1
|
Bertheloot D, Latz E and Franklin BS:
Necroptosis, pyroptosis and apoptosis: An intricate game of cell
death. Cell Mol Immunol. 18:1106–1121. 2021.PubMed/NCBI View Article : Google Scholar
|
2
|
Tang D, Kang R, Berghe TV, Vandenabeele P
and Kroemer G: The molecular machinery of regulated cell death.
Cell Res. 29:347–364. 2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Galluzzi L, Vitale I, Aaronson SA, Abrams
JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews
DW, et al: Molecular mechanisms of cell death: Recommendations of
the nomenclature committee on cell death 2018. Cell Death Differ.
25:486–541. 2018.PubMed/NCBI View Article : Google Scholar
|
4
|
Conradt B: Genetic control of programmed
cell death during animal development. Annu Rev Genet. 43:493–523.
2009.PubMed/NCBI View Article : Google Scholar
|
5
|
Zhang X, Huang Z, Xie Z, Chen Y, Zheng Z,
Wei X, Huang B, Shan Z, Liu J, Fan S, et al: Homocysteine induces
oxidative stress and ferroptosis of nucleus pulposus via enhancing
methylation of GPX4. Free Radic Biol Med. 160:552–565.
2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Torti SV and Torti FM: Iron and cancer:
More ore to be mined. Nat Rev Cancer. 13:342–355. 2013.PubMed/NCBI View
Article : Google Scholar
|
7
|
Stockwell BR, Friedmann Angeli JP, Bayir
H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK,
Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking
metabolism, redox biology, and disease. Cell. 171:273–285.
2017.PubMed/NCBI View Article : Google Scholar
|
8
|
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun
X, Kang R and Tang D: Ferroptosis: Process and function. Cell Death
Differ. 23:369–379. 2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012.PubMed/NCBI View Article : Google Scholar
|
10
|
Chen X, Kang R, Kroemer G and Tang D:
Broadening horizons: The role of ferroptosis in cancer. Nat Rev
Clin Oncol. 18:280–296. 2021.PubMed/NCBI View Article : Google Scholar
|
11
|
Mahoney-Sánchez L, Bouchaoui H, Ayton S,
Devos D, Duce JA and Devedjian JC: Ferroptosis and its potential
role in the physiopathology of Parkinson's disease. Prog Neurobiol.
196(101890)2021.PubMed/NCBI View Article : Google Scholar
|
12
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI View Article : Google Scholar
|
13
|
Johnson DE, Burtness B, Leemans CR, Lui
VWY, Bauman JE and Grandis JR: Head and neck squamous cell
carcinoma. Nat Rev Dis Primers. 6(92)2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Hammond EC and Horn D: Smoking and death
rates: Report on forty-four months of follow-up of 187,783 men. 2.
Death rates by cause. J Am Med Assoc. 166:1294–1308.
1958.PubMed/NCBI View Article : Google Scholar
|
15
|
Hashibe M, Brennan P, Benhamou S,
Castellsague X, Chen C, Curado MP, Dal Maso L, Daudt AW, Fabianova
E, Fernandez L, et al: Alcohol drinking in never users of tobacco,
cigarette smoking in never drinkers, and the risk of head and neck
cancer: Pooled analysis in the international head and neck cancer
epidemiology consortium. J Natl Cancer Inst. 99:777–789.
2007.PubMed/NCBI View Article : Google Scholar
|
16
|
Mehanna H, Beech T, Nicholson T, El-Hariry
I, McConkey C, Paleri V and Roberts S: Prevalence of human
papillomavirus in oropharyngeal and nonoropharyngeal head and neck
cancer-systematic review and meta-analysis of trends by time and
region. Head Neck. 35:747–755. 2013.PubMed/NCBI View Article : Google Scholar
|
17
|
Canning M, Guo G, Yu M, Myint C, Groves
MW, Byrd JK and Cui Y: Heterogeneity of the head and neck squamous
cell carcinoma immune landscape and its impact on immunotherapy.
Front Cell Dev Biol. 7(52)2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Sturgis EM and Cinciripini PM: Trends in
head and neck cancer incidence in relation to smoking prevalence:
An emerging epidemic of human papillomavirus-associated cancers?
Cancer. 110:1429–1435. 2007.PubMed/NCBI View Article : Google Scholar
|
19
|
Dai E, Han L, Liu J, Xie Y, Kroemer G,
Klionsky DJ, Zeh HJ, Kang R, Wang J and Tang D: Autophagy-dependent
ferroptosis drives tumor-associated macrophage polarization via
release and uptake of oncogenic KRAS protein. Autophagy.
16:2069–2083. 2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Hassannia B, Vandenabeele P and Vanden
Berghe T: Targeting ferroptosis to iron out cancer. Cancer Cell.
35:830–849. 2019.PubMed/NCBI View Article : Google Scholar
|
21
|
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C
and Li B: Ferroptosis, a new form of cell death: Opportunities and
challenges in cancer. J Hematol Oncol. 12(34)2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Raudenská M, Balvan J and Masařík M: Cell
death in head and neck cancer pathogenesis and treatment. Cell
Death Dis. 12(192)2021.PubMed/NCBI View Article : Google Scholar
|
23
|
Rochette L, Dogon G, Rigal E, Zeller M,
Cottin Y and Vergely C: Lipid peroxidation and iron metabolism: Two
corner stones in the homeostasis control of ferroptosis. Int J Mol
Sci. 24(449)2022.PubMed/NCBI View Article : Google Scholar
|
24
|
Gao G, Li J, Zhang Y and Chang YZ:
Cellular iron metabolism and regulation. In: Chang YZ (ed). Brain
Iron Metabolism and CNS Diseases. Advances in Experimental Medicine
and Biology. Vol 1173. Springer Singapore, Singapore, pp21-32,
2019.
|
25
|
Rochette L, Gudjoncik A, Guenancia C,
Zeller M, Cottin Y and Vergely C: The iron-regulatory hormone
hepcidin: A possible therapeutic target? Pharmacol Ther. 146:35–52.
2015.PubMed/NCBI View Article : Google Scholar
|
26
|
Fujimaki M, Furuya N, Saiki S, Amo T,
Imamichi Y and Hattori N: Iron supply via NCOA4-mediated ferritin
degradation maintains mitochondrial functions. Mol Cell Biol.
39:e00010–19. 2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Do MT, Kim HG, Choi JH and Jeong HG:
Metformin induces microRNA-34a to downregulate the
Sirt1/Pgc-1α/Nrf2 pathway, leading to increased susceptibility of
wild-type p53 cancer cells to oxidative stress and therapeutic
agents. Free Radic Biol Med. 74:21–34. 2014.PubMed/NCBI View Article : Google Scholar
|
28
|
Wei R, Zhao Y, Wang J, Yang X, Li S, Wang
Y, Yang X, Fei J, Hao X, Zhao Y, et al: Tagitinin C induces
ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal
cancer cells. Int J Biol Sci. 17:2703–2717. 2021.PubMed/NCBI View Article : Google Scholar
|
29
|
Dalton TP, Chen Y, Schneider SN, Nebert DW
and Shertzer HG: Genetically altered mice to evaluate glutathione
homeostasis in health and disease. Free Radic Biol Med.
37:1511–1526. 2004.PubMed/NCBI View Article : Google Scholar
|
30
|
Oestreicher J and Morgan B: Glutathione:
Subcellular distribution and membrane transport 1.
Biochem Cell Biol. 97:270–289. 2019.PubMed/NCBI View Article : Google Scholar
|
31
|
Rochette L and Vergely C: Coronary artery
disease: Can aminothiols be distinguished from reactive oxygen
species? Nat Rev Cardiol. 13:128–130. 2016.PubMed/NCBI View Article : Google Scholar
|
32
|
Belalcázar AD, Ball JG, Frost LM,
Valentovic MA and Wilkinson J IV: Transsulfuration is a significant
source of sulfur for glutathione production in human mammary
epithelial cells. ISRN Biochem. 2013(637897)2014.PubMed/NCBI View Article : Google Scholar
|
33
|
Wu X, Liu C, Li Z, Gai C, Ding D, Chen W,
Hao F and Li W: Regulation of GSK3β/Nrf2 signaling pathway
modulated erastin-induced ferroptosis in breast cancer. Mol Cell
Biochem. 473:217–228. 2020.PubMed/NCBI View Article : Google Scholar
|
34
|
Yang WS, Kim KJ, Gaschler MM, Patel M,
Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated
fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci
USA. 113:E4966–E4975. 2016.PubMed/NCBI View Article : Google Scholar
|
35
|
Kagan VE, Mao G, Qu F, Angeli JP, Doll S,
Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized
arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem
Biol. 13:81–90. 2017.PubMed/NCBI View Article : Google Scholar
|
36
|
Tang D, Chen X, Kang R and Kroemer G:
Ferroptosis: Molecular mechanisms and health implications. Cell
Res. 31:107–125. 2021.PubMed/NCBI View Article : Google Scholar
|
37
|
Doll S, Proneth B, Tyurina YY, Panzilius
E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A,
et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular
lipid composition. Nat Chem Biol. 13:91–98. 2017.PubMed/NCBI View Article : Google Scholar
|
38
|
Mayr L, Grabherr F, Schwärzler J,
Reitmeier I, Sommer F, Gehmacher T, Niederreiter L, He GW, Ruder B,
Kunz KTR, et al: Dietary lipids fuel GPX4-restricted enteritis
resembling Crohn's disease. Nat Commun. 11(1775)2020.PubMed/NCBI View Article : Google Scholar
|
39
|
Delesderrier E, Monteiro JDC, Freitas S,
Pinheiro IC, Batista MS and Citelli M: Can iron and polyunsaturated
fatty acid supplementation induce ferroptosis? Cell Physiol
Biochem. 57:24–41. 2023.PubMed/NCBI View Article : Google Scholar
|
40
|
Bai Y, Meng L, Han L, Jia Y, Zhao Y, Gao
H, Kang R, Wang X, Tang D and Dai E: Lipid storage and lipophagy
regulates ferroptosis. Biochem Biophys Res Commun. 508:997–1003.
2019.PubMed/NCBI View Article : Google Scholar
|
41
|
Sun X, Yang S, Feng X, Zheng Y, Zhou J,
Wang H, Zhang Y, Sun H and He C: The modification of ferroptosis
and abnormal lipometabolism through overexpression and knockdown of
potential prognostic biomarker perilipin2 in gastric carcinoma.
Gastric Cancer. 23:241–259. 2020.PubMed/NCBI View Article : Google Scholar
|
42
|
Magtanong L, Ko PJ, To M, Cao JY, Forcina
GC, Tarangelo A, Ward CC, Cho K, Patti GJ, Nomura DK, et al:
Exogenous monounsaturated fatty acids promote a
ferroptosis-resistant cell state. Cell Chem Biol. 26:420–432.e9.
2019.PubMed/NCBI View Article : Google Scholar
|
43
|
Liu Y, Lu S, Wu LL, Yang L, Yang L and
Wang J: The diversified role of mitochondria in ferroptosis in
cancer. Cell Death Dis. 14(519)2023.PubMed/NCBI View Article : Google Scholar
|
44
|
Li Y, Wu T, Jiao Z and Yang A: BASP1 is
up-regulated in tongue squamous cell carcinoma and associated with
a poor prognosis. Asian J Surg. 45:1101–1106. 2022.PubMed/NCBI View Article : Google Scholar
|
45
|
Pan X, Xu X, Wang L, Zhang S, Chen Y, Yang
R, Chen X, Cheng B, Xia J and Ren X: BASP1 is a prognostic
biomarker associated with immunotherapeutic response in head and
neck squamous cell carcinoma. Front Oncol.
13(1021262)2023.PubMed/NCBI View Article : Google Scholar
|
46
|
Xu Y, Hong M, Kong D, Deng J, Zhong Z and
Liang J: Ferroptosis-associated DNA methylation signature predicts
overall survival in patients with head and neck squamous cell
carcinoma. BMC Genomics. 23(63)2022.PubMed/NCBI View Article : Google Scholar
|
47
|
Wu C, Liu F, Chen H, Liu Q, Song C, Cheng
K, Gao Z and Fan C: Identification of ferroptosis-related lncRNA
pairs for predicting the prognosis of head and neck squamous cell
carcinoma. J Oncol. 2022(7602482)2022.PubMed/NCBI View Article : Google Scholar
|
48
|
Shi M, Du J, Shi J, Huang Y, Zhao Y and Ma
L: Ferroptosis-related gene ATG5 is a novel prognostic biomarker in
nasopharyngeal carcinoma and head and neck squamous cell carcinoma.
Front Bioeng Biotechnol. 10(1006535)2022.PubMed/NCBI View Article : Google Scholar
|
49
|
Feng Y, Li X, Yang B, Li M, Du Y, Wang J,
Liu S, Gong L, Li L and Gao L: The role of ferroptosis in
radiotherapy and combination therapy for head and neck squamous
cell carcinoma (review). Oncol Rep. 51(79)2024.PubMed/NCBI View Article : Google Scholar
|
50
|
Ma P, Xiao H, Yu C, Liu J, Cheng Z, Song
H, Zhang X, Li C, Wang J, Gu Z and Lin J: Enhanced cisplatin
chemotherapy by iron oxide nanocarrier-mediated generation of
highly toxic reactive oxygen species. Nano Lett. 17:928–937.
2017.PubMed/NCBI View Article : Google Scholar
|
51
|
Feng L, Zhao K, Sun L, Yin X, Zhang J, Liu
C and Li B: SLC7A11 regulated by NRF2 modulates esophageal squamous
cell carcinoma radiosensitivity by inhibiting ferroptosis. J Transl
Med. 19(367)2021.PubMed/NCBI View Article : Google Scholar
|
52
|
Xie J, Lan T, Zheng DL, Ding LC and Lu YG:
CDH4 inhibits ferroptosis in oral squamous cell carcinoma cells.
BMC Oral Health. 23(329)2023.PubMed/NCBI View Article : Google Scholar
|
53
|
Liu F, Tang L, Li Q, Chen L, Pan Y, Yin Z,
He J and Tian J: Single-cell transcriptomics uncover the key
ferroptosis regulators contribute to cancer progression in head and
neck squamous cell carcinoma. Front Mol Biosci.
9(962742)2022.PubMed/NCBI View Article : Google Scholar
|
54
|
Codenotti S, Poli M, Asperti M, Zizioli D,
Marampon F and Fanzani A: Cell growth potential drives ferroptosis
susceptibility in rhabdomyosarcoma and myoblast cell lines. J
Cancer Res Clin Oncol. 144:1717–1730. 2018.PubMed/NCBI View Article : Google Scholar
|
55
|
Sui X, Zhang R, Liu S, Duan T, Zhai L,
Zhang M, Han X, Xiang Y, Huang X, Lin H and Xie T: RSL3 drives
ferroptosis through GPX4 inactivation and ROS production in
colorectal cancer. Front Pharmacol. 9(1371)2018.PubMed/NCBI View Article : Google Scholar
|
56
|
Shin D, Kim EH, Lee J and Roh JL: Nrf2
inhibition reverses resistance to GPX4 inhibitor-induced
ferroptosis in head and neck cancer. Free Radic Biol Med.
129:454–462. 2018.PubMed/NCBI View Article : Google Scholar
|
57
|
Li S, Liu Y, Li J, Zhao X and Yu D:
Mechanisms of ferroptosis and application to head and neck squamous
cell carcinoma treatments. DNA Cell Biol. 40:720–732.
2021.PubMed/NCBI View Article : Google Scholar
|
58
|
Lin R, Zhang Z, Chen L, Zhou Y, Zou P,
Feng C, Wang L and Liang G: Dihydroartemisinin (DHA) induces
ferroptosis and causes cell cycle arrest in head and neck carcinoma
cells. Cancer Lett. 381:165–175. 2016.PubMed/NCBI View Article : Google Scholar
|
59
|
Zhu T, Shi L, Yu C, Dong Y, Qiu F, Shen L,
Qian Q, Zhou G and Zhu X: Ferroptosis promotes photodynamic
therapy: Supramolecular photosensitizer-inducer nanodrug for
enhanced cancer treatment. Theranostics. 9:3293–3307.
2019.PubMed/NCBI View Article : Google Scholar
|
60
|
Wang H, Cheng Y, Mao C, Liu S, Xiao D,
Huang J and Tao Y: Emerging mechanisms and targeted therapy of
ferroptosis in cancer. Mol Ther. 29:2185–2208. 2021.PubMed/NCBI View Article : Google Scholar
|
61
|
Wang W, Green M, Choi JE, Gijón M, Kennedy
PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al:
CD8+ T cells regulate tumour ferroptosis during cancer
immunotherapy. Nature. 569:270–274. 2019.PubMed/NCBI View Article : Google Scholar
|
62
|
Chen X, Kang R, Kroemer G and Tang D:
Ferroptosis in infection, inflammation, and immunity. J Exp Med.
218(e20210518)2021.PubMed/NCBI View Article : Google Scholar
|
63
|
Zhou Z, Liang H, Yang R, Yang Y, Dong J,
Di Y and Sun M: Glutathione depletion-induced activation of
dimersomes for potentiating the ferroptosis and immunotherapy of
‘cold’ tumor. Angew Chem Int Ed Engl. 61(e202202843)2022.PubMed/NCBI View Article : Google Scholar
|
64
|
Fan X, Fan YT, Zeng H, Dong XQ, Lu M and
Zhang ZY: Role of ferroptosis in esophageal cancer and
corresponding immunotherapy. World J Gastrointest Oncol.
15:1105–1118. 2023.PubMed/NCBI View Article : Google Scholar
|
65
|
Niu X, Chen L, Li Y, Hu Z and He F:
Ferroptosis, necroptosis, and pyroptosis in the tumor
microenvironment: Perspectives for immunotherapy of SCLC. Semin
Cancer Biol. 86:273–285. 2022.PubMed/NCBI View Article : Google Scholar
|
66
|
Huang Y, Wang S, Ke A and Guo K:
Ferroptosis and its interaction with tumor immune microenvironment
in liver cancer. Biochim Biophys Acta Rev Cancer.
1878(188848)2023.PubMed/NCBI View Article : Google Scholar
|
67
|
Huang J, Wang J, He H, Huang Z, Wu S, Chen
C, Liu W, Xie L, Tao Y, Cong L and Jiang Y: Close interactions
between lncRNAs, lipid metabolism and ferroptosis in cancer. Int J
Biol Sci. 17:4493–4513. 2021.PubMed/NCBI View Article : Google Scholar
|
68
|
Gao X, Hu W, Qian D, Bai X, He H, Li L and
Sun S: The mechanisms of ferroptosis under hypoxia. Cell Mol
Neurobiol. 43:3329–3341. 2023.PubMed/NCBI View Article : Google Scholar
|