1
|
Song S, Guo Y, Yang Y and Fu D: Advances
in pathogenesis and therapeutic strategies for osteoporosis.
Pharmacol Ther. 237(108168)2022.PubMed/NCBI View Article : Google Scholar
|
2
|
Wang L, Yu W, Yin X, Cui L, Tang S, Jiang
N, Cui L, Zhao N, Lin Q, Chen L, et al: Prevalence of osteoporosis
and fracture in China: The China osteoporosis prevalence study.
JAMA Netw Open. 4(e2121106)2021.PubMed/NCBI View Article : Google Scholar
|
3
|
Hernlund E, Svedbom A, Ivergård M,
Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B and Kanis
JA: Osteoporosis in the European Union: Medical management,
epidemiology and economic burden. A report prepared in
collaboration with the international osteoporosis foundation (IOF)
and the European federation of pharmaceutical industry associations
(EFPIA). Arch Osteoporos. 8(136)2013.PubMed/NCBI View Article : Google Scholar
|
4
|
Chen B, Li GF, Shen Y, Huang XI and Xu YJ:
Reducing iron accumulation: A potential approach for the prevention
and treatment of postmenopausal osteoporosis. Exp Ther Med.
10:7–11. 2015.PubMed/NCBI View Article : Google Scholar
|
5
|
Fink HA, MacDonald R, Forte ML, Rosebush
CE, Ensrud KE, Schousboe JT, Nelson VA, Ullman K, Butler M, Olson
CM, et al: Long-term drug therapy and drug discontinuations and
holidays for osteoporosis fracture prevention: A systematic review.
Ann Intern Med. 171:37–50. 2019.PubMed/NCBI View
Article : Google Scholar
|
6
|
Kanis JA, Cooper C, Rizzoli R and
Reginster JY: Scientific Advisory Board of the European Society for
Clinical and Economic Aspects of Osteoporosis (ESCEO) and the
Committees of Scientific Advisors and National Societies of the
International Osteoporosis Foundation (IOF). European guidance for
the diagnosis and management of osteoporosis in postmenopausal
women. Osteoporos Int. 30:3–44. 2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Peng Z, Xu R and You Q: Role of
traditional Chinese medicine in bone regeneration and osteoporosis.
Front Bioeng Biotechnol. 10(911326)2022.PubMed/NCBI View Article : Google Scholar
|
8
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012.PubMed/NCBI View Article : Google Scholar
|
9
|
Liang C, Zhang X, Yang M and Dong X:
Recent progress in ferroptosis inducers for cancer therapy. Adv
Mater. 31(e1904197)2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Liu P, Wang W, Li Z, Li Y, Yu X, Tu J and
Zhang Z: Ferroptosis: A new regulatory mechanism in osteoporosis.
Oxid Med Cell Longev. 2022(2634431)2022.PubMed/NCBI View Article : Google Scholar
|
11
|
Jiang Z, Wang H, Qi G, Jiang C, Chen K and
Yan Z: Iron overload-induced ferroptosis of osteoblasts inhibits
osteogenesis and promotes osteoporosis: An in vitro and in vivo
study. IUBMB Life. 74:1052–1069. 2022.PubMed/NCBI View
Article : Google Scholar
|
12
|
Xie Q, Sun Y, Xu H, Chen T, Xiang H, Liu
H, Wang R, Tan B, Yi Q, Tian J and Zhu J: Ferrostatin-1 improves
BMSC survival by inhibiting ferroptosis. Arch Biochem Biophys.
736(109535)2023.PubMed/NCBI View Article : Google Scholar
|
13
|
Li Y, Bai B and Zhang Y: Expression of
iron-regulators in the bone tissue of rats with and without iron
overload. Biometals. 31:749–757. 2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Kim BJ, Lee SH, Koh JM and Kim GS: The
association between higher serum ferritin level and lower bone
mineral density is prominent in women ≥45 years of age (KNHANES
2008-2010). Osteoporos Int. 24:2627–2637. 2013.PubMed/NCBI View Article : Google Scholar
|
15
|
Cao M, Wu J, Peng Y, Dong B, Jiang Y, Hu
C, Yu L and Chen Z: Ligustri Lucidi Fructus, a traditional
Chinese medicine: Comprehensive review of botany, traditional uses,
chemical composition, pharmacology, and toxicity. J Ethnopharmacol.
