1
|
Faulstich ME: Acquired immune deficiency
syndrome: An overview of central nervous system complications and
neuropsychological sequelae. Int J Neurosci. 30:249–254. 1986.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Kharsany AB and Karim QA: HIV Infection
and AIDS in Sub-Saharan Africa: Current Status, Challenges and
Opportunities. Open AIDS J. 10:34–48. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Granich R, Gupta S, Hersh B, et al: Trends
in AIDS Deaths, New Infections and ART Coverage in the Top 30
Countries with the Highest AIDS Mortality Burden; 1990–2013. PloS
one. 10:2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Imran M, Manzoor S, Saalim M, Resham S,
Ashraf J, Javed A and Waqar AB: HIV-1 and hijacking of the host
immune system: The current scenario. APMIS. 124:817–831. 2016.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Waheed Y and Waheed H: Pakistan needs to
speed up its human immunodeficiency virus control strategy to
achieve targets in fast-track acquired immune deficiency syndrome
response. World J Virol. 6:46–48. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Piacentini L, Fenizia C, Naddeo V and
Clerici M: Not just sheer luck! Immune correlates of protection
against HIV-1 infection. Vaccine. 26:3002–3007. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Walker BD: Elite control of HIV Infection:
Implications for vaccines and treatment. Top HIV Med. 15:134–136.
2007.PubMed/NCBI
|
8
|
Roberts JD, Bebenek K and Kunkel TA: The
accuracy of reverse transcriptase from HIV-1. Science.
242:1171–1173. 1988. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wilen CB, Tilton JC and Doms RW: HIV: Cell
binding and entry. Cold Spring Harb Perspect Med. 2:a0068662012.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Ray N and Doms R: HIV-1 Coreceptors and
their inhibitors. Curr Top Microbiol Immunol. 303:97–120.
2006.PubMed/NCBI
|
11
|
Shaw G and Hunter E: HIV transmission.
Cold Spring Harb Perspect Med. 2:a0069652012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hütter G, Nowak D, Mossner M, Ganepola S,
Müssig A, Allers K, Schneider T, Hofmann J, Kücherer C, Blau O, et
al: Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell
transplantation. N Engl J Med. 360:692–698. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Allers K, Hütter G, Hofmann J,
Loddenkemper C, Rieger K, Thiel E and Schneider T: Evidence for the
cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation.
Blood. 117:2791–2799. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Spanevello F, Calistri A, Del Vecchio C,
Mantelli B, Frasson C, Basso G, Palù G, Cavazzana M and Parolin C:
Development of lentiviral vectors simultaneously expressing
multiple siRNAs against CCR5, vif and tat/rev genes for an HIV-1
gene therapy approach. Mol Ther Nucleic Acids. 5:e3122016.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Chandrasegaran S and Carroll D: Origins of
Programmable Nucleases for Genome Engineering. J Mol Biol.
428:963–989. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tebas P, Stein D, Tang WW, Frank I, Wang
SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, et al: Gene
editing of CCR5 in autologous CD4 T cells of persons infected with
HIV. N Engl J Med. 370:901–910. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zeller SJ and Kumar P: RNA-based gene
therapy for the treatment and prevention of HIV: From bench to
bedside. Yale J Biol Med. 84:301–309. 2011.PubMed/NCBI
|
18
|
An DS, Donahue RE, Kamata M, Poon B,
Metzger M, Mao SH, Bonifacino A, Krouse AE, Darlix JL, Baltimore D,
et al: Stable reduction of CCR5 by RNAi through hematopoietic stem
cell transplant in non-human primates. Proc Natl Acad Sci USA.
104:pp. 13110–13115. 2007; View Article : Google Scholar : PubMed/NCBI
|
19
|
Shimizu S, Kamata M, Kittipongdaja P, Chen
KN, Kim S, Pang S, Boyer J, Qin FX, An DS and Chen IS:
Characterization of a potent non-cytotoxic shRNA directed to the
HIV-1 co-receptor CCR5. Genet Vaccines Ther. 7:82009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jacque JM, Triques K and Stevenson M:
Modulation of HIV-1 replication by RNA interference. Nature.
418:435–438. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lee SK, Dykxhoorn DM, Kumar P, Ranjbar S,
Song E, Maliszewski LE, François-Bongarçon V, Goldfeld A, Swamy NM,
Lieberman J, et al: Lentiviral delivery of short hairpin RNAs
protects CD4 T cells from multiple clades and primary isolates of
HIV. Blood. 106:818–826. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sander JD and Joung JK: CRISPR-Cas systems
for editing, regulating and targeting genomes. Nature
Biotechnology. 32:347–355. 2014. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Liu YP, Haasnoot J and Berkhout B: Design
of extended short hairpin RNAs for HIV-1 inhibition. Nucleic Acids
Res. 35:5683–5693. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Novina CD, Murray MF, Dykxhoorn DM,
Beresford PJ, Riess J, Lee SK, Collman RG, Lieberman J, Shankar P
and Sharp PA: siRNA-directed inhibition of HIV-1 infection. Nat
Med. 8:681–686. 2002.PubMed/NCBI
|
25
|
Wang W, Ye C, Liu J, Zhang D, Kimata JT
and Zhou P: CCR5 gene disruption via lentiviral vectors expressing
Cas9 and single guided RNA renders cells resistant to HIV-1
infection. PLoS One. 9:e1159872014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ran FA, Hsu PD, Lin CY, Gootenberg JS,
Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, et
al: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome
editing specificity. Cell. 154:1380–1389. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Havlicek S, Shen Y, Alpagu Y, Bruntraeger
MB, Zufir NB, Phuah ZY, Fu Z, Dunn NR and Stanton LW: Re-engineered
RNA-guided FokI-nucleases for improved genome editing in human
cells. Mol Ther. 25:342–355. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hay EA, Khalaf AR, Marini P, Brown A1,
Heath K1, Sheppard D and MacKenzie A: An analysis of possible off
target effects following CAS9/CRISPR targeted deletions of
neuropeptide gene enhancers from the mouse genome. Neuropeptides.
