Sousa Melo SR, de Sousa GS and Marreiro DDN: Zinc and insulin resistance: Biochemical and molecular aspects. Biol Trace Elem Res. 186:407–412. 2018.PubMed/NCBI View Article : Google Scholar | |
Vardatsikos G, Pandey NR and Srivastava AK: Insulino-mimetic and anti-diabetic effects of zinc. J Inorg Biochem. 120:8–17. 2013.PubMed/NCBI View Article : Google Scholar | |
Bellomo E, Massarotti A, Hogstrand C and Maret W: Zinc ions modulate protein tyrosine phosphatase 1B activity. Metallomics. 6:1229–1239. 2014.PubMed/NCBI View Article : Google Scholar | |
Koren S and Fantus IG: Inhibition of the protein tyrosine phosphatase PTP1B: Potential therapy for obesity, insulin resistance and type-2 diabetes mellitus. Best Pract Res Clin Endocrinol Metab. 21:621–640. 2007.PubMed/NCBI View Article : Google Scholar | |
Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, et al: Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol. 20:5479–5489. 2000.PubMed/NCBI View Article : Google Scholar | |
Fantuzzi G: Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 115:911–920. 2005.PubMed/NCBI View Article : Google Scholar | |
Harish R, Priyanka V, Kesava M, Ashakiran S and Katherine BY: Leptin and Obesity: Understanding the Impact on Dyslipidemia. In: Hülya Ç, (ed.). Body Mass Index. Rijeka, IntechOpen, p. Ch. 3, 2023. | |
Paz-Filho G, Mastronardi C, Franco CB, Wang KB, Wong ML and Licinio J: Leptin: Molecular mechanisms, systemic pro-inflammatory effects, and clinical implications. Arq Bras Endocrinol Metabol. 56:597–607. 2012.PubMed/NCBI View Article : Google Scholar | |
Singla P, Bardoloi A and Parkash AA: Metabolic effects of obesity: A review. World J Diabetes. 1:76–88. 2010.PubMed/NCBI View Article : Google Scholar | |
Després JP and Lemieux I: Abdominal obesity and metabolic syndrome. Nature. 444:881–887. 2006.PubMed/NCBI View Article : Google Scholar | |
Kim J and Ahn J: Effect of zinc supplementation on inflammatory markers and adipokines in young obese women. Biol Trace Elem Res. 157:101–106. 2014.PubMed/NCBI View Article : Google Scholar | |
Kelishadi R, Hashemipour M, Adeli K, Tavakoli N, Movahedian-Attar A, Shapouri J, Poursafa P and Rouzbahani A: Effect of zinc supplementation on markers of insulin resistance, oxidative stress, and inflammation among prepubescent children with metabolic syndrome. Metab Syndr Relat Disord. 8:505–510. 2010.PubMed/NCBI View Article : Google Scholar | |
Martin RD, Hoeth M, Hofer-Warbinek R and Schmid JA: The transcription factor NF-κB and the regulation of vascular cell function. Arterioscler Thromb Vasc Biol. 20:E83–E88. 2000.PubMed/NCBI View Article : Google Scholar | |
Kadhim HM, Ismail SH, Hussein KI, Bakir IH, Sahib AS, Khalaf BH and Hussain SA: Effects of melatonin and zinc on lipid profile and renal function in type 2 diabetic patients poorly controlled with metformin. J Pineal Res. 41:189–193. 2006.PubMed/NCBI View Article : Google Scholar | |
Khan MI, Siddique KU, Ashfaq F, Ali W, Reddy HD and Mishra A: Effect of high-dose zinc supplementation with oral hypoglycemic agents on glycemic control and inflammation in type-2 diabetic nephropathy patients. J Nat Sci Biol Med. 4:336–340. 2013.PubMed/NCBI View Article : Google Scholar | |
Jafarnejad S, Mahboobi S, McFarland LV, Taghizadeh M and Rahimi F: Meta-analysis: effects of zinc supplementation alone or with multi-nutrients, on glucose control and lipid levels in patients with type 2 diabetes. Prev Nutr Food Sci. 24(8)2019.PubMed/NCBI View Article : Google Scholar | |
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA): Scientific opinion on dietary reference values for zinc. EFSA J. 12(3844)2014. | |
Foster M, Petocz P and Samman S: Effects of zinc on plasma lipoprotein cholesterol concentrations in humans: A meta-analysis of randomised controlled trials. Atherosclerosis. 210:344–352. 2010.PubMed/NCBI View Article : Google Scholar | |
Hughes S and Samman S: The effect of zinc supplementation in humans on plasma lipids, antioxidant status and thrombogenesis. J Am Coll Nutr. 25:285–291. 2006.PubMed/NCBI View Article : Google Scholar | |
Hedera P, Peltier A, Fink JK, Wilcock S, London Z and Brewer GJ: Myelopolyneuropathy and pancytopenia due to copper deficiency and high zinc levels of unknown origin II. The denture cream is a primary source of excessive zinc. Neurotoxicology. 30:996–969. 2009.PubMed/NCBI View Article : Google Scholar |