301(115789)2023.PubMed/NCBI View Article : Google Scholar
|
16
|
Kong Y, Ma X, Zhang X, Wu L, Chen D, Su B,
Liu D and Wang X: The potential mechanism of Fructus Ligustri
Lucidi promoting osteogenetic differentiation of bone marrow
mesenchymal stem cells based on network pharmacology, molecular
docking and experimental identification. Bioengineered.
13:10640–10653. 2022.PubMed/NCBI View Article : Google Scholar
|
17
|
Ma Z, Tang X, Chen Y, Wang H, Li Y, Long Y
and Liu R: Epimedii Folium and Ligustri Lucidi Fructus
promote osteoblastogenesis and inhibit osteoclastogenesis against
osteoporosis via acting on osteoblast-osteoclast communication.
Oxid Med Cell Longev. 2023(7212642)2023.PubMed/NCBI View Article : Google Scholar
|
18
|
Tang YQ, Li C, Sun XJ, Liu Y, Wang XT, Guo
YB, Wang LL, Ma RF, Niu JZ, Fu M, et al: Fructus Ligustri
Lucidi modulates estrogen receptor expression with no
uterotrophic effect in ovariectomized rats. BMC Complement Altern
Med. 18(118)2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Liu H, Guo Y, Zhu R, Wang L, Chen B, Tian
Y, Li R, Ma R, Jia Q, Zhang H, et al: Fructus Ligustri
Lucidi preserves bone quality through induction of canonical
Wnt/β-catenin signaling pathway in ovariectomized rats. Phytother
Res. 35:424–441. 2021.PubMed/NCBI View
Article : Google Scholar
|
20
|
Wang L, Ma R, Guo Y, Sun J, Liu H, Zhu R,
Liu C, Li J, Li L, Chen B, et al: Antioxidant Effect of Fructus
Ligustri Lucidi aqueous extract in ovariectomized rats is
mediated through Nox4-ROS-NF-κB pathway. Front Pharmacol.
8(266)2017.PubMed/NCBI View Article : Google Scholar
|
21
|
Yang Y, Nian H, Tang X, Wang X and Liu R:
Effects of the combined Herba Epimedii and Fructus Ligustri
Lucidi on bone turnover and TGF-β1/Smads pathway in GIOP rats.
J Ethnopharmacol. 201:91–99. 2017.PubMed/NCBI View Article : Google Scholar
|
22
|
Li L, Chen B, Zhu R, Li R, Tian Y, Liu C,
Jia Q, Wang L, Tang J, Zhao D, et al: Fructus Ligustri
Lucidi preserves bone quality through the regulation of gut
microbiota diversity, oxidative stress, TMAO and Sirt6 levels in
aging mice. Aging (Albany NY). 11:9348–9368. 2019.PubMed/NCBI View Article : Google Scholar
|
23
|
Wu Y, Hu Y, Zhao Z, Xu L, Chen Y, Liu T
and Li Q: Protective effects of water extract of Fructus
Ligustri Lucidi against oxidative stress-related
osteoporosis in vivo and in vitro. Vet Sci. 8(198)2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Seo HL, Baek SY, Lee EH, Lee JH, Lee SG,
Kim KY, Jang MH, Park MH, Kim JH, Kim KJ, et al: Liqustri lucidi
Fructus inhibits hepatic injury and functions as an antioxidant by
activation of AMP-activated protein kinase in vivo and in vitro.