64:101–107. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Fuchs SP and Desrosiers RC: Promise and
problems associated with the use of recombinant AAV for the
delivery of anti-HIV antibodies. Mol Ther Methods Clin Dev.
3:160682016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Schnepp BC, Clark KR, Klemanski DL, Pacak
CA and Johnson PR: Genetic fate of recombinant adeno-associated
virus vector genomes in muscle. J Virol. 77:3495–3504. 2003.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Schnepp BC, Chulay JD, Ye G-J, Flotte TR,
Trapnell BC and Johnson PR: Recombinant adeno-associated virus
vector genomes take the form of long-lived, transcriptionally
competent episomes in human muscle. Hum Gene Ther. 27:32–42. 2016.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Biocca S, Ruberti F, Tafani M,
Pierandrei-Amaldi P and Cattaneo A: Redox state of single chain Fv
fragments targeted to the endoplasmic reticulum, cytosol and
mitochondria. Biotechnology (N Y). 13:1110–1115. 1995. View Article : Google Scholar : PubMed/NCBI
|
33
|
Stocks M: Intrabodies as drug discovery
tools and therapeutics. Curr Opin Chem Biol. 9:359–365. 2005.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Lewis MJ and Pelham HR: Ligand-induced
redistribution of a human KDEL receptor from the Golgi complex to
the endoplasmic reticulum. Cell. 68:353–364. 1992. View Article : Google Scholar : PubMed/NCBI
|
35
|
Farokhzad OC: Nanotechnology for drug
delivery: The perfect partnership. Expert Opin Drug Deliv.
5:927–929. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang L, Gu FX, Chan JM, Wang AZ, Langer
RS and Farokhzad OC: Nanoparticles in medicine: Therapeutic
applications and developments. Clin Pharmacol Ther. 83:761–769.
2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ferrari M: Cancer nanotechnology:
Opportunities and challenges. Nat Rev Cancer. 5:161–171. 2005.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Nie S, Xing Y, Kim GJ and Simons JW:
Nanotechnology applications in cancer. Annu Rev Biomed Eng.
9:257–288. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Davis ME, Chen ZG and Shin DM:
Nanoparticle therapeutics: An emerging treatment modality for
cancer. Nat Rev Drug Discov. 7:771–782. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Mamo T, Moseman EA, Kolishetti N,
Salvador-Morales C, Shi J, Kuritzkes DR, Langer R, von Andrian U
and Farokhzad OC: Emerging nanotechnology approaches for HIV/AIDS
treatment and prevention. Nanomedicine (Lond). 5:269–285. 2010.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Dou H, Grotepas CB, McMillan JM, Destache
CJ, Chaubal M, Werling J, Kipp J, Rabinow B and Gendelman HE:
Macrophage delivery of nanoformulated antiretroviral drug to the
brain in a murine model of neuroAIDS. J Immunol. 183:661–669. 2009.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Garg M, Garg BR, Jain S, Mishra P, Sharma
RK, Mishra AK, Dutta T and Jian NK: Radiolabeling,
pharmacoscintigraphic evaluation and antiretroviral efficacy of
stavudine loaded 99mTc labeled galactosylated liposomes. Eur J
Pharm Sci. 33:271–281. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ganser-Pornillos BK, Yeager M and
Sundquist WI: The structural biology of HIV assembly. Curr Opin
Struct Biol. 18:203–217. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Pornillos O, Ganser-Pornillos BK, Kelly
BN, Hua Y, Whitby FG, Stout CD, Sundquist WI, Hill CP and Yeager M:
X-ray structures of the hexameric building block of the HIV capsid.
Cell. 137:1282–1292. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Marchesan S, Da Ros T, Spalluto G,
Balzarini J and Prato M: Anti-HIV properties of cationic fullerene
derivatives. Bioorg Med Chem Lett. 15:3615–3618. 2005. View Article : Google Scholar : PubMed/NCBI
|
46
|
Troshina OA, Troshin PA, Peregudov AS,
Kozlovskiy VI, Balzarini J and Lyubovskaya RN: Chlorofullerene
C60Cl6: A precursor for straightforward preparation of highly
water-soluble polycarboxylic fullerene derivatives active against
HIV. Org Biomol Chem. 5:2783–2791. 2007. View Article : Google Scholar : PubMed/NCBI
|
47
|
Wang W, Guo Z, Chen Y, Liu T and Jiang L:
Influence of generation 2–5 of PAMAM dendrimer on the inhibition of
Tat peptide/TAR RNA binding in HIV-1 transcription. Chem Biol Drug
Des. 68:314–318. 2006. View Article : Google Scholar : PubMed/NCBI
|