1
|
Schäfer BW and Heizmann CW: The S100
family of EF-hand calcium-binding proteins: functions and
pathology. Trends Biochem Sci. 21:134–140. 1996.PubMed/NCBI
|
2
|
Santamaria-Kisiel L, Rintala-Dempsey AC
and Shaw GS: Calcium-dependent and -independent interactions of the
S100 protein family. Biochem J. 396:201–214. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kriajevska M, Fischer-Larsen M, Moertz E,
et al: Liprin beta 1, a member of the family of LAR transmembrane
tyrosine phosphatase-interacting proteins, is a new target for the
metastasis-associated protein S100A4 (Mts1). J Biol Chem.
277:5229–5235. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Endo H, Takenaga K, Kanno T, Satoh H and
Mori S: Methionine aminopeptidase 2 is a new target for the
metastasis-associated protein, S100A4. J Biol Chem.
277:26396–26402. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Garrett SC, Varney KM, Weber DJ and
Bresnick AR: S100A4, a mediator of metastasis. J Biol Chem.
281:677–680. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kiss B, Duelli A, Radnai L, Kékesi KA,
Katona G and Nyitray L: Crystal structure of the S100A4-nonmuscle
myosin IIA tail fragment complex reveals an asymmetric target
binding mechanism. Proc Natl Acad Sci USA. 109:6048–6053. 2012.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Tarabykina S, Kriajevska M, Scott DJ, et
al: Heterocomplex formation between metastasis-related protein
S100A4 (Mts1) and S100A1 as revealed by the yeast two-hybrid
system. FEBS Lett. 475:187–191. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Tarabykina S, Scott DJ, Herzyk P, et al:
The dimerization interface of the metastasis-associated protein
S100A4 (Mts1): in vivo and in vitro studies. J Biol Chem.
276:24212–24222. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang G, Rudland PS, White MR and
Barraclough R: Interaction in vivo and in vitro of the
metastasis-inducing S100 protein, S100A4 (p9Ka) with S100A1. J Biol
Chem. 275:11141–11146. 2000. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang G, Zhang S, Fernig DG,
Martin-Fernandez M, Rudland PS and Barraclough R: Mutually
antagonistic actions of S100A4 and S100A1 on normal and metastatic
phenotypes. Oncogene. 24:1445–1454. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Deloulme JC, Gentil BJ and Baudier J:
Monitoring of S100 homodimerization and heterodimeric interactions
by the yeast two-hybrid system. Microsc Res Tech. 60:560–568. 2003.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Pröpper C, Huang X, Roth J, Sorg C and
Nacken W: Analysis of the MRP8-MRP14 protein-protein interaction by
the two-hybrid system suggests a prominent role of the C-terminal
domain of S100 proteins in dimer formation. J Biol Chem.
274:183–188. 1999.PubMed/NCBI
|
13
|
Wang G, Zhang S, Fernig DG, et al:
Heterodimeric interaction and interfaces of S100A1 and S100P.
Biochem J. 382:375–383. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yamaguchi F, Umeda Y, Shimamoto S, et al:
S100 proteins modulate protein phosphatase 5 function: a link
between CA2+ signal transduction and protein
dephosphorylation. J Biol Chem. 287:13787–13798. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hinds TD Jr and Sánchez ER: Protein
phosphatase 5. Int J Biochem Cell Biol. 40:2358–2362. 2008.
View Article : Google Scholar
|
16
|
Becker W, Kentrup H, Klumpp S, Schultz JE
and Joost HG: Molecular cloning of a protein serine/threonine
phosphatase containing a putative regulatory tetratricopeptide
repeat domain. J Biol Chem. 269:22586–22592. 1994.
|
17
|
Chen MX, McPartlin AE, Brown L, Chen YH,
Barker HM and Cohen PT: A novel human protein serine/threonine
phosphatase, which possesses four tetratricopeptide repeat motifs
and localizes to the nucleus. EMBO J. 13:4278–4290. 1994.PubMed/NCBI
|
18
|
D’Andrea LD and Regan L: TPR proteins: the
versatile helix. Trends Biochem Sci. 28:655–662. 2003.PubMed/NCBI
|
19
|
Zeytuni N and Zarivach R: Structural and
functional discussion of the tetra-trico-peptide repeat, a protein
interaction module. Structure. 20:397–405. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Morita K, Saitoh M, Tobiume K, et al:
Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5)
in response to oxidative stress. EMBO J. 20:6028–6036. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Gencer S and Irmak Yazicioğlu MB:
Differential response of gastric carcinoma MKN-45 and 23132/87
cells to H2O2 exposure. Turk J Gastroenterol.
22:145–151. 2011.PubMed/NCBI
|
22
|
Okada M, Hatakeyama T, Itoh H, Tokuta N,
Tokumitsu H and Kobayashi R: S100A1 is a novel molecular chaperone
and a member of the Hsp70/Hsp90 multichaperone complex. J Biol
Chem. 279:4221–4233. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yamashita K, Oyama Y, Shishibori T,
Matsushita O, Okabe A and Kobayashi R: Purification of bovine
S100A12 from recombinant Escherichia coli. Protein Expr
Purif. 16:47–52. 1999. View Article : Google Scholar : PubMed/NCBI
|
24
|
Matsui Lee IS, Suzuki M, Hayashi N, et al:
Copper-dependent formation of disulfide-linked dimer of S100B
protein. Arch Biochem Biophys. 374:137–141. 2000.PubMed/NCBI
|
25
|
Okada M, Tokumitsu H, Kubota Y and
Kobayashi R: Interaction of S100 proteins with the antiallergic
drugs, olopatadine, amlexanox, and cromolyn: identification of
putative drug binding sites on S100A1 protein. Biochem Biophys Res
Commun. 292:1023–1030. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chinkers M: Protein phosphatase 5 in
signal transduction. Trends Endocrinol Metab. 12:28–32. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Zühlke RD, Pitt GS, Deisseroth K, Tsien RW
and Reuter H: Calmodulin supports both inactivation and
facilitation of L-type calcium channels. Nature. 399:159–162.
1999.PubMed/NCBI
|
28
|
Takata M, Shimamoto S, Yamaguchi F, Tokuda
M, Tokumitsu H and Kobayashi R: Regulation of nuclear localization
signal-importin alpha interaction by Ca2+/S100A6. FEBS Lett.
584:4517–4523. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gibbs FE, Wilkinson MC, Rudland PS and
Barraclough R: Interactions in vitro of p9Ka, the rat
S-100-related, metastasis-inducing, calcium-binding protein. J Biol
Chem. 269:18992–18999. 1994.PubMed/NCBI
|
30
|
Zhang T, Woods TL and Elder JT:
Differential responses of S100A2 to oxidative stress and increased
intracellular calcium in normal, immortalized, and malignant human
keratinocytes. J Invest Dermatol. 119:1196–1201. 2002. View Article : Google Scholar
|
31
|
Yonemura Y, Endou Y, Kimura K, et al:
Inverse expression of S100A4 and E-cadherin is associated with
metastatic potential in gastric cancer. Clin Cancer Res.
6:4234–4242. 2000.PubMed/NCBI
|
32
|
Watanabe Y, Usada N, Minami H, et al:
Calvasculin, as a factor affecting the microfilament assemblies in
rat fibroblasts transfected by src gene. FEBS Lett. 324:51–55.
1993. View Article : Google Scholar : PubMed/NCBI
|
33
|
Takenaga K, Nakamura Y, Sakiyama S,
Hasegawa Y, Sato K and Endo H: Binding of pEL98 protein, an
S100-related calcium-binding protein, to nonmuscle tropomyosin. J
Cell Biol. 124:757–768. 1994. View Article : Google Scholar : PubMed/NCBI
|
34
|
Li CL, Martinez V, He B, Lombet A and
Perbal B: A role for CCN3 (NOV) in calcium signalling. Mol Pathol.
55:250–261. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yammani RR, Carlson CS, Bresnick AR and
Loeser RF: Increase in production of matrix metalloproteinase 13 by
human articular chondrocytes due to stimulation with S100A4: Role
of the receptor for advanced glycation end products. Arthritis
Rheum. 54:2901–2911. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kiryushko D, Novitskaya V, Soroka V, et
al: Molecular mechanisms of Ca2+ signaling in neurons
induced by the S100A4 protein. Mol Cell Biol. 26:3625–3638.
2006.
|
37
|
Fritz G: X-ray structural analysis of S100
proteins. Methods Mol Biol. 963:87–97. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Novitskaya V, Grigorian M, Kriajevska M,
et al: Oligomeric forms of the metastasis-related Mts1 (S100A4)
protein stimulate neuronal differentiation in cultures of rat
hippocampal neurons. J Biol Chem. 275:41278–41286. 2000. View Article : Google Scholar : PubMed/NCBI
|
39
|
Haase-Kohn C, Wolf S, Lenk J and Pietzsch
J: Copper-mediated cross-linking of S100A4, but not of S100A2,
results in proinflammatory effects in melanoma cells. Biochem
Biophys Res Commun. 413:494–498. 2011. View Article : Google Scholar : PubMed/NCBI
|