Chem Biol Interact. 262:57–68. 2017.PubMed/NCBI View Article : Google Scholar
|
25
|
Loboda A, Damulewicz M, Pyza E, Jozkowicz
A and Dulak J: Role of Nrf2/HO-1 system in development, oxidative
stress response and diseases: An evolutionarily conserved
mechanism. Cell Mol Life Sci. 73:3221–3247. 2016.PubMed/NCBI View Article : Google Scholar
|
26
|
Wang YF, Chang YY, Zhang XM, Gao MT, Zhang
QL, Li X, Zhang L and Yao WF: Salidroside protects against
osteoporosis in ovariectomized rats by inhibiting oxidative stress
and promoting osteogenesis via Nrf2 activation. Phytomedicine.
99(154020)2022.PubMed/NCBI View Article : Google Scholar
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
28
|
Zhao Y, Du Y, Gao Y, Xu Z, Zhao D and Yang
M: ATF3 regulates osteogenic function by mediating osteoblast
ferroptosis in type 2 diabetic osteoporosis. Dis Markers.
2022(9872243)2022.PubMed/NCBI View Article : Google Scholar
|
29
|
Zhu R, Wang Z, Xu Y, Wan H, Zhang X, Song
M, Yang H, Chai Y and Yu B: High-fat diet increases bone loss by
inducing ferroptosis in osteoblasts. Stem Cells Int.
2022(9359429)2022.PubMed/NCBI View Article : Google Scholar
|
30
|
Ponzetti M and Rucci N: Osteoblast
differentiation and signaling: Established concepts and emerging
topics. Int J Mol Sci. 22(6651)2021.PubMed/NCBI View Article : Google Scholar
|
31
|
Vimalraj S and Sekaran S: RUNX family as a
promising biomarker and a therapeutic target in bone cancers: A
review on its molecular mechanism(s) behind tumorigenesis. Cancers
(Basel). 15(3247)2023.PubMed/NCBI View Article : Google Scholar
|
32
|
Zhang C: Molecular mechanisms of
osteoblast-specific transcription factor osterix effect on bone
formation. Beijing Da Xue Xue Bao Yi Xue Ban. 44:659–665.
2012.PubMed/NCBI
|
33
|
Li M, Yang N, Hao L, Zhou W, Li L, Liu L,
Yang F, Xu L, Yao G, Zhu C, et al: Melatonin inhibits the
ferroptosis pathway in rat bone marrow mesenchymal stem cells by
activating the PI3K/AKT/mTOR signaling axis to attenuate
steroid-induced osteoporosis. Oxid Med Cell Longev.
2022(8223737)2022.PubMed/NCBI View Article : Google Scholar
|
34
|
Ma H, Wang X, Zhang W, Li H, Zhao W, Sun J
and Yang M: Melatonin suppresses ferroptosis induced by high
glucose via activation of the Nrf2/HO-1 signaling pathway in type 2
diabetic osteoporosis. Oxid Med Cell Longev.
2020(9067610)2020.PubMed/NCBI View Article : Google Scholar
|
35
|
Stockwell BR, Friedmann Angeli JP, Bayir
H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK,
Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking
metabolism, redox biology, and disease. Cell. 171:273–285.
2017.PubMed/NCBI View Article : Google Scholar
|
36
|
Zhang Q, Liu J, Duan H, Li R, Peng W and
Wu C: Activation of Nrf2/HO-1 signaling: An important molecular
mechanism of herbal medicine in the treatment of atherosclerosis
via the protection of vascular endothelial cells from oxidative
stress. J Adv Res. 34:43–63. 2021.PubMed/NCBI View Article : Google Scholar
|
37
|
Wang X, Ma H, Sun J, Zheng T, Zhao P, Li H
and Yang M: Mitochondrial ferritin deficiency promotes osteoblastic
ferroptosis via mitophagy in type 2 diabetic osteoporosis. Biol
Trace Elem Res. 200:298–307. 2022.PubMed/NCBI View Article : Google Scholar
|
38
|
Bertrand RL: Iron accumulation,
glutathione depletion, and lipid peroxidation must occur
simultaneously during ferroptosis and are mutually amplifying
events. Med Hypotheses. 101:69–74. 2017.PubMed/NCBI View Article : Google Scholar
|
39
|
Dodson M, Castro-Portuguez R and Zhang DD:
NRF2 plays a critical role in mitigating lipid peroxidation and
ferroptosis. Redox Biol. 23(101107)2019.PubMed/NCBI View Article : Google Scholar
|
40
|
Duan JY, Lin X, Xu F, Shan SK, Guo B, Li
FX, Wang Y, Zheng MH, Xu QS, Lei LM, et al: Ferroptosis and its
potential role in metabolic diseases: A curse or revitalization?
Front Cell Dev Biol. 9(701788)2021.PubMed/NCBI View Article : Google Scholar
|
41
|
Chai D, Zhang L, Xi S, Cheng Y, Jiang H
and Hu R: Nrf2 activation induced by Sirt1 ameliorates acute lung
injury after intestinal ischemia/reperfusion through NOX4-mediated
gene regulation. Cell Physiol Biochem. 46:781–792. 2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Bachhawat AK and Yadav S: The glutathione
cycle: Glutathione metabolism beyond the γ-glutamyl cycle. IUBMB
Life. 70:585–592. 2018.PubMed/NCBI View Article : Google Scholar
|
43
|
Balogh E, Tolnai E, Nagy B Jr, Nagy B,
Balla G, Balla J and Jeney V: Iron overload inhibits osteogenic
commitment and differentiation of mesenchymal stem cells via the
induction of ferritin. Biochim Biophys Acta. 1862:1640–1649.
2016.PubMed/NCBI View Article : Google Scholar
|
44
|
Hao J, Bei J, Li Z, Han M, Ma B, Ma P and
Zhou X: Qing'e pill inhibits osteoblast ferroptosis via ATM
serine/threonine kinase (ATM) and the PI3K/AKT pathway in primary
osteoporosis. Front Pharmacol. 13(902102)2022.PubMed/NCBI View Article : Google Scholar
|
45
|
Gaschler MM and Stockwell BR: Lipid
peroxidation in cell death. Biochem Biophys Res Commun.
482:419–425. 2017.PubMed/NCBI View Article : Google Scholar
|
46
|
Baird L, Swift S, Llères D and
Dinkova-Kostova AT: Monitoring Keap1-Nrf2 interactions in single
live cells. Biotechnol Adv. 32:1133–1144. 2014.PubMed/NCBI View Article : Google Scholar
|
47
|
Baird L, Llères D, Swift S and
Dinkova-Kostova AT: Regulatory flexibility in the Nrf2-mediated
stress response is conferred by conformational cycling of the
Keap1-Nrf2 protein complex. Proc Natl Acad Sci USA.
110:15259–15264. 2013.PubMed/NCBI View Article : Google Scholar
|
48
|
Dong H, Qiang Z, Chai D, Peng J, Xia Y, Hu
R and Jiang H: Nrf2 inhibits ferroptosis and protects against acute
lung injury due to intestinal ischemia reperfusion via regulating
SLC7A11 and HO-1. Aging (Albany NY). 12:12943–12959.
2020.PubMed/NCBI View Article : Google Scholar
|
49
|
Li J, Lu K, Sun F, Tan S, Zhang X, Sheng
W, Hao W, Liu M, Lv W and Han W: Panaxydol attenuates ferroptosis
against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1
pathway. J Transl Med. 19(96)2021.PubMed/NCBI View Article : Google Scholar
|
50
|
Chen Y, Zhang P, Chen W and Chen G:
Ferroptosis mediated DSS-induced ulcerative colitis associated with
Nrf2/HO-1 signaling pathway. Immunol Lett. 225:9–15.
2020.PubMed/NCBI View Article : Google Scholar
|
51
|
Dang R, Wang M, Li X, Wang H, Liu L, Wu Q,
Zhao J, Ji P, Zhong L, Licinio J and Xie P: Edaravone ameliorates
depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4
pathway. J Neuroinflammation. 19(41)2022.PubMed/NCBI View Article : Google Scholar